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Abstract 

Many microtubule motors have been shown to couple to endosomal membranes. These motors 

include dynein as well as many different kinesin family members. Sorting nexins (SNXs) are central to 

the organization and function of endosomes. These proteins can actively shape endosomal 

membranes and couple directly or indirectly to the minus-end microtubule motor dynein. Motor 

proteins acting on endosomes drive their motility, dictate their morphology and impact on cargo 

segregation. We have used well-characterized members of the sorting nexin family to elucidate 

motor coupling using high resolution light microscopy coupled with depletion of specific microtubule 

motors. Endosomal domains labelled with sorting nexins 1, 4, and 8 (SNX1, SNX4, SNX8) couple to 

discrete combinations of dynein and kinesin motors. These specific  combinations govern the 

structure and motility of each SNX-coated membrane as well as the segregation of distinct functional 

endosomal subdomains. Together our data show that these key features of endosome dynamics are 

governed by the same set of opposing microtubule motors. Thus, microtubule motors help to define 

the mosaic layout of endosomes that underpins cargo sorting.  
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Introduction 

The endosomal network is highly dynamic with a constant flux of membrane driving membrane 

trafficking to multiple destinations. Endocytic cargoes can traffic through several pathways either 

recycling to the cell surface or via a degradative route to the lysosome. Multiple recycling pathways 

exist which traverse distinct compartments (Anitei and Hoflack, 2011). These pathways govern a 

diverse array of essential cellular functions including interpretation and down-regulation growth 

factor and morphogen signalling, organelle positioning as it relates to metabolic sensing, and the 

uptake and recycling of nutrient receptors. These pathways are also co-opted by various bacterial 

and viral pathogens that use these systems to avoid degradation.  

Microtubule-based motor proteins are integral to the organization and function of the endosomal 

system. Many different motors have been implicated in discrete trafficking steps (Soldati and 

Schliwa, 2006; Hunt and Stephens, 2011). Combinations of opposing motors have been implicated in 

many of these steps; for example, dynein (Aniento et al., 1993) and kinesin-2 (Brown et al., 2005; 

Loubery et al., 2008) are implicated in traffic to and at late endosomes whereas early endosome 

motility involves dynein and kinesin-1 (Loubery et al., 2008). Other pathways have been identified 

that exploit specific members of the kinesin superfamily such as Rab4-dependent trafficking of the 

fibroblast growth factor receptor (Hoepfner et al., 2005; Ueno et al., 2011). In several systems 

kinesin-3 family members have been shown to be important, notably in recycling to the plasma 

membrane. For example UNC-104/KIF1A in Dictyostelium (Soppina et al., 2009), kinesin-73 in 

Drosophila (Huckaba et al., 2011), and kinesin-3 in the filamentous fungus Ustilago (Schuster et al., 

2011b). Dynein (built around the heavy chain DYNC1H1) is clearly a major player in endocytic 

function with roles in organelle localization (Burkhardt et al., 1997), vesicle movement (Aniento et 

al., 1993; Oda et al., 1995), and cargo sorting (Driskell et al., 2007). Conflicting data exist surrounding 

the composition of the dynein motor that is involved in motility and sorting events at the early 

endosome. In previous work we showed that steady-state localization of the transferrin-positive 

endocytic recycling compartment was dependent on dynein that contains light intermediate chain 2 

LIC2 (DYNC1LI2) (Palmer et al., 2009b) while others have shown roles for both LIC1 (DYNC1LI1) 

(Horgan et al., 2010b) and LIC2 (Horgan et al., 2010a). Indeed others have suggested that the two 

LICs have redundant functions in endomembrane traffic (Tan et al., 2011) despite being mutually 

exclusive components of dynein motors (Tynan et al., 2000). Localization data implicate LIC1 more 

than LIC2 in endocytic function (Tan et al., 2011).  

Jo
ur

na
l o

f C
el

l S
ci

en
ce

A
cc

ep
te

d 
m

an
us

cr
ip

t



Microtubule motors driving endosome dynamics 

4 
 

Much of the complexity of the endosomal system arises from the functional organization of single 

organelles into domains (Zerial and McBride, 2001). Elegant work has shown that traffic through the 

endosomal network occurs via a series of endosomal sub-domains (and ultimately endosomes) 

coated first with Rab5, then Rab7 and finally Rab11 . These functional units are generated and 

maintained by their protein contents including members of the Rab and sorting nexin (SNX) families. 

(Cullen and Korswagen, 2012). Recent data have correlated the SNX-dependent tubulation events 

with the maturation of the endosomal system (which can be defined by Rab localization) (van 

Weering et al., 2012a). This work defining SNX1, SNX4, and SNX8 localization relative to Rab5, Rab7, 

and Rab11, produces a more unified view of endosomal architecture by correlating SNX-dependent 

tubulation (van Weering et al., 2012a).  

While several mechanisms of coupling between molecular motors and endosomal membranes have 

been defined (Hunt and Stephens, 2011), several of the SNX proteins have been shown to form 

multi-protein complexes with dynein to couple cargo-enriched tubule subdomains to the 

microtubule network (van Weering et al., 2010; Hunt and Stephens, 2011). Associations between 

sorting nexins and motor proteins might help tubulation and / or membrane fission. Given their role 

of SNX proteins in geometric cargo sorting (van Weering et al., 2010), SNX-motor coupling could also 

be involved in cargo sorting.  

SNX1 is a component of the retromer complex, mediating traffic from early endosomes back to the 

trans-Golgi network (TGN) (Carlton et al., 2004). The mammalian retromer includes SNX1 or SNX2 in 

concert with SNX5 or SNX6 (Carlton et al., 2004; Carlton et al., 2005; Wassmer et al., 2007; McGough 

and Cullen, 2011). SNX5/SNX6 couples to the dynein motor complex through an interaction with 

p150
Glued

, a subunit of the dynein accessory complex dynactin (Hong et al., 2009; Wassmer et al., 

2009). This coupling is required for both the formation and fission of tubular carriers.   

SNX4 is involved in the endosomal recycling pathway; it is associated with specific tubular elements 

which are spatially and functionally different to the SNX1-retromer complex (Traer et al., 2007). 

Suppression of SNX4 expression leads to a defect on transferrin receptor sorting. SNX4, SNX7 and 

SNX30 are the mammalian orthologues of the yeast Snx4p, Snx41p and Snx42p complexes involved 

in the recycling pathway (Hettema et al., 2003). SNX4 has also been reported to interact with 

amphiphysin-2 (Leprince et al., 2003) and clathrin (Skanland et al., 2009).  

SNX8 localizes to early endosome (Dyve et al., 2009) and partially colocalizes with the retromer 

complex (van Weering et al., 2012a). Its suppression has a direct effect on the retrograde transport 
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endosome-to-TGN trafficking (Dyve et al., 2009). As a member of the SNX-BAR subfamily it is also 

capable of generating tubular endosomal carriers. It is understood to function in retromer-

independent endosome-to-TGN traffic (van Weering et al., 2012a) making it an interesting 

comparator to SNX1 in terms of endosome organization and transport. SNX8 regulates endosome-

to-TGN transport (Dyve et al., 2009) through a pathway that is distinct from that of the SNX1-

containing retromer complex (van Weering et al., 2012b; van Weering et al., 2012a). SNX8 has also 

been identified as a modifier gene for beta-amyloid toxicity (Rosenthal et al., 2012) with some single 

nucleotide polymorphisms leading to a greater risk of late onset Alzheimer’s disease.  

Thus, SNX1, SNX4, and SNX8 provide three markers for the functional organization of endosomes 

that are each linked to microtubule-based motor function. We chose to study the functional 

coupling of these SNX-coated membrane domains to different motors in order to answer the 

following questions. First, does each endosomal subdomain couple to the same motor complexes for 

motility as for tubulation? Second, does this motor coupling impact directly on domain architecture 

of endosomes? Third, how does the SNX-dependent tubulation of these membranes relate to the 

application of force by microtubule motors?  
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Results 

We used small interfering RNAs to suppress expression of specific motor protein subunits using 

oligonucleotides duplexes that we have previously characterized (Gupta et al., 2008; Palmer et al., 

2009b). We selected those subunits for which clear evidence for a role in endosomal motility is 

evident and which we have validated siRNAs ((Gupta et al., 2008; Palmer et al., 2009a). In addition, 

we also set out to rationalize conflicting data relating to the role of LIC1 and LIC2 in endosomal 

sorting. Two independent siRNAs were used in all experiments with indistinguishable outcomes; for 

clarity the results are shown from one siRNA. Efficacy of depletion was monitored by 

immunoblotting (Supplementary Figure S1). We coupled this with fluorescence imaging of cells 

stably or transiently expressing fluorescent protein-tagged SNX proteins (SNX1 and SNX8 were stably 

expressed, SNX4 transiently expressed) (SNX1, SNX4, or SNX8). In order to obtain better spatial and 

temporal resolution of endocytic traffic we chose to use hTERT-RPE1 cells (human telomerase 

immortalized retinal pigment epithelial cells) and total internal reflection fluorescence (TIRF) 

microscopy. The flat morphology of these cells, coupled with TIRF imaging of only those objects 

close to the coverslip greatly increases the signal-to-noise ratio of our data facilitating more accurate 

object localization and tracking. The use of TIRF brings a caveat as only a subset of endosomes can 

be imaged. However, as shown in Supplementary Figure S3, with the configuration that we used, 70-

80% of endosomes were visualized depending on their SNX-coating. On the system used, our chosen 

penetration depth (150 nm) represents the depth at which 30% of the illumination intensity is lost; 

many fluorescent-tagged structures are therefore excited and detected beyond that depth. Our 

rationale was not to use TIRF to image only those events happening beneath the plasma membrane 

but to improve overall spatial and temporal resolution through enhancing the signal to noise ratio.  

Microtubule motor coupling to SNX1, SNX4, and SNX8. 

We first sought to test the hypothesis that different trafficking routes from early endosomes can be 

defined by the cohort of microtubule motors to which they couple. Indeed different kinesins have 

been linked to specific trafficking routes. Using TIRF imaging and object tracking, we compared 

motility of endosomes labelled with GFP-SNX1 in cells transfected with control siRNA (Fig. 1A, Movie 

S1) versus those in which we depleted different microtubule motor subunits: dynein-1 heavy chain 

(DHC1) Kinesin-1 (KIF5B), kinesin-2 accessory protein (KAP2), dynein light intermediate chains 1&2 

(LIC1 & LIC2 respectively). These data are shown in Figure 1B-F and in Supplementary Movies S2-S6). 

These data revealed key differences in both endosomal structure and dynamics following motor 

depletion and enabled us to define those subunits that couple to SNX1-coated endosomal domains. 
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Fig. 1A’-F’ show colour coded maximum intensity time projections in which all 300 frames of each 

sequence are colour coded frame by frame (see Movie S7 for an example of this colour coding over 

time). This allows simple visualization of organelle dynamics. Immobile objects appear white, those 

moving rapidly show linear paths of a single colour (where all motility occurs within a few frames), 

while those moving more slowly appear as multi-coloured tracks. In control cells, GFP-SNX1 labelled 

endosomes are moving rapidly thus the tracks observed in the colour coded panel are of a single 

colour (see the green track). These data sets were then quantified (Figure 2) to define the numbers 

of objects moving long distances (>500 nm), short distances (<500 nm but >200 nm) or that were 

immobile. Distances were determined by eye and accuracy of this assignment of displacement 

lengths was checked using 2D Gaussian fitting (Spence et al., 2008). Together, Figures 1 and 2 show 

that GFP-SNX1 labelled endosomes are driven by dynein-1 containing LIC2 and by kinesin-1. We then 

repeated this approach using GFP-SNX4 and GFP-SNX8 quantifying the motility of endosomes 

according to whether they underwent long range motility (>500 nm), short range motility (<500 nm), 

or were immobile. Figure 2B shows that GFP-SNX4 couples to dynein containing LIC2 and kinesin-2, 

and Figure 2C shows that GFP-SNX8 labelled endosomes couple to dynein containing LIC1 and 

kinesin-1. Thus, each endosomal domain couples to a distinct cohort of motors that drive their 

motility.  

Microtubule motors govern endosomal structure. 

We also noted that the structure of SNX-coated endosomes was altered following depletion of 

microtubule motors. Examples of endosomal tubulation on motor depletion are shown in Figure 3A. 

By analyzing image sequences we quantified the tubulation of these domains by measuring both 

numbers of tubules per cell as well as their length. We multiplied these parameters to define a 

“tubulation index” (Fig. 3B) which then facilitates analysis of both parameters, taking into account 

situations where there might be more but shorted tubules, more but longer and so on. These data 

are presented in Fig. 3C-E. Fig. 3C shows the proportion of tubules in each case, Fig 3D shows the 

length of tubules, and Fig. 3E the tubulation index which we have colour coded as indicated. These 

data show that the outcome with respect to tubulation exactly mirrors that of motility (Figure 1). 

The depletion of specific microtubule motor subunits impairing both motility and architecture 

(tubulation) suggests a robust functional coupling of these motors to these endosomal domains.  

Live cell imaging showed that depletion of motors completely abolished tension induced membrane 

fission seen occasionally in control cells. Supplementary Movie S8 illustrates longitudinal tension for 

scission as has been shown by others (Hong et al., 2009). These events were never seen in cells 
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depleted of motor subunits that drive motility of the domain under investigation. Neither 

nocodazole nor cytochalasin D treatment of motor-depleted cells reduced the number of tubules 

seen following motor depletion suggesting that neither an intact microtubule network nor actin 

filaments are required to maintain the persistence of these tubules.  

Motor-dependent organization of endosomes. 

SNX1, SNX4, and SNX8 segregate into distinct functional domains thereby defining distinct SNX-

motor dependent pathways (van Weering et al., 2010). We sought to determine whether the 

differential motor coupling that we see when analysing motility and tubulation also has functional 

outcomes with regard to generation of these distinct domains. This would indicate that motor 

coupling directs these different sorting pathways from the same early endosomal network as has 

been suggested by others (Driskell et al., 2007). We therefore determined the level of colocalization 

of each sorting nexin with the two others when co-expressed in the same cell, for example, the 

degree of colocalization between mCherry-SNX1 and GFP-SNX4 and between mCherry-SNX1 and 

GFP-SNX8 and so on. TIRF imaging showed that depletion of microtubule motors subunits caused a 

significant increase in colocalization of these sorting nexins consistent with a failure to generate or 

maintain endosomal domain structure. Our analysis used a reference channel (e.g. GFP-SNX4) and 

asked how many of these structures were also positive for mCherry-SNX1 (Figure 4A). We find that 

dynein-1 containing LIC2 and kinesin-1 are coupled to mCherry-SNX1-positive domains (Figure 4A 

and B), dynein-1 containing LIC2 and kinesin-2 are coupled to GFP-SNX4-positive domains, and 

dynein-1 containing LIC1 and kinesin-1 are coupled to mCherry-SNX8-positive endosomal domains. 

These data precisely phenocopy the outcomes of motility and tubulation assays. From these data, 

we conclude that the same cohort of motors is used to drive tubulation and motility and that these 

features also link to segregation of functional domains.   
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Discussion 

Our data show that coupling of microtubule motors to endosomal membranes is required to 

maintain the identity of discrete functional domains. Here, we have defined these functional 

domains using sorting nexins that direct sorting of discrete cargoes along specific pathways (van 

Weering et al., 2010; van Weering et al., 2012a). Previous work has shown that dynein is required for 

correct endosomal sorting of transferrin and epidermal growth factor receptors (Driskell et al., 

2007). Our data suggest that this is mediated through the generation and/or maintenance of 

discrete sorting domains for recycling versus degradation. In support of this, previous work has 

shown that SNX4 and SNX1 direct cargo down different routes (Traer et al., 2007; Wassmer et al., 

2009). More recent work demonstrates the molecular interactions that underpin this selective 

association of SNX family members to generate discrete tubules from a single endosome (van 

Weering et al., 2012b; van Weering et al., 2012a). In addition, our data define the cohort of motors 

that mediate this functional domain organization.  Perhaps surprisingly, we find that it is the same 

cohort of motors that direct this domain organization that mediate motility of these SNX-labelled 

endosomes. We define dynein-1 and kinesin-1 as motors for SNX1- and SNX8-labelled membranes 

and dynein-1 and kinesin-2 as motors for SNX4-labelled endosomes. All of these motors have been 

shown previously to mediate endosomal functions in many systems (Aniento et al., 1993; Brown et 

al., 2005; Nath et al., 2007; Schuster et al., 2011a). Our data highlight a specificity of motor coupling 

with respect to domain organization and motility of early endosomes. Given the number of 

microtubule motor subunits encoded in the human genome, other motors are certainly involved in 

these processes, for example KIF16B which cooperates with Rab14 (Ueno et al., 2011),  

In our experiments, depletion of any one motor appears to effectively inhibit all long range 

translocation. This is consistent with the notion that pairs of opposing motors are required to initiate 

and sustain long range motility of organelles (Ally et al., 2009). Gelfand and colleagues showed this 

to be true for peroxisomes in Drosophila cells and here we demonstrate the same principle for 

endosomes in human cells. However, it is important to note that this phenomenon is not necessarily 

universal and indeed other systems might reply on a single motor species for directed long range 

motility. This certainly seems to be the case for motility of the endoplasmic reticulum (Wozniak et 

al., 2009).  

The recruitment of dynein to endosomes has been shown to be mediated by the LIC subunits of the 

motor (Tan et al., 2011). Indeed using isoform specific antibodies, this work suggested a greater 

localization of LIC1 to early endosomes compared to LIC2. Our own previous work found that LIC2 
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but not LIC1 was required for transferrin-positive endosomal function (Palmer et al., 2009b). Others 

have reported redundant functions for both LICs ((Tan et al., 2011) and C. Villemant, A. Mironov, N. 

Flores-Rodriguez, P.G. Woodman and V.J. Allan, Personal communication, referenced in (Allan, 

2011)). LIC1 and LIC2 are  mutually exclusive components of dynein motors and so define distinct 

motors (Tynan et al., 2000). The data we present here go some way to reconciling these 

discrepancies. As we have shown previously, LIC2 is the predominant form of dynein that couples to 

the SNX4-transferrin recycling route (Traer et al., 2007; Palmer et al., 2009b). Our data also support 

that this is the predominant form of dynein on the SNX1-retromer pathway from the early 

endosome to the trans-Golgi network (TGN) (Wassmer et al., 2009). This led to our conclusion that 

LIC2-dynein predominated in endosomal sorting. Our current data however suggest that LIC1 

containing dynein also has a significant role at early endosomes but on a SNX8-dependent pathway. 

The precise function and pathways directed by SNX8 remain unclear but it is suggested to act in a 

parallel pathway from endosomes to TGN to SNX1 (Dyve et al., 2009). SNX8 homodimers have very 

little affinity for SNX1/SNX5 and form distinct domains (van Weering et al., 2012b). Although like 

SNX1 and SNX4, SNX8 is targeted to the early endosome, these three sorting nexins direct separate 

endosomal sorting events and define distinct membrane trafficking pathways (van Weering et al., 

2012b; van Weering et al., 2012a).  

Following depletion of motors from cells, we observe a significant increase in tubulation of 

endosomes. In time lapse imaging we observe few and short tubules at steady state. While increased 

expression of the chosen SNXs could drive membrane tubulation, control cells are not displaying a 

significantly high level of tubulation. Moreover, all counting was done against control cells 

expressing our proteins of interest using the same expression systems. We do occasionally observe 

tubules emanating from a larger structure in control cells that ultimately release a budding structure 

from the end (Supplementary Figure S2 and Movie S8). These fission events are not seen in cells 

depleted of the motor subunits that drive motility of the relevant endosomal domains. Consistent 

with other previous work (Hong et al., 2009; Wassmer et al., 2009), we interpret this as meaning 

that microtubule motors apply a longitudinal force to these tubules to facilitate scission. On 

perturbation of motor coupling, increased tubulation could result from a failure to drive fission 

through this mechanism.  

In our hands, an intact microtubule network is not required to maintain these tubules once formed. 

We make a distinction here between other data which has investigated the role of microtubules in 

formation of the SNX-coated tubules (e.g. (Kerr et al., 2006)) versus our experiments which really 
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only address the role of microtubules in their maintenance. These tubules are notoriously difficult to 

retain on fixation making interpretation complex. Our data are consistent with a model where the 

microtubules are required for the formation of these tubules but without the correct motor activity, 

they persist, even in the absence of an intact microtubule network. This persistence might be 

dictated by the self-assembly of SNX proteins into higher order structures on the membrane owing 

to a lack of tension-induced fission (Carlton et al., 2004; van Weering et al., 2012b). Our experiments 

do not address the role of an intact microtubule network nor of the motors themselves in generating 

these tubules. Our data are consistent with models of geometric sorting in which the sorting nexins 

generate tubular domains into which cargo is segregated (van Weering et al., 2010). The role of the 

motors here is to drive scission to ensure vectorial transport. 

In summary, our data show that a defined cohort of microtubule motors are recruited to individual 

subdomains of the endosomal network where they drive motility, vectorial transport, and 

participate in the maintenance of the functional architecture of these organelles. A key outcome of 

our data is that it is the same set of motors that defines each of these events at any one endosomal 

domain.  
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Materials and Methods 

All reagents were purchased from Sigma-Aldrich (Poole, UK) unless otherwise stated. Small 

interfering RNAs were used to suppress the expression of specific motors. Two independent siRNAs 

were used in all experiments with indistinguishable outcomes; for clarity the results are shown from 

one siRNA. Efficacy of depletion was monitored by immunoblotting (Supplementary Figure S1). SNX1 

and SNX8 were stably expressed with a lentiviral expression system and SNX4 transiently expressed 

in cells from a plasmid. In order to obtain better spatial and temporal resolution of endocytic traffic 

we chose to use hTERT-RPE1 cells (human telomerase immortalized retinal pigment epithelial cells) 

and total internal reflection fluorescence (TIRF) microscopy. The flat morphology of these cells, 

coupled with TIRF imaging of only those objects close to the coverslip greatly increases the signal-to-

noise ratio of our data facilitating more accurate object localization and tracking.  

Growth of culture cells 

Human telomerase immortalized retinal pigment epithelial cells (hTERT-RPE1) were maintained in 

DMEM-F12 supplemented with 10% FCS (Invitrogen, Paisley, UK) containing supplemented 1% L-

glutamine and 1% essential amino-acids. At 24 hours prior to the start of the experiments, cells were 

seeded onto 35 mm glass bottom dishes (MatTek, Ashland, MA). 

Source of antibodies and other reagents  

Monoclonal rat anti-human tubulin (ab6160) and polyclonal rabbit anti-KIF5B (ab5629) were from 

Abcam (Cambridge); polyclonal rabbit anti-human kinesin-2 (kindly provided by Isabelle Vernos, 

Barcelona, Spain); anti-human dynein light intermediate chains LIC1 and LIC2 were generously 

provided by Richard Vallee (Tynan et al., 2000); polyclonal rabbit anti-human lamin A/C (cell 

signalling 2032) was from Cell Signalling Technology (Danvers, MA); monoclonal mouse anti-γ-

tubulin (T6557 clone GTU88) was from Sigma-Aldrich (Poole, UK). Fluorophore-conjugated 

secondary antibodies were from Jackson ImmunoResearch Laboratories (West Grove, PA). 

Small interfering RNA transfection  

Cells were siRNA-transfected by calcium phosphate method at 3% CO2 (Chen and Okayama, 1988). 

The medium was changed 20 hours after transfection and cells were washed with PBS and were 

incubated for 72 hours at 37°C at 5% CO2 with fresh supplemented media. SiRNA duplexes were 

designed using online algorithms of, and subsequently synthesized by, MWG-Eurofins. BLAST search 
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was performed for these duplexes against the non-redundant database to determine their 

specificity. All siRNAs have been described previously in (Gupta et al., 2008) or (Palmer et al., 2009b). 

Two independent siRNAs were used in all experiments with indistinguishable outcomes; for clarity 

the results are shown from one siRNA.  Lamin A/C or luciferase GL2 were depleted as targeted 

controls. Sequences used were as follow: DHC1-a ACA UCA ACA UAG ACA UUC ATT; DHC1-b CCA 

AGC AGA UAA GGC AAU ATT; KIF5B-a UGA AUU GCU UAG UGA UGA ATT; KIF5B-b UCA AGU CAU 

UGA CUG AAU ATT; KAP3-a CUU GAC CAU UCC AGA CUU ATT; KAP3-b GCU CUG UGU AUG AAU AUU 

ATT; LIC1-a AGA UGA CAG UGU AGU UGU ATT; LIC1-b GAA CAU GAC UAC AGA GAU GTT; LIC2-a ACC 

UCG ACU UGU UGU AUA ATT; LIC2-b GCC GGA AGA UGC AUA UGA ATT; Lamin A/C CUG GAC UUC 

CAG AAG AAC ATT; GL2 CGU ACG CGG AAU ACU UCG AUU TT. 

Transient plasmid expression 

All FP-SNX plasmids were kindly supplied by Pete Cullen’s group (University of Bristol, School of 

Biochemistry). Transient expression of GFP-SNX1, GFP-SNX4, GFP-SNX8, mCherry-SNX1 and 

mCherry-SNX4 for motor-dependent endosomal sorting assays was done using Lipofectamine
TM

 

2000 as per manufacturer’s instructions. Transient expression of GFP-SNX4 was also used for 

microtubule motor coupling assay.   

Lentiviral construct and generation of stable cell lines 

All viruses were kindly supplied by Pete Cullen’s group (University of Bristol, School of Biochemistry). 

Cells were plated at 1.5 x 105 cells per 3 cm culture dish and infected with lentivirus particles after 24 

h growth; media was replaced by fresh supplemented media after 24 h. Cells were split as usual 

after an additional 48 h. Following puromycin selection stable cell lines were verified by 

immunofluorescence. Transduced cells were stably expressing the constructs after 72 h. These GFP-

SNX1 and GFP-SNX8 stable cell lines have been used for microtubule motor coupling assays. 

Immunolabelling  

Medium was removed and cells were subsequently washed with PBS. Cells were then fixed using 

4% paraformaldehyde for 20 minutes at room temperature. A solution of glycine (30 mM) in PBS was 

then added for 5 minutes at room temperature. Cells were thereafter permeabilized with a solution 

of 0.1% Triton X100 in PBS for 5 minutes at room temperature. After two washes in PBS, cells were 

blocked using a 3% bovine serum albumin (BSA) in PBS for 30 minutes at room temperature. Cells 

were incubated with the primary antibodies in 3% BSA for 1 hour at room temperature. Three 
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washes with PBS of 5 minutes each at room temperature were done before incubating the 

secondary antibody. The latter was diluted at 1:400 in PBS and incubated 1 hour at room 

temperature. Finally, after three washes in PBS (5 minutes each at room temperature) and an 

optional nuclear staining with DAPI (4,6-Diamidino-2-phenylindole, Molecular Probes, diluted at 

1:5000 in distilled water) for 3 minutes at room temperature, cells were gently rinsed twice in PBS. 

Immunoblotting 

For all immunoblots, cells were lysed and samples were separated by SDS-PAGE followed by transfer 

to nitrocellulose membranes; primary antibodies were detected using HRP-conjugated secondary 

antibodies (Jackson ImmunoResearch, West Grove, PA) and enhanced chemiluminescence (ECL, GE 

Healthcare, Cardiff, UK). 

Nocodazole treatment 

Nocodazole was used at the final concentration of 5 μg.ml -1 in culture media. After 1 h incubation at 

37°C, cells were observed live in imaging media (red-phenol free DMEM, 30 mM HEPES pH 7.4, 

NaHCO3 0.05 g.l-1) containing nocodazole at the same concentration thus preventing cell recovery 

from the drug treatment. 

Transferrin uptake assay 

Cells were washed twice in imaging media (red-phenol free DMEM, 30 mM Hepes pH 7.4, NaHCO3 

0.05g.l-1); transferrin-Alexa Fluor 568 (Molecular Probes) was diluted to 100 μg.ml -1 in imaging media 

and added to cells. After 15 minutes incubation at 37°C, cells were washed twice in imaging media 

pre-warmed at 37°C and imaged as usual. 

TIRF Imaging 

Cells were kept at 37°C and at 5% CO2. Media was discarded and replaced with pre-warmed imaging 

media just prior imaging. The TIRF system used was a Leica AM-TIRF MC (multi colour) associated 

with a Leica DMI 6000 inverted microscope. Images were acquired with an Olympus oil immersion 

TIRF objective with 100x 1.46 numerical aperture and were acquired at the rate 12.04 frames per 

second (e.g. interval between pictures set at 83 ms) using a Hamamatsu C9100-13 EMCCD camera. 

Each image was 512 by 512 pixels with no additional binning. Laser lines available were at 405 nm, 

488 nm, 561 nm and 635 nm. Data was processed using Volocity software (Perkin Elmer) and Adobe 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

A
cc

ep
te

d 
m

an
us

cr
ip

t



Microtubule motors driving endosome dynamics 

15 
 

Illustrator CS (Adobe). TIRF Imaging was used in all assays. The penetration depth used was set at 

150 nm to optimise the ratio signal / noise. For motor-dependent endosomal sorting assays, 

thousand frames were acquired. Colocalization studies were also performed on live cells to keep the 

tubular structures intact. Image brightness and contrast was adjusted in ImageJ/Fiji and the same 

processing was applied to all image sets within each experiment.  

Quantification of image data and statistical analysis 

After TIRF acquisition, movies were imported in Volocity 5.4.1 (Perkin Elmer). The long range and 

short range of movement have been typically determined using 2D Gaussian fitting. Due to the large 

size and pleiomorphic nature of endosomes, the number of vesicles to be tracked and their 

numerous interferences with the background, counting was done by hand after visual verification of 

the displacement level. Object tracking was performed manually and distance accuracy was checked 

using two-dimensional (2D) Gaussian fitting of pixel intensities as described elsewhere (Gupta et al., 

2008; Spence et al., 2008). Colour coding of time sequences was achieved using an ImageJ plug-in 

developed by Kota Miura (EMBL Heidelberg) which is available within the Fiji implementation of 

ImageJ at: www.fiji.sc (Schindelin et al., 2012). Tubules were counted by hand and their length was 

determined using the line measurement tool in Volocity 5.4.1 (Perkin Elmer). The proportion of 

tubules was determined against the number of structures (vesicles and tubules). 

Colocalization tools in image analysis software such as Volocity 5.4.1 (Perkin Elmer) or ImageJ (Fiji) 

give underestimated threshold coefficients due to the partial overlapping of some structures. Thus, 

in this study colocalized structures were counted by hand. Any overlap of objects was counted as 

colocalization. Representative images are shown, all experiments were repeated independently at 

least three times each. Samples were compared using the Mann Whitney test using GraphPad Prism. 

All images were prepared for publication with Photoshop CS (Adobe) 
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Figure Legends 

Figure 1: Microtubule motors driving motility of SNX-labelled endosomal domains.  

(A-F) Frames depicting the movement of SNX1-coated endosomes, in control cells (A) and in cells 

depleted for different microtubule motor subunits (B-F).  (A’-F’) Colour coded representation of 

movement: immobile vesicles appear white and moving vesicles appear with coloured tracks. Scale 

bar is 5 μm on all panels.  

Figure 2: Quantification of motility of SNX-labelled endosome domains. 

These histograms represent the different subpopulations of SNX decorated structures according to 

their motility. Long range movements are characterized by a range greater than 500 nm, short range 

less than 500 nm. The siRNA GL2 targeting the firefly luciferase (Elbashir et al., 2001) was used to 

transfect control cells throughout this study. When depleted, dynein-1 heavy chain (DHC1, 

DYNC1H1), kinesin-1 (KIF5), kinesin-2 (KAP3) and dynein light intermediate chains 1&2 (LIC1 and LIC2 

resp.) impaired the motility of SNXs. Note GFP-SNX1 endosomes couple to dynein-1 containing LIC2 

and kinesin-1, GFP-SNX4 endosomes couple to dynein-1 containing LIC2 and kinesin-2 and GFP-SNX8 

endosomes couple to dynein-1 containing LIC1 and kinesin-1. Note that experiments with defined 

outcomes were repeated 3 times (independently) and error bars are displayed on the subsequent 

column. Non-effective treatments were repeated twice. This is consistent throughout this study. 

Asterisks indicate statistical significance from Mann-Whitney test comparing to GL2 controls 

(*=p<0.05, **=p<0.01, ***=p<0.001). 

Figure 3: Tubulation of endosomal domains in the absence of coupled motor proteins.  

(A) Highly mobile tubulo-vesicular SNX-decorated structures are moving linearly and bidirectionally 

in control cells (GL2). Depletion of different motor subunits induced the generation of long tubules 

(arrows) and enlarged endosomes (asterisks) for SNX1- SNX4- and SNX8-coated endosomes. Scale 

bar is 5 μm on all panels. (B) This diagram represents the different phenotypes that could be 

observed in hTERT-RPE1 expressing GFP-tagged SNX. In non treated cells, the percentage of tubules 

and their length is low as shown in case #1. The two parameters monitored, % tubules and tubule 

length could be affected by motor depletion as shown in cases #2-#4. A tubulation index (T.I.) is 

calculated where T.I. = % tubules x length tubule and colour coded for clarity. (C) The proportion of 

tubules was counted against the number of SNX-labelled structures. (D) The length of tubules in μm 

has been measured in each case. (E) The tubulation Index is calculated as previously explained and 
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bar are coloured for greater clarity. A red column indicates case#4 with a high percentage of tubule 

and a greater length. Mirroring our other data, these results highlight the role of motors in the 

vesicle scission from endosomes. Asterisks indicate statistical significance from Mann-Whitney test 

comparing to GL2 controls (*=p<0.05, **=p<0.01, ***=p<0.001). 

Figure 4: Microtubule motors direct segregation of endosomes into distinct functional domains.  

We determined the colocalization of different SNX proteins following microtubule motor depletion 

as a measure of functional coupling of motors to these domains. (A) The number of SNX4 labelled 

structures also labelled with SNX1 is increased following depletion of DHC1, KIF5B, or LIC2. (B) 

Colocalization of SNX8 and SNX1 following depletion of DHC1, KIF5B, or LIC2. Together A and B 

indicate that DHC1, KIF5B, or LIC2. Apply force to SNX1-labelled domains. (C, D) The number of (C) 

SNX1 or (D) SNX8 labelled endosomal domains also labelled with SNX4 is greatly enhanced following 

depletion of DHC1, KAP3, or LIC2. These data indicate that DHC1, KAP3, and LIC2 apply force to 

SNX4-positive structures. (E, F) The number of (E) SNX1 or (F) SNX4 labelled endosomal domains also 

labelled with SNX8 is greatly enhanced following depletion of DHC1, kinesin-1, or LIC1. These data 

indicate that DHC1, kinesin-1, and LIC1 apply force to SNX8-positive structures. Asterisks indicate 

statistical significance from Mann-Whitney test comparing to GL2 controls (*=p<0.05, **=p<0.01, 

***=p<0.001).  
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B

Parameter Case #1 Case #2 Case #3 Case #4 

Phenotype     

% tubules Low High Low High 

Length (μm) Low Low High High 

Tubulation Index Low Int.1  Int.2  High 

C length of tubules (µm) tubulation index
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Hunt et al - Figure 4
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