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Abstract1

We consider the question: under what circumstances can the concept2

of adaptation be applied to groups, rather than individuals? Gardner3

and Grafen (2009) develop a novel approach to this question, building on4

Grafen’s ‘formal Darwinism’ project, which defines adaptation in terms5

of links between evolutionary dynamics and optimization. They conclude6

that only clonal groups, and to a lesser extent groups in which reproduc-7

tive competition is repressed, can be considered as adaptive units. We8

re-examine the conditions under which the selection-optimization links9

hold at the group level. We focus on an important distinction between10

two ways of understanding the links, which have different implications11

regarding group adaptationism. We show how the formal Darwinism ap-12

proach can be reconciled with G.C. Williams’ famous analysis of group13

adaptation, and we consider the relationships between group adaptation,14

the Price equation approach to multi-level selection, and the alternative15

approach based on contextual analysis.16

Keywords: adaptation, group adaptation, superorganism, Price’s equa-17

tion, optimality, contextual analysis, G. C. Williams, formal Darwinism, group18

selection19
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Group Adaptation, Formal Darwinism and20

Contextual Analysis21

22

1 Introduction23

Evolutionary biologists usually apply the concept of adaptation to individual24

organisms. However it has long been recognised that in principle, groups might25

also exhibit adaptations. The idea of group adaptation, and the associated con-26

cept of a ‘superorganism’, were famously criticised by G.C. Williams (1966), but27

have since been revived by proponents of ‘multi-level selection’ (Sober & Wilson28

1998; Seeley 1989, 1997; Hölldobler & Wilson 2009). Progress on this topic has29

been hampered by unclarity about how exactly ‘group adaptation’ should be30

defined, how it relates to ‘group selection’, and the conditions under which it31

can evolve. Gardner and Grafen (2009) (hereafter G&G) make a remarkable32

contribution by bringing mathematical precision to these issues, with striking33

results. They do this by applying Grafen’s ‘formal Darwinism’ project, (Grafen34

2002, 2006, 2008), which provides a general framework for understanding the35

concept of adaptation, to groups.36

Our aim here is to take further the analysis of group adaptation, using a37

similar methodology to G&G. We recognise the merits of making the concept38

of group adaptation precise, and share their view that the formal Darwinism39

project offers the best way to do this. However, G&G’s analysis leaves open a40

number of issues. In particular, it is unclear how the concept of group adapta-41

tion they articulate relates to G.C. Williams’ (1966) well-known analysis of the42

concept (cf. Sober and Wilson 2011).43

Our discussion falls into three parts. Firstly, we explore a subtle difference44

between two ways of defining adaptation using the formal Darwinism machinery,45

one used by G&G, the other by Grafen in his earlier papers. The two defintions46

have different implications in general; and as applied to groups, they differ47

on whether clonality, or repression of within-group competition, represent the48

clearest cases of group adaptation.49

Secondly, we study how the formal Darwinism approach can be reconciled50

with G.C. Williams’ distinction between ‘group adaptation’ and ‘fortuitous51

group benefit’. The former refers to a group feature that evolved because it52

benefits the group, the latter to a group feature that happens to benefit the53

group but did not evolve for that reason. (Thus Williams famously contrasted54

a ‘herd of fleet deer’ with a ‘fleet herd of deer’.) Many biologists regard this dis-55
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tinction as crucial, so it is of some interest to see whether the formal Darwinism56

approach to group adaptation can accommodate it.57

Thirdly and relatedly, we consider the relation between the ‘Price equation’58

approach to multi-level selection and the alternative approach based on ‘con-59

textual analysis’. These approaches constitute alternative ways of partitioning60

the total evolutionary change in a structured population into components cor-61

responding to distinct levels of selection. G&G say that their analysis ‘has62

identified Price’s between-group selection as the driver of group adaptation’,63

and thus favour the Price approach (p. 667). We show that the contextual64

approach can also supply a formal definition of group adaptation.65

2 The ‘maximizing agent’ analogy66

G&G’s analysis of group adaptation draws on Grafen’s ‘Formal Darwinism’67

project, which aims to connect optimization and natural selection in a precise68

way, thus formally justifying the intuitive idea that selection leads to organismic69

design (Grafen 2002, 2006, 2008). Grafen’s approach is to use a fully explicit70

definition of optimization, then to prove links between optimality and evolution-71

ary dynamics. The notion of optimization is captured by an ‘objective function’72

that maps an agent’s phenotype to its ‘fitness’ (for some measure of fitness);73

if an agent achieves the maximum value of this function, they are said to ‘be-74

have optimally’. The links state logical connections between the optimality or75

otherwise of agents’ behaviour and the operation of natural selection.76

In Grafen’s original papers, the ‘agents’ are taken to be individual organ-77

isms; this is natural because individuals are usually treated as the bearers of78

adaptations in biology. With this interpretation, the links capture the sense in79

which natural selection leads individuals to be adaptive units, just as Darwin80

originally argued. G&G investigate what happens when the ‘agents’ in Grafen’s81

analysis are instead taken to be groups; their aim is to see whether, and in82

what circumstances, whole groups can legitimately be considered as adaptive83

units, or ‘maximizing agents’. Their main conclusion is that these circumstances84

are relatively rare, because the required links between optimality and natural85

selection only hold under fairly stringent conditions.86

To understand G&G’s argument, the optimality / selection links must be87

laid out explicitly (see Table 1). The first link says that if all agents behave88

optimally, there is no ‘scope’ for selection, i.e. no gene will change in (expected)89

frequency. This makes good sense: if all agents achieve maximum fitness, the90

fitness variance in the population is zero, so no selection will occur. The second91

link says that if all agents behave optimally, there is no ‘potential’ for positive92

selection, which means that no introduced mutant will spread. This also makes93

sense: if all agents achieve maximum fitness, then no mutant can do better. The94

third link says that if all agents behave suboptimally, but equally so, there is no95

scope for selection. Again this makes sense, given that selection requires variance96

in fitness. The fourth link says that if all agents behave suboptimally, but97

equally so, then there is potential for positive selection. This is also intuitive,98
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1. If all agents behave optimally, there is no scope for selection.
2. If all agents behave optimally, there is no potential for positive selection.
3. If all agents behave suboptimally, but equally so, there is no scope for
selection.
4. If all agents behave suboptimally, but equally so, then there is potential
for positive selection.
5. If agents vary in their optimality, then there is scope for selection, and
the change in the frequency of any gene is given by the covariance between
the frequency of that gene in an agent and the agent’s relative fitness.

Table 1: The selection / optimality links

since a mutant phenotype which achieves a higher fitness than the incumbents99

will spread in the population.100

The fifth link is slightly different, in that it describes what will happen if101

the agents vary in their optimality. The link says that if agents vary in their102

optimality, then there is scope for selection, and the change in the frequency of103

any gene is given by the covariance between the frequency of that gene in an104

agent and the agent’s relative fitness. The first part of this is intuitive – non-105

zero variance in fitness implies that natural selection can operate; the second106

part follows from the Price equation with the second term set to zero, described107

below. A sixth link is discussed by G&G, but we do not treat it separately here108

as it is a logical consequence of links four and five taken together (as they note109

in their Appendix.)110

These links may seem obvious, but as Grafen (2002) points out, that is only111

because many biologists simply take for granted that selection leads to opti-112

mization. And in fact, the assumptions that must be made, and the definition113

of ’fitness’ that must be used, in order for the links to be proved are non-trivial114

matters. For example, when the agents are individuals, the absence of mutation115

and gametic selection must be assumed to prove the links; and depending on116

whether the individuals socially interact, different definitions of ‘fitness’ must117

be used (Grafen 2006). So the project is highly non-trivial.118

When the agents are individuals, Grafen speaks of an ’individual as max-119

imising agent’ (IMA) analogy, to capture the idea that individuals behave like120

economically rational agents, attempting to maximise the value of their objec-121

tive function. If all five links hold, the IMA analogy is closely tied to the action122

of natural selection. It is then legitimate to treat individuals as adaptive units,123

Grafen argues, and to regard natural selection as acting to optimize each indi-124

vidual’s phenotype. But where the links do not hold, there is no justification125

for employing the concept of individual adaptation.126

G&G apply a similar logic to groups, by developing a ‘group as maximis-127

ing agent’ (GMA) analogy. They study the conditions under which the five128

links hold, with ‘agents’ understood as groups. These conditions then deter-129

mine when talk of group adaptationism is valid, i.e. when it is legitimate to130

regard groups as adaptive units, and natural selection as acting to optimize131
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the group’s phenotype. So for G&G, the validity of group adaptationism thus132

depends on whether the selection / optimality links hold, where groups are the133

optimizing agents. This yields an understanding of group adaptationism that is134

both conceptually clear and mathematically precise.135

3 The selection / optimality links: ‘actual’ ver-136

sus ‘possible’ definitions137

For the selection / optimality links to be formally proved, they need to be ex-138

pressed mathematically. ‘Optimality’ is defined as maximization of the objective139

function; ‘scope for selection’ and ‘potential for positive selection’ are expressed140

in terms of the evolutionary change in what Grafen (1985) calls ‘p-scores’. For-141

mally a p-score is simply a function from the set of individuals in the population142

to R. In the simplest case a p-score is an indicator function for a particular al-143

lele, indicating the frequency of the allele within an individual (= 0, 1/2 or 1144

for diploids); the average of this p-score over individuals is then the frequency145

of the allele in the population. Any weighted sum of such indicator functions146

also counts as a p-score, is why a p-score can assume any real value. (These147

weighted sums represent breeding values of phenotypic traits; see Grafen (1985,148

2002, 2008) for a full explanation of p-scores.)149

In Grafen’s (2002) discussion of the IMA analogy, and in Grafen (2006), he150

considers the set of all possible p-scores in a population, i.e. all functions from151

the set of individuals to R, irrespective of whether these functions indicate the152

frequency of an allele actually found in the population (or a weighted sum of153

such functions). So even if two individuals are genotypically identical, there is154

still some possible p-score for which they differ. Grafen (2002) then defines ‘no155

scope for selection’, an expression that occurs in links 1 and 3, as ‘no expected156

change in population-wide average p-score, for any possible p-score.’ Let us call157

this definition ‘no scope for selection (possible)’.158

Grafen’s definition of ‘no scope for selection’ may seem odd; surely it would159

be more natural to define it in terms of actual p-scores, rather than all possible160

p-scores? An ‘actual p-score’ may be defined as an indicator function for an allele161

that is actually present in the population (or a weighted sum of such functions).162

So for a given population, the set of actual p-scores is a proper subset of the163

set of all possible p-scores. If ‘no scope for selection’ were defined in terms of164

actual p-scores, it would mean that there whenever there is no expected genetic165

change in a population, there is no scope for selection, and vice-versa. Let us166

call this definition ‘no scope for selection (actual)’.167

The biological meaning of the condition ‘no scope for selection (actual)’ is168

obvious, but what about ‘no scope for selection (possible)’? In effect, the latter169

condition means that no allele actually present in the population will change170

in expected frequency and that no neutral mutations can change in expected171

frequency. (By contrast, ‘no potential for positive selection’ concerns the fate of172

non-neutral mutations.) Conversely, if there is ‘scope for selection (possible)’ in173
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a population, this means that the fitness distribution is such that, if the requisite174

genetic variation were present, there would be expected gene frequency change.175

So although the condition ‘no scope for selection (possible)’ seems odd at first176

sight, referring as it does to non-actual p-scores, it can be given a reasonable177

biological interpretation.178

Moreover, the ‘possible’ defintion is crucial to Grafen’s project. To see why,179

consider link 5 – which says that if agents vary in optimality then there is180

scope for selection. Suppose a population of individuals does exhibit variance in181

optimality (fitness), but is in population-genetic equilibrium. This could be for182

a number of reasons, e.g. overdominance. For example, suppose that individual183

fitness depends exclusively on genotype at a single heterotic locus; assume that184

AA and BB individuals are non-viable, while ABs are viable. So at equilibrium,185

the individuals do vary in optimality. However, at the locus in question there186

will be no evolutionary change; and we may assume that at every other locus,187

all individuals are genotypically identical. So no allele present in the population188

will change in expected frequency; thus there will be no expected change in any189

actual p-score. However, there does exist some possible p-score, e.g. whose value190

is positively correlated with individual fitness, which will change in frequency.191

So for link 5 to be true in the IMA case, ‘no scope for selection’ has to be defined192

with reference to all possible p-scores, rather than just actual p-scores.193

It might be argued that the use of ‘all possible’ p-scores, in the definition of194

‘scope for selection’, is unnecessary, as a referee suggests, for the following rea-195

son. In the overdominance example. there are exactly two possibilities: either196

all individuals are genetically identical at all loci over than the overdominant197

locus (case A), or this is not so (case B). Both possibilities are consistent with198

the model assumptions. If we do not know whether case A or case B obtains,199

then for all we know, there may be an allele actually present in the population200

which will change in expected frequency. Since we cannot rule this out, in this201

sense there is ‘scope for selection’ based solely on change in actual p-scores.202

The problem with this reasoning is that it makes the existence or otherwise203

of ‘scope for selection’ dependent on our knowledge, rather than a matter of204

objective fact. We regards this as undesirable, since the holding of the selection205

/ optimality links, and thus the validity of adaptationism, would then become206

knowledge-relative too. To avoid these untoward consequences, one must allow207

that there is ‘scope for selection’ in both cases A and B above, which is precisely208

what Grafen (2002) achieves by defining ‘scope’ in terms of all possible p-scores.209

So the distinction between ‘actual’ and ‘possible’ p-scores is necessary.210

In the IMA case, it is easy to see that link 5 is the only link that could not211

be proved using the weaker ‘actual’ definition of ‘no scope for selection’, under212

the assumptions of no mutation or gametic selection. (The expression ‘scope for213

selection’ does not occur in links 2 and 4, while links 1 and 3 must hold on the214

‘actual’ definition whenever they hold on the ‘possible’ definition.) However we215

show below that in the GMA case, link 5 can hold even on the ‘actual’ definition216

of ‘no scope for selection’, in certain special cases; and moreover, link 5 can fail217

to hold even on the ‘possible’ definition, in certain other cases.218

If we accept the basic logic of the formal Darwinism approach – that adap-219
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tationism is defined by the five selection / optimality links holding – then the220

distinction between the ‘actual’ and ‘possible’ definitions of ‘scope for selection’221

gives rise to two subtly different forms of adaptationism. It is an open ques-222

tion which is better. Queller and Strassman (2009) have recently argued that223

whether some entity is a ‘unit of adaptation’ depends on the extent of actual,224

not possible, selective processes within that entity. We do not take a stand225

on this issue here. In what follows we do not endorse either of the two defini-226

tions of ‘scope for selection’ as objectively correct, but rather explore the logical227

consequences of both.228

4 Groups as Adaptive Units229

Gardner and Grafen (2009) consider a model of evolution in a structured pop-230

ulation. There are M groups each containing N individuals. Each individual231

has a genotype, a phenotype, and a reproductive success value. Each group232

has a ‘group genotype’, which is an unordered list of the genotypes of its con-233

stituent individuals; group genotype determines group phenotype, which deter-234

mines group reproductive success. As before, a p-score is a function from the235

set of MxN individuals to R.236

The evolutionary change in any p-score is described by the change in the237

average p-score in the population over one generation, which we denote ∆p.238

Gardner and Grafen treat ∆p as a random variable, in order to model uncer-239

tainty, and focus on its expected value. Explicitly incorporating uncertainty240

allows them to handle many biological complexities; however these are not rele-241

vant for our purposes, so to keep the analysis simple we ignore uncertainty and242

talk about the actual change. This is strictly for simplicity; the expected change243

is what really matters, and our results could easily be formulated in such terms.244

Assuming no gametic selection or mutation, ∆p is given by the simplest form245

of the Price equation:246

w∆p = CovIxJ(wij , pij) (1)

where pij and wij are the p-score and the reproductive success of the jth indi-247

vidual in the ith group respectively; I = {1, . . . ,M} is the set of group indices248

and J = {1, . . . , N} the set of individual indices; and w is average reproductive249

success in the population.250

As is well-known, equation (1) can be expanded into a ‘multi-level’ format,251

by partitioning the total covariance between individual p-score and individual252

reproductive success into between-group and within-group components, yielding253

the result first obtained by Price (1972):254

w∆p = CovI(wi, pi) + EI [CovJ(pij , wij)] (2)

where wi is the average reproductive success of the ith group, pi the average255

p-score of the ith group. The first term on the RHS is the covariance between256

a group’s average p-score and its group reproductive success; the second term257
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is the average, or expectation, across groups of the within-group covariance258

between individual p-score and individual reproductive success. Equation (2) is259

often regarded as decomposing the total change into components corresponding260

to the effects of ‘group selection’ and ‘individual selection’ respectively. This261

interpretation is standard in the literature on multi-level selection, though it is262

not the only way that these contested terms have been defined.263

It is a familiar point that substantial within-group selection may undermine264

group functionality, thus preventing the group from behaving as an adaptive265

unit (Buss 1987, Maynard Smith & Szathmary 1995, Frank 2003). G&G thus266

consider two models in which within-group selection is completely absent, which267

should consitute a ‘best-case scenario’ for group adaptationism. The first in-268

volves purely clonal groups; the second involves non-clonal groups with full re-269

pression of competition, i.e. no within-group variance in fitness. (By this G&G270

mean no within-group variance in expected, rather than realized, fitness – which271

means that the existence of reproductive division of labour in a group is fully272

compatible with zero within-group variance in fitness. This is one place where273

the distinction between realized and expected fitness, which we are ignoring for274

simplicity, is important.)275

If there is no within-group selection on a given p-score, the second RHS term276

of equation (2) will be zero, in which case it reduces to277

w∆p = CovI(wi, pi) (3)

Clearly, equation (3) will apply to any p-score that shows no within-group278

variance. So in the clonal groups model, equation (3) will apply to all actual279

p-scores. Similarly, equation (3) will apply whenever there is no within-group280

variance in fitness, as in the repression of competition model. Both models imply281

that for each group, the within-group covariance between fitness and p-score is282

zero, and thus the average of this covariance across groups is also zero.283

G&G then claim that in both of these models, the links between the GMA284

analogy and gene frequency change do obtain (with one proviso), so group adap-285

tationism is valid. This is the central positive claim of their paper. The reason286

the links hold in these models, they claim, is that the assumption of no within-287

group selection renders equation (3) applicable, which in turn allows the five288

links to be proved, with the objective function taken to be group fitness, i.e.289

the average fitness of the individuals in the groups. By contrast, when within-290

group selection is not assumed absent, so the full Price equation (2) must be291

applied, none of the links can be proved, so it is not legitimate to regard groups292

as adaptive units.293

The proviso concerns link 4 in the repression of competition model (which294

says that if all agents behave equally suboptimally, then at least one mutant295

can spread). This need not be true, G&G argue, because although an improved296

group phenotype is possible at the suboptimal equilibrium, “there is no guaran-297

tee that the corresponding genetic variants will arrange themselves together in298

groups in such a way as to give rise to the desired group phenotype” (p. 665).299

In the clonal case this problem doesn’t arise, since any group phenotype can300
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be produced by a single genetic variant. So they regard talk of group adap-301

tation as fully justifiable in the clonal case, but only partly justifiable in the302

repression-of-competition case.303

The significance of this consideration is debatable, since a parallel problem304

arguably applies at the individual level too. In Grafen (2002), where link 4 is305

proved for individuals, it is simply assumed that any non-resident phenotype306

can be produced by a genetic variant – even though this may require several307

simultaneous mutations at different loci. A parallel assumption could be made308

in the group case, i.e. that any non-resident group phenotype will be produced309

by mutation, even if this requires several individuals to mutate simultaneously310

– in which case link 4 would be true. It may be that the required assumption311

is less plausible in the group than the individual case, but this is an empirical312

matter. Therefore, we are inclined to regard link 4 as equally defensible, in313

principle, in both the repression-of-competition and clonal models. But nothing314

in what follows turns on this.315

5 Clonality versus Repression of Competition316

Aside from the proviso concerning link 4, G&G treat clonal groups and compet-317

itively repressed groups on a par. However, there is actually a logical difference318

between them with respect to links 1 and 3. For simplicity we focus on link 1,319

which to recall says that if all groups are optimal, then there is no scope for320

selection. Recall the distinction between the ‘actual’ and ‘possible’ definitions321

of ‘no scope for selection’ from section 3. If we adopt Grafen’s original ‘possible’322

definition, it turns out that link 1 is true in the repression of competition model323

but not in the clonal groups model.324

Repression of competition implies that there is no within-group variance in325

fitness. (We do not take this condition to define repression of competition,326

for it is possible that within-group fitnesses may be equal anyway. Repression327

is a causal mechanism for bringing this about.) The absence of within-group328

variance in fitness can be expressed by V arJ(wij) = 0 for all groups i. This329

implies that for every possible p-score, CovJ(wij , pij) = 0 in each group i, which330

implies that equation (3) above describes the evolutionary dynamics of each p-331

score. Link 1 then follows immediately; since if all groups are optimal then there332

is no variance in group fitness, so equation (3) tells us that ∆p = 0 for every333

possible p-score.334

Now consider clonality. Note firstly that clonal groups cannot be defined as335

V arJ(pij) = 0 for all possible p-scores and all groups i, i.e. no within-group336

variance in any possible p-score in any group. For this condition is logically337

unsatisfiable, given that the set of possible p-scores is the set of all functions338

from the set of individuals to R. That groups are clonal means the absence of339

within-group variance in any actual p-score. But there will be many possible340

p-scores that do show within-group variance, even if the groups are clonal.341

This means that the condition CovJ(wij , pij) = 0 in each group i does not342

hold for every possible p-score in the clonal group model, unlike in the repression343
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of competition model (see Appendix 1). Of course, even if that condition does344

not hold for a given p-score, equation (3) could still apply to that p-score if the345

weaker condition EI [CovJ(wij , pij)] = 0 holds, i.e. the average over groups of346

the within-group covariances is zero. However, this latter condition cannot hold347

true for all p-scores, unless within-group fitnesses are equal. (See Appendix 2,348

Propostion 2, for proof.)349

This means that on the ‘possible’ definition of scope for selection, link 1 only350

holds in the clonal groups model if there is no variance in within-group fitnesses351

in any group. Consider a case where the groups are clonal but within-group352

fitnesses do vary. In this case, it is not true that if all groups are optimal,353

∆p = 0 for every possible p-score. It will always be possible to find a p-score354

for which the condition EI [CovJ(wij , pij)] = 0 does not hold, and for which355

∆p will be non-zero. So even if all groups are optimal, there will always be356

scope for selection unless within-group fitnesses are equal in each group. In357

fact, the absence of within-group variance in fitness turns out to be necessary358

and sufficient for all the links to hold, as we show in section 7.359

In a clonal groups scenario, it is of course possible that within-group fitnesses360

will be equal. This will be so if individual fitness depends only on individual361

genotype. But this need not be true. There are various reasons why the members362

of a clonal group may differ in fitness (aside from chance), e.g. they may receive363

different amounts of social help. It might still be argued that their expected364

fitnesses will be equal, but this depends on how exactly the states of the world,365

over which the expectation is taken, are defined. In any case, even if it is366

assumed that clonal group mates have the same expected fitness, in which case367

link 1 will hold on the ‘possible’ definition of scope for selection, it is important368

to realise that it is not clonality but rather the absence of within-group fitness369

variance that is responsible for the link holding.370

Since G&G hold that there can be no scope for selection within clonal groups,371

in virtue of the clonality, it is clear that they are employing the ‘actual’ definition372

of ‘scope for selection’, on which links 1 and 3 do indeed hold for clonal groups.373

This definition is perfectly reasonable, but as we saw in section 3, adopting374

it complicates the formal Darwinism approach to individual adapation, as it375

makes link 5 logically stronger and thus harder to satisfy. In the group case,376

adopting the ‘actual’ definition of scope for selection similarly strengthens link377

5; as a result, repression of within-group competition no longer suffices for link378

5 to hold, but clonality does.379

To understand this, consider the following example. A population contains380

asexual individuals of two genotypes, A and B, living in groups of size N = 4.381

Groups are competitively repressed, so within each group all individuals have the382

same fitness. The population contains exactly three types of group: (AAAA),383

(BBBB) and (AABB); the group fitness function is non-linear, and is such384

that w(AABB) > w(BBBB) = w(AAAA). (This is a group-level analogue of385

over-dominance.) As a result, the population is in equilibrium – no gene will386

change in frequency – but the groups do vary in fitness (optimality). So link387

5, which says that if the groups vary in fitness then there is scope for selection,388

need not be true for competitively repressed groups under the ‘actual’ definition389
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‘Possible’ definition ‘Actual’ definition
Individual Links 1–5 X Links 1–4 X, link 5 x
Group–Clonality Links 2,4,5 X, links 1,3 x ∗ Links 1–5 X ∗∗

Group–Repression Links 1–5 X Links 1–4 X, link 5 x

Table 2: Conditions under which the links hold.
* Links 1 and 3 will hold if clonal group mates have identical fitness.

** Link 5 will fail if group fitness does not depend only on group genotype.

of scope for selection.390

This counterexample to link 5 depends essentially on the groups being non-391

clonal. This is because for there to be a polymorphic equilbrium with fitness392

differences between groups, it is essential that some groups contain individuals393

of different genotypes, given that group fitness depends only on group geno-394

type. Therefore, in the clonal groups model, adopting the ‘actual’ defintion of395

scope for selection does not allow a counterexample to link 5 to be constructed.396

(Note however that if the assumption that group fitness depends only on group397

genotype were relaxed, then link 5 would fail even in the clonal case.)398

The upshot is that depending on whether we use the ‘possible’ or the ‘actual’399

definition of scope for selection, the selection / optimality links will hold true400

under different conditions. These differences are summarized in Table 2, for401

both the individual and group models, under the standard assumptions of no402

mutation and no gametic selection.403

What should we conclude from this? In one respect competitively repressed404

groups constitute the better case for group adaptationism, but in another respect405

clonal groups do. If we adopt the ‘possible’ definition of scope for selection,406

then repression of competition guarantees that links 1-5 hold, but clonality407

does not. Some biologists would regard this as welcome result. Queller and408

Strassman (2009) have argued that a clonal group should not automatically409

be regarded as a superorganism, if it shows no functional integration and no410

social interaction among its constituent individuals; see also Ratnieks and Reeve411

(1992). In a similar vein, Michod (1999) argues that true higher-level individuals412

(or superorganisms) must possess mechanisms for conflict suppression. By these413

authors’ lights, an analysis of group adaptation that privileges repression of414

competition is independently desirable.415

However if we adopt the ‘actual’ definition of scope for selection, then clonal416

groups emerge as the better candidate for the superorganism mantle. On this417

defintion, link 5 fails in the repression of competition model but holds in the418

clonal groups model (so long as group fitness is assumed to be a function of419

group genotype). This consideration provides a possible basis, over and above420

the argument given by G&G in relation to link 4, for treating clonality as the421

‘best case’ for group adaptationism.422

The dichotomy between clonality and repression of within-group competi-423

tion, as means for unfiying the evolutionary interests of group members, has424

relevance in relation to ‘major evolutionary transitions’. Multi-cellular organ-425
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isms typically employ both means; their constituent cells are usually genetically426

identical, and the fairness of meiosis serves to repress reproductive competition427

between the genes within a single genome, in sexual species. Indeed the assump-428

tion of fair meiosis, i.e. the absence of gametic selection, is precisely why links429

1 and 3 hold true in the individual model of Grafen (2002), on the ‘possible’430

definition of scope for selection.431

We take no stand on whether the ‘actual’ or ‘possible’ defintion of scope432

for selection is preferable, nor therefore on whether clonality or repression of433

competition constitutes the better case of group adaptationism. Our aim has434

been to explore the logic of formal Darwinism as applied to groups, under both435

definitions. However in what follows we focus on Grafen’s original ‘possible’436

definition, not because we think it is intrinsically superior, but because it allows437

us to find necessary and sufficient conditions, that are biologically meaningful,438

for links 1-5 to hold.439

6 Group Adaptation versus Fortuitous Group440

Benefit441

In Adaptation and Natural Selection, G.C. Williams (1966) distinguished be-442

tween ‘group adaptation’ and ‘fortuitous group benefit’, as part of his celebrated443

attack on group selectionism. The former refers to a group feature that evolved444

because it benefits the group, the latter to a group feature that happens to445

benefit the group but did not evolve for that reason. So on Williams’ view,446

whether a particular feature constitutes a group adaptation depends crucially447

on its causal history. A clonal group of non-social aphids, or of some marine448

invertebrate species, would not count as group adaptation by Williams’s lights,449

for the members of such groups engage in no social behaviour, and the groups450

exhibit little or no functional organization. If some such groups do better than451

others, this is most likely a side-effect of differences in individual adaptedness.452

How does Williams’ influential concept of group adaptation relate to the453

concept defined by the formal Darwinism approach of G&G? The concepts are454

clearly different; G&G hold that group adaptationism applies to any clonal455

group, while Williams explicitly rules out some clonal groups. From Williams’456

viewpoint, the five selection / optimality links which G&G take to define group457

adaptation could hold ‘for the wrong reason’, i.e. as a side-effect of individual-458

level processes. This would be so in a case in which there is no within-group459

variation in fitness, and the individuals in each group engage in no social be-460

haviour. Williams would categorize this as fortuitous group benefit, not group461

adaptation.462

This difference between G&G’s and Williams’ concepts may seem puzzling,463

since Williams’ point was precisely that a trait only counts as group adaptation464

if it has evolved by a process of group-level selection; and G&G define ‘group465

selection’ as “that part of gene-frequency change that is responsible for group466

adaptation” (p.667). So where does the difference stem from?467
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The answer is that G&G identify ‘group selection’ with the between-group468

component of the multi-level Price equation, i.e. the term CovI(wi, pi) in equa-469

tion (2); while a proponent of Williams’ view must reject this defintion. As many470

authors have pointed out, the multi-level Price equation is arguably a flawed471

way to decompose the total change into components corresponding to distinct472

levels of selection (Grafen 1984, Nunney 1985, Heisler & Damuth 1987, Good-473

night et al. 1992; Okasha 2004, 2006). The basic problem is that the covariance474

between group p-score and group fitness may be positive even in the absence475

of any causal relation between these variables; groups with a high p-score may476

be fitter, simply because they contain a higher proportion of intrinsically fit477

individuals, even if there is no group effect on fitness, and no social behaviour.478

Arguably it is unhelpful to speak of ‘group selection‘ in such a circumstance;479

individual selection is responsible for the entirety of the evolutionary change.480

This is a close corollary of Williams’ point that group-beneficial features may481

arise as a side-effect of individual selection.482

If we accept that group and individual selection should not be identified with483

the components of the multi-level Price equation, then what decomposition of484

the evolutionary change should be used to define them? One promising approach485

is to use ‘contextual analysis’, a form of multiple regression analysis (cf. Heisler486

& Damuth 1987). This permits a solution to the problem that besets the Price487

approach (i.e. the multi-level decomposition in equation (2)), by isolating the488

effect of a trait on group fitness once individual effects have been stripped away.489

The total change can still be partitioned into two components, corresponding490

to the two levels of selection. The crucial difference with the Price approach491

is that contextual analysis only identifies a component of group selection when492

there is a ‘group effect’ on individual fitness. The method is described fully in493

section 7.494

G&G discuss contextual analysis, but appear to regard the distinction be-495

tween the Price and contextual approaches as merely semantic. Clearly it is a496

semantic matter how we use the expressions ‘group selection’ and ‘individual497

selection’, but the question of whether the causal action of natural selection op-498

erates at the individual or group level is non-semantic. We accept G&G’s idea499

that group selection should be defined as the part of gene-frequency change that500

is responsible for group adaptation, but we show in section 8 that this does not501

discriminate between the Price and the contextual definitions of group selection.502

Some biologists might simply reject Williams’ distinction outright, and thus503

reject the idea that the selection / optimality links might hold ‘for the wrong504

reason’. Anyone doing this would naturally accept the Price decomposition, and505

G&G’s analysis. However many authors, ourselves included, regard Williams’506

distinction between group adaptation and fortuitous group benefit as important.507

We show in section 9 that accepting this view does not mean abandoning the508

formal Darwinism approach altogether.509
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7 Price’s Equation versus Contextual Analysis510

Contextual analysis treats every individual in the population as having two trait511

values, an individual p-score and the p-score of the group it belongs to. The512

key question is then whether there is an association between fitness and group513

p-score that does not result from an association between fitness and individual514

p-score. This is assessed with a linear regression model:515

wij = β1pij + β2pi + eij (4)

where β1 is the partial regression of individual fitness on individual p-score,516

controlling for group p-score; β2 is the partial regression of individual fitness on517

group p-score, controlling for individual p-score; and eij is the residual whose518

variance is to be minimized. Therefore β2 is the change in individual fitness that519

would result if the group p-score of an individual of fixed p-score were changed520

by one unit – it measures the extent to which differences in group p-score explain521

differences in individual fitness, holding individual p-score constant.522

If β2 is zero, this means that an individual’s fitness depends only on its own523

p-score, so any covariance between group p-score and fitness is a side-effect of524

individual selection. Intuitively this means that individual selection is the only525

force affecting the evolution of the p-score in the population – at least if we526

follow Grafen (1984) in defining ‘individual selection’ in terms of an action’s527

‘effects on the actor’s number of offspring alone’ (p.83-4). This means that for528

group selection to operate, β2 must be non-zero.529

It is natural to interpret β1 and β2 as measures of the direct causal influ-530

ence of individual p-score and group p-score, respectively, on individual fitness.531

However this interpretation is only valid if the true dependence of wij on pij532

and pi is linear (as for example in a linear public goods game). Of course, even533

if the true dependence is non-linear, it is possible to apply equation (4); but in534

that case the partial regression coefficients cannot be construed as measures of535

direct causal influence.536

Using contextual analysis, we can partition the evolutionary change in p-537

score into two components, corresponding to individual and group selection as538

understood here. To do this, we simply substitute equation (4) into (1). After539

simplifying, this gives:540

w∆p = β2CovIxJ(pij , pi) + β1V arIxJ(pij)

= β2V arI(pi) + β1V arIxJ(pij) (5)

Equation (5) constitutes an alternative to the Price decomposition given in541

equation (2), which to recall is:542

w∆p = CovI(wi, pi) + EI [CovJ(pij , wij)] (2)

Note that equations (2) and (5) are both true; but they slice up the to-543

tal change in different ways. Which equation we favour depends on whether544

we think ‘individual selection’ and ‘group selection’ should be understood as545
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within-group and between-group selection, or as selection on the component of546

individual fitness that is due to differences in individual p-score, and to differ-547

ences in group p-score.548

The contextual approach to multi-level selection, enshrined in (5), tallies549

neatly with Williams’ point that ‘fortuitous group benefit’ and group adap-550

tation are different matters. In cases of fortuitous group benefit, a trait (or551

p-score) that is individually advantageous leads to an incidental benefit for the552

group; so group p-score will covary positively with the fitness of both indi-553

viduals and groups. But this association goes away if we control for individual554

p-score, as it alone affects individual fitness; therefore β2 is zero. On the contex-555

tual approach, the evolutionary change is then solely attributable to individual556

selection, whereas the Price approach wrongly detects a component of group557

selection.558

One limitation of the contextual approach is that if a particular p-score559

shows no variation within groups, then the partial regression coefficients β1560

and β2 are undefined. This is because the absence of within-group variance in561

p-score means that an individual’s p-score and the p-score of their group are562

perfectly colinear – so it is impossible to compare the difference in fitness of two563

individuals with the same group p-score but different individual p-scores, and564

vice-versa. Although equation (5) cannot be applied in such a circumstance, it565

still makes sense to ask whether there is a direct causal link between individual566

(or group) p-score and fitness; it is just that the this causal question cannot be567

answered by purely statistical means.568

Now recall the GMA analogy, i.e. the selection / optimality links where the569

agents are groups. It is because G&G find a close relationship between these570

links holding and the absence of within-group selection, i.e. CovJ(pij , wij) = 0571

for all groups i, that they regard group adaptationism as intimately related to572

the Price approach. If one is persuaded by the alternative contextual approach,573

it is natural to ask what the relation is between the links holding and the absence574

of individual selection as defined by contextual analysis, i.e. β1 = 0 (cf. Foster575

2009).576

A first step towards answering this question is to consider the relation be-577

tween the absence of within-group selection and the absence of individual selec-578

tion in the contextual sense. Since the Price and contextual partitions slice up579

the total change differently, one might think that the absence of within-group580

selection would be logically unrelated to the absence of individual selection in581

the contextual sense. Surprisingly, it turns out that this is not so.582

In Appendix 2 (Proposition 1), we show that the following relation holds. For583

a particular p-score, if there is no within-group selection on that p-score, then584

either β1 = 0 or else the p-score shows no within-group variance – in which case585

β1 and β2 are undefined. Conversely, if β1 = 0, or if the p-score shows no within-586

group variance, it follows that there is no change due to within-group selection,587

i.e. the average across groups of the within-group covariance between p-score588

and individual fitness is zero. But this does not imply that CovJ(pij , wij) = 0589

for all groups i. So in short, for a given p-score, “no within-group selection”590

implies “no individual selection (contextual) or the p-score shows no within-591
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no within-group selection ∀i CovJ(pij , wij) = 0
no change due to within-group selection EI [CovJ(pij , wij)] = 0

no individual selection in the contextual sense β1 = 0
no within-group variance in fitness ∀i V arJ(wij) = 0
no within-group variance in p-score ∀i V arJ(pij) = 0

Table 3: Conditions on a single p-score

group variance”, but not vice-versa.592

One might conclude from this that if the absence of within-group selection593

characterizes group adaptationism, as G&G hold, then the absence of individual594

selection in the contextual sense cannot also characterize it. But this does not595

follow, if we adopt the ‘possible’ definition of scope for selection, discussed596

above. For surprisingly, when all possible p-scores are considered, the difference597

in logical strength between the conditions ‘no within-group selection’ and ‘no598

individual selection (contextual)’ disappears. We show this in the next section.599

8 Main Results600

In this section we outline our main results; full proofs are in Appendix 2. We601

continue to use the basic G&G model of evolution in a structured population602

outlined in section 3; notation remains unchanged. As before, gametic selection603

and mutation are assumed absent, and uncertainty is ignored. (This latter604

restriction could easily be relaxed.) In Table 3, we write formal definitions605

of the following conditions on a given p-score: “no within-group selection”, “no606

change due to within-group selection”, “no individual selection in the contextual607

sense”, and “no within-group variance in fitness”, and “no within-group variance608

in p-score”. These conditions bear interesting logical relations to one another.609

Proposition 1. For any given p-score, the following logical implications hold:610

“no within-group variance in fitness”611

⇒ “no within-group selection”612

⇒ “no change due to within-group selection”613

⇔ “no individual selection (contextual)” or “no within-group vari-614

ance in p-score”615

Note that the first two of these implications hold in one direction only, but616

the last is an equivalence.617

We now consider all possible p-scores, and write formal definitions for the618

corresponding conditions in Table 4. Importantly, the condition “no within-619

group variance in any p-score” can never be satisfied, for reasons noted earlier.620

Similarly, the condition “no individual selection in the contextual sense on any621

p-score” can never be satisfied - because β1 will be undefined for any p-score that622

shows no within-group variance. Note also that the condition “no within-group623

variance in fitness” for a single p-score, and the corresponding condition on all624
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no within-group selection on any p-score ∀p ∀i CovJ(pij , wij) = 0
no change due to within-group selection in any p-score ∀p EI [CovJ(pij , wij)] = 0

no individual selection in the contextual sense on any p-score ∀p β1 = 0
no within-group variance in fitness for any p-score ∀i V arJ(wij) = 0

no within-group variance in any p-score ∀p ∀i V arJ(pij) = 0

Table 4: Conditions on all p-scores

p-scores, are identical; since the variable ‘p’ does not occur in the expression625

‘V arJ(wij)’. (In the remainder of this section, ‘all p-scores’ refers to all possible626

p-scores, i.e. all functions from the set of individuals to R.)627

Our main result is that the following logical relations obtain between the628

conditions on all p-scores:629

Proposition 2.630

“no within-group variance in fitness”631

⇔ “no within-group selection on any p-score”632

⇔ “no change due to within-group selection in any p-score”633

⇔ “for each p-score, either no individual selection (contextual) or634

no within-group variance in that p-score”635

Note that each of these implications holds in both directions, i.e. they are636

equivalences. This is a striking result, given that two of the corresponding637

implications for a single p-score hold only in the left-right direction. To un-638

derstand this, consider the first equivalence, between “no within-group variance639

in fitness” and “no within-group selection on any p-score”. In the left-to-right640

direction, this is trivial. To see that it holds in right-to-left direction, suppose641

that fitnesses vary in at least one group. It is then possible to define a p-score642

which will be subject to selection within that group, simply by assigning 1 to643

each individual who is at least as fit as the group average, and 0 to every other644

individual. Therefore, the only way that there can be no within-group selection645

on any p-score is if there is no within-group variance in fitness. (This is why646

repression of competition, but not all groups being clonal, is sufficient for link647

1 to hold.) See Figure 1 for an illustration of this point.648

The second equivalence, between “no within-group selection on any p-score”649

and “no change due to within-group selection in any p-score”, holds for essen-650

tially the same reason. Although any particular p-score can exhibit no change651

due to within-group selection even if it is subject to within-group selection, if652

all possible p-scores exhibit no change due to within-group selection this can653

only be because fitnesses are equal in each group, which implies the absence of654

within-group selection on any p-score.655

Next, consider the relation between the selection / optimality links holding656

(on the ‘possible’ definition of scope for selection), and the above conditions.657

It is easy to see that if there is no within-group selection on any p-score, then658

links 1, 2 and 3 hold, where the ‘agents’ are groups and the objective function is659

group fitness (= average individual fitness). (This follows from G&G’s parallel660
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B 

C 

A, B, C 

P1 

P2 

      1: Population with within-group variance in fitness       2: Population without within-group variance in fitness 

      A: All possible p-scores 

      B: p-scores satisfying EI[CovJ(wij,pij)]=0 

      C: p-scores satisfying CovJ(wij,pij)=0 for all groups i 

Figure 1: The left-hand box depicts a population in which there is within-group
variance in fitness. The set of all possible p-scores is A. The set of p-scores for which
there is no within-group selection is C. The set of p-scores for which there is no change
due to within-group selection is B. Crucially, for any p-score in B but not in C, such
as p1, one can find another p-score in A but not in B, such as p2 (see Lemma 2 in
Appendix 2.) So in a population for which A=B, there can be no p-scores in B but
not in C, i.e. the sets A, B, and C co-incide. Moreover, the only way in which A can
equal B, is if there is no within-group variance in fitness, as in the right-hand box (see
Proposition 2).

analysis in relation to all actual p-scores; see their Appendix.) We argued in661

section 4 that link 4 also holds in the absence of within-group selection on any662

p-score, and we showed in section 5 that link 5 holds in the same circumstance.663

Therefore, the absence of within-group selection on any p-score is sufficient for664

all the links to hold. Our results show that the absence of within-group selection665

on any p-score is equivalent to no within-group variance in fitness; so the latter666

condition is also sufficient for the links to hold.667

What conditions are necessary for the links to hold? G&G do not explicitly668

discuss this; they say only that if there is within-group selection on some p-score,669

then the links are “not proven”, which is weaker than saying that they do not670

hold. But the latter is in fact true. If there is within-group selection on some671

p-score, it is easy to show that not all of the five links can be true. In fact,672

something stronger can be shown, namely that either link 1, 3 or 5 must fail;673

see Appendix 2. So links 1, 3 and 5 jointly imply the absence of within-group674

selection on any p-score, which as we have seen is equivalent to the absence of675

within-group variance in fitness. Thus the latter condition is necessary for links676

1, 3 and 5 to hold, and is thus necessary for all the links to hold.677

This result is interesting, since it shows that the five links are not logically678

independent. For since links 1, 3, and 5 together imply the absence of within-679

group variance in fitness, which itself is a sufficient condition for all the links680

to hold – granting our argument about link 4 – it follows that links 1, 3 and 5681
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imply links 2 and 4. Therefore, G&G’s characterization of group adaptationism,682

in terms of all five links holding, could in fact be re-expressed as links 1, 3 and683

5 holding. This is not a criticism; to characterize a concept axiomatically one684

does not have to use the smallest possible axiom set; some redundancy in the685

axioms can be illuminating.686

Therefore, granting our argument about link 4, we arrive at the following:687

Proposition 3. “links 1, 2, 3, 4 and 5 hold”688

⇔ “links 1, 3, and 5 hold”689

⇔ “no within-group variance in fitness”690

⇔ “no within-group selection on any p-score”691

⇔ “no change due to within-group selection in any p-score”692

⇔ “for each p-score, either no individual selection (contextual)693

or no within-group variance in that p-score”694

These equivalences explain our claim in the previous section that the Price695

equation approach to multi-level selection, enshrined in equation (2), has no696

particular link to group adaptationism, if the latter is defined as the links hold-697

ing. For while it is possible to characterize the five links holding in terms of698

components of equation (2), as “no change due to within-group selection in any699

p-score”, it is equally possible to characterize their holding in terms of contex-700

tual analysis, by referring only to the parameter β1 of equation (5). For the701

condition “for each p-score, either no individual selection (contextual) or no702

within-group variance in that p-score” can be re-expressed as “for each p-score,703

either β1 = 0 or β1 is undefined”. So the G&G analysis of group adaptation-704

ism, under the ‘possible’ definition of scope for selection, provides no particular705

reason to favour the Price over the contextual approach to defining levels of706

selection.707

9 G. C. Williams strikes back708

We argued above that anyone accepting G.C. Williams’ concept of group adap-709

tation should distinguish between the selection / optimality links holding for the710

‘right’ and the ‘wrong’ reason.The links will hold for the ‘wrong’ reason where711

there is no group functional integration and no social behaviour among individu-712

als; but the individuals in each group happen to be equally well-adapted. This is713

an example of fortuitous group benefit, for Williams, and contrasts with genuine714

group adaptation. This means that Williams’ concept of group adaptationism715

should be defined as ‘the links hold + X’. But what is ‘X’?716

Intuitively, ’X’ refers to the fact of group-level functional integration, e.g.717

the existence of a mechanism for repression of reproductive competition. The718

key distinction is between a case where within-group fitnesses are equalized by719

some such mechanism, and a case where they just happen to be equal, e.g.720

because the groups are clonal and individual fitness depends only on individual721

genotype. In the former case the individuals in each group share a common722

fate; in the latter case they merely have identical fates.723
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We introduced contextual analysis, as opposed to the Price approach, pre-724

cisely to capture Williams’ distinction. However the results of the last section725

show that, on the ‘possible’ definition of scope for selection, the links holding726

can be characterized using either the Price or the contextual approaches. So727

the contextual approach, as outlined above, cannot itself capture the elusive728

condition ’X’. So how should an advocate of Williams’ concept proceed?729

A natural suggestion is to modify contextual analysis by introducing a coun-730

terfactual test. Consider a simple example in which an individual’s fitness de-731

pends only on a single genetic locus. There are two alleles at the locus, one732

of which confers a fitness advantage. All individuals in a group have the same733

allele, but there is between-group variance. So within-group fitnesses are equal,734

but not because of a group-level effect; so the links hold for the wrong reason.735

Consider a p-score which indicates presence or absence of the superior allele.736

Since this p-score shows no within-group variance, β1 is undefined. So although737

individual fitness depends only on individual genotype, contextual analysis can-738

not detect this due to insufficient genetic variation.739

A solution is to consider what would happen if genetic variation were intro-740

duced within groups. Suppose that one or more individuals had their genotype741

changed at the locus in question, in a way that leads to within-group variation.742

This will also change the fitness distribution in the population. Consider the743

new p-score, denoted p′, that indicates presence or absence of the superior al-744

lele in this modified population. Since p′ does vary within groups, β′1 is now745

defined, so contextual analysis can reveal that individual fitness depends solely746

on individual genotype, not on group effects, i.e. β′1 6= 0. This shows that in the747

original population, the absence of within-group variance in fitness, and thus748

the holding of the links, was not due to a mechanism for repressing reproductive749

competition, but arose simply because of the absence of within-group variance750

in the crucial genotype.751

We can generalize this example into an abstract characterization of what752

it means for the links to hold ‘for the right reason’. Consider all the actual753

p-scores in the population. Take the subset of the actual p-scores that show754

no within-group variance, for which β1 is undefined. (This subset will be non-755

empty in the cases that we are trying to rule out.) For each of these p-scores, we756

introduce within-group genetic variation in the allele that the p-score represents,757

by modifying the genotypes of one or more individuals. This results in a new758

set of actual p-scores, to which contextual analysis can be applied again, and for759

which the β′1 coefficients must be well-defined. If the links hold for the ‘wrong’760

reason, as in the example above, at least one of these β′1 coefficients will be761

non-zero. If they hold for the ‘right’ reason, each of the coefficients will be zero,762

indicating that in the original population, the absence of within-group fitness763

variance did not arise simply because the alleles on which individual fitness764

depended were fixed in each group, so must have been due to a mechanism for765

repression of reproductive competition.766

So Williams’ concept of group adaptationism can be defined as ‘the links767

holding for the right reason’. We saw above that ‘the links holding‘ is equivalent768

to “for each p-score, either β1 = 0 or β1 is undefined”. The ‘right reason’ can be769
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characterized as follows: “for all actual p-scores for which β1 is undefined, β′1 =770

0”. The conjunction of these conditions thus defines group adaptationism à la771

Williams. This definition ensures that the distinction between group adaptation772

and fortuitous group benefit is respected. In a case of fortuitous group benefit,773

the links may hold but will not hold for the right reason, and our counterfactual774

test will detect this. Where the links hold for the right reason, the covariance775

between group p-score and group fitness, that appears in equation (2), is not776

simply a side effect of individual selection, but reflects a direct casual influence777

of group p-score on group fitness. This fits well with Williams’ insistence that778

a group adaptation is a feature of a group that benefits it and that evolved for779

that reason.780

The ‘right reason’ condition may seem unwieldy, referring as it does to what781

would happen if certain hypothetical changes were introduced into the popula-782

tion. It would be nicer if group adaptationism could be defined without such783

complications, in terms of actual statistical parameters. However it is not really784

surprising that this cannot be done. Williams’ concept of group adaptation is785

explicitly causal, and it is a familiar point that causal relations cannot be fully786

defined in statistical terms. The distinction we have been trying to capture,787

between the links holding for the right and wrong reasons, is causal, and will788

usually be detected by contextual analysis, but not always. Where there is in-789

sufficient genetic variation for the regression coefficients of the contextual model790

to be defined, the distinction can only be captured by considering counterfactual791

scenarios.792

Our proposed modification to the definition of group adaptationism – the793

‘right reason’ condition – is expressed in terms of contextual analysis. One794

might think that this provides a reason to favour the contextual over the Price795

approach to multi-level selection. But in fact, the ‘right reason’ condition can be796

characterized using only parameters of the Price equation partition. Recall that797

any p-score for which β1 is undefined must show no within-group variance, and798

vice-versa. We know from Proposition 1 that if a p-score does show within-group799

variance, then β1 = 0 is equivalent to there being no change due to within-group800

selection, i.e. the second term of the Price equation (2) equals zero. Therefore,801

in the modified scenario, where by definition each new actual p-score does show802

within-group variance, the requirement that β′1 = 0 is equivalent to the absence803

of change due to within-group selection on the p-score. Therefore the ‘right804

reason’ condition, like the ‘links holding’ condition, can be equally characterized805

in terms of the contextual or the Price partitions.806

Despite this equivalence, the contextual characterization of the ‘right reason’807

condition is more natural. For the condition β′1 = 0 has a natural causal inter-808

pretation; it means that the gene in question does not directly affect individual809

fitness. By contrast, the condition ‘no change due to within-group selection’810

has no natural interpretation. For note that, for a given p-score, this condition811

is not equivalent to the absence of within-group selection on the p-score. So812

one cannot capture the ‘right reason’ condition by requiring that there be no813

within-group selection in the modified population.814
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10 Conclusion815

The idea that groups can be adaptive units is a venerable one in biology, but816

until Gardner and Grafen’s analysis had never received a sufficiently precise817

formulation. Our approach has been one of critical sympathy with G&G’s anal-818

ysis. We have endorsed the essence of the ‘formal Darwinism’ project – defining819

adaptationism in terms of links between natural selection and optimality – and820

followed G&G’s lead in applying this methodology to the issue of group adapta-821

tionism. Our aim has been two-fold: firstly to explore the logical consequences822

of the distinction between the ‘actual’ and ‘possible’ definitions of ‘scope for823

selection’; and secondly to see whether G&G’s analysis can be reconciled with824

G.C. Williams’ influential concept of group adaptation. Our main results are825

the following.826

On the ‘actual’ definition of ‘scope for selection’:827

1. All five selection / optimality links hold for clonal groups (presuming that828

group fitness is a function of group phenotype alone).829

2. Link 5 fails for competitively repressed groups.830

831

On the ‘possible’ definition of ‘scope for selection’:832

3. All five selection / optimality links hold for competitively repressed groups.833

4. Links 1 and 3 fail for clonal groups (unless there is no within-group vari-834

ance in expected fitness.)835

5. The absence of within-group variance in fitness is both necessary and836

sufficient for the five selection / optimality links to hold.837

6. Links 1, 3 and 5 are jointly equivalent to links 1, 2, 3, 4 and 5.838

7. The links holding can equally be characterized in terms of the Price equa-839

tion or contextual analysis.840

841

In general:842

8. Williams’ concept of group adaptation can be defined as the links holding843

‘for the right reason’.844

9. The links holding ‘for the right reason’ can equally be characterized in845

terms of the Price equation or contextual analysis.846

10. Group adaptationism, in Williams’ sense, cannot be fully characterized847

without reference to causality.848
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A Appendix854

A.1 Clonality versus repression of competition855

Here we show that on the ‘possible’ definition of scope for selection, repression856

of competition suffices to prove link 1, but clonality does not.857

Link 1 can be formally expressed as858

∀p [all groups optimal→ ∆p = 0] (6)

where ‘∀p’ means for all possible p-scores.859

For a given p-score, it follows from equation (2) that ∆p = 0 holds if V arJ(pij) =860

0 for all groups i (case 1), or if V arJ(wij) = 0 for all groups i (case 2). Focusing861

on case 1, we get:862

V arJ(wij) = 0 for all groups i→ (all groups optimal→ ∆p = 0) (7)

Since (7) holds for each p-score, we can generalize to:863

∀p [V arJ(wij) = 0 for all groups i→ (all groups optimal → ∆p = 0)] (8)

This implies:864

∀p [V arJ(wij) = 0 for all groups i]→ ∀p [all groups optimal→ ∆p = 0] (9)

Since the condition V arJ(wij) = 0 for all groups i does not depend on p,865

equation (9) can be re-written:866

V arJ(wij) = 0 for all groups i→ ∀p [all groups optimal→ ∆p = 0] (10)

Equation (10) tells us that if all groups are competitively repressed, then867

link 1 holds on the ‘possible’ definition of scope for selection.868

Now consider case 2. For a given p-score, we have:869

V arJ(pij) = 0 for all groups i→ (all groups optimal→ ∆p = 0) (11)

Just as (7) leads to (9), so (11) leads to:870

∀p [V arJ(pij) = 0 for all groups i]→ ∀p [all groups optimal→ ∆p = 0] (12)

The LHS of (12) says that no possible p-score shows within-group variance,871

which is impossible. So (12) is vacuously true, but does not say that link 1 holds872

if all groups are clonal. The latter claim is formally expressed as:873

∀ actual p [V arJ(pij) = 0 for all groups i]→ ∀p [all groups optimal→ ∆p = 0]
(13)

However (13) does not follow from (11).874

So under the ‘possible’ definition of scope for selection, link 1 holds for875

competitively repressed groups but not for clonal groups.876
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A.2 Main results877

Proposition 1. For a given p-score:878

∀i V arJ(wij) = 0879

⇒ ∀i CovJ(pij , wij) = 0880

⇒ EI [CovJ(pij , wij)] = 0881

⇔ β1 = 0 or ∀i V arJ(pij) = 0882

Proof. The first two implications are trivial, so we just prove the last equiva-883

lence.884

Recall the Price partition:885

w∆p = CovI(wi, pi) + EI [CovJ(pij , wij)] (2)

And the contextual one :886

w∆p = β2V arI(pi) + β1V arIxJ(pij) (13)

1. In the right-to-left direction:887

Suppose that either β1 = 0 or ∀i V arJ(pij) = 0.888

• If ∀i V arJ(pij) = 0, then both terms of the Price partition are zero, as889

are both terms of the contextual partition.890

• If β1 = 0, then from the contextual partition we have w∆p = β2V arI(pi).891

Now consider the group term of the Price equation, CovI(pi, wi). This892

always equals CovIxJ(pi, wij). Substituting for wij using regression equa-893

tion wij = β1pij + β2pi + eij , we get CovIxJ(pi, wij)= β2CovI(pi, pi) =894

β2V arI(pi). Therefore CovI(pi, wi) = β2V arI(pi) = w∆p, so EI [CovJ(pij , wij)] =895

0.896

2. In the left-to-right direction:897

Suppose that EI [CovJ(pij , wij)] = 0. Therefore, w∆p = CovI(pi, wi) = CovIxJ(pi, wij).898

Again, substitute in the regression equation wij = β1pij+β2pi+eij , which gives:899

w∆p = CovIxJ(pi, wij) = β1V arI(pi) + β2V arI(pi).900

But the contextual partition says that:901

w∆p = β2V arI(pi) + β1V arIxJ(pij).902

Therefore, β1V arI(pi) = β1V arIxJ(pij), which implies that either β1 = 0, or903

else V arI(pi) = V arIxJ(pij).904

If V arI(pi) = V arIxJ(pij), then the total variance in p-score equals the between-905

group variance, which implies that ∀i V arJ(pij) = 0.906

907

Lemma 1. ∀i V arJ(wij) = 0 ⇔ ∀p ∀i CovJ(pij , wij) = 0908

Proof. The left-to-right direction is trivial. In the right-to-left direction, suppose909

that ∀p ∀i CovJ(pij , wij) = 0 but that there is some within-group variance in910

fitness, i.e. ∃i V arJ(wij) 6= 0. Assume without loss of generality that there is911

only one group g in which fitnesses vary. Now consider the p-score p′ defined as912
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follows: p′gj = 1 for all individuals j in group g such that wgj > wg, and p′gj = 0913

for all other individuals in g. By construction, in group g, CovJ(pgj , wgj) > 0,914

which contradicts the hypothesis.915

916

Lemma 2. ∀p ∀i CovJ(wij , pij) = 0 ⇔ ∀p EI [CovJ(wij , pij)] = 0917

Proof. The left-to-right direction is obvious: the average of components equal to918

zero is zero. In the right-to-left direction, suppose that ∀ p-score EI [CovJ(wij , pij)] =919

0, but that there exists a p-score p and a group g such that CovJ(wgj , pgj)] > 0.920

As the non-zero covariances must average out, it follows that there exists a921

group g′ such that CovJ(wg′j , pg′j) < 0.922

Assume without loss of generality that g and g′ are the only groups in which923

the covariances are not zero. Recall that a p-score is just a function IxJ → R.924

Let a new p-score p′ be defined as follows: ∀i 6= g′ ∀j p′ij = pij , and ∀j p′g′j =925

1− pg′j . Informally put, p′ is identical to p in general, except in the groups for926

which the covariance is negative, where they are opposite.927

So ∀i 6= g′ CovJ(wij , p
′
ij) = CovJ(wij , pij) ≥ 0; but CovJ(wg′j , p

′
g′j) =928

−CovJ(wg′j , pg′j) > 0.929

Overall, ∀i CovJ(wij , p
′
ij) ≥ 0, and the inequality is strict for groups g and930

g′. As a consequence, EI [CovJ(wij , p
′
ij)] > 0, which contradicts the hypothesis.931

932

Proposition 2.933

∀i V arJ(wij) = 0934

⇔ ∀p ∀i CovJ(pij , wij) = 0935

⇔ ∀p EI [CovJ(pij , wij)] = 0936

⇔ ∀p [β1 = 0 or ∀i V arJ(pij) = 0]937

Proof. The first equivalence corresponds to Lemma 1; the second equivalence938

to Lemma 2. The third one is trivially obtained from the final equivalence of939

Proposition 1 (if an equivalence holds for any given p, then it holds for all p).940

Proposition 3.941

“links 1, 2, 3, 4 and 5 hold”942

⇔ “links 1, 3 and 5 hold”943

⇔ ∀i V arJ(wij) = 0944

⇔ ∀p ∀i CovJ(pij , wij) = 0945

⇔ ∀p EI [CovJ(pij , wij)] = 0946

⇔ ∀p [β1 = 0 or ∀i V arJ(pij) = 0]947

Proof. The last three equivalences correspond to Proposition 2. Gardner and948

Grafen (2009, pp. 12–13) have already proved that ∀p ∀i CovJ(pij , wij) = 0949

implies links 1-5, which trivially imply links 1, 3 and 5. Thus we only have to950

show that links 1, 3 and 5 jointly imply one of the last four conditions above.951

To show that links 1, 3 and 5 jointly imply ∀i V arJ(wij) = 0, suppose that952

there is some group i such that V arJ(wij) 6= 0. There are three possible cases:953
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• all groups are optimal. Then, for any p-score, there will be no change due954

to between-group selection. However, because within-group fitnesses are955

not identical in group i, we can find a p-score for which EI [CovJ(pij , wij)] 6=956

0, by Lemmas 1 and 2. Therefore there is scope for selection, so link 1 is957

false.958

• all groups are equally suboptimal. By the same reasoning as in the previ-959

ous case, there is scope for selection, so link 3 is false.960

• groups vary in optimality. Since within-group fitnesses are not identical in961

group i, we can find a p-score for which EI [CovJ(pij , wij)] 6= 0. Therefore,962

the change in this p-score, ∆p is not equal to CovI(pi, wi), so link 5 is false.963

Therefore, if it’s false that ∀i V arJ(wij) = 0, then either link 1, 3 or 5 is964

false.965

966
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