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Abstract 

BACKGROUND 

Whilst some argue that a solution to the age-period-cohort (APC) ‘identification problem’ is 

impossible, numerous methodological solutions have been proposed, including Yang and 

Land’s Hierarchical-APC (HAPC) model: a multilevel model considering periods and cohorts 

as cross-classified contexts in which individuals exist. 

OBJECTIVE 

To assess the assumptions made by the HAPC model, and the situations in which it does and 

does not work. 

METHODS 

Simulation study.  Simulation scenarios assess the effect of (a) cohort trends in the Data 

Generating Process (DGP) (compared to only random variation), and (b) grouping cohorts (in 

both DGP and fitted model). 

RESULTS 

The model only works if either (a) we can assume that there are no linear (or non-linear) 

trends in period or cohorts, (b) we control any cohort trend in the model’s fixed part and 

assume there is no period trend, or (c) we group cohorts in such a way that they exactly 

match the groupings in the (unknown) DGP.  Otherwise, the model can arbitrarily 

reapportion APC effects, radically impacting interpretation. 

CONCLUSIONS 



Since the purpose of APC analysis is often to ascertain the presence of period and/or cohort 

trends, and since we rarely have solid (if any) theory regarding cohort groupings, there are 

few circumstances in which this model achieves what Yang and Land claim it can.  The 

results bring into question findings of several published studies using the HAPC model.  

However, the structure of the model remains a conceptual advance that is useful when we 

can assume the DGP has no period trends. 
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1 Introduction 

Social scientists have long been interested in how social processes change over time.  Since 

the 1960s (Ryder, 1965), this interest has developed into an understanding that change over 

time can occur in three conceptually distinct ways.  First, individuals can age, such that 

change occurs over their individual life courses.  Second, change can occur by cohorts, such 

that a new birth cohort will be intrinsically different to a previous one regardless of their 

age.  And third, change can occur by periods, such that characteristics of a given occasion 

affect individuals living through that occasion, again regardless of when they were born and 

how old they are in that year.  Which of these age, period and cohort (APC) effects are 

important for a given research question is of profound importance to researchers in many 

disciplines who are interested in how things change over time. 

A problem arises when attempting to model all three of these effects simultaneously, 

because the three terms are exactly mathematically dependent.  This ‘identification 

problem’ has been known about for decades, and potential solutions to the problem have 

been proposed sparking debate, particularly in sociology (Firebaugh, 1989, Mason et al., 

1973, Sasaki and Suzuki, 1987, Yang et al., 2004) and medical sciences (Osmond and 

Gardner, 1989, Robertson and Boyle, 1986, 1998a, 1998b, Tu et al., 2011).  Over the past 30 

years there have been a plethora of solutions proposed, but none have been shown to be 

foolproof.  In fact, many in social science (Glenn, 1976, 2005, Goldstein, 1979) see the 

separation of the three terms as not just difficult, but a “futile quest” (Glenn, 1976): 



“The continued search for a statistical technique that can be mechanically applied 

always to correctly estimate the effects is one of the most bizarre instances in the 

history of science of repeated attempts to do the logically impossible.” 

Glenn (2005, p. 6)  

This paper considers one of these solutions, proposed recently by Yang and Land (2006) 

with some additional methodological caveats discussed in subsequent papers (Yang, 2006, 

Yang et al., 2011, Yang and Land, 2008).  The methodology has already been employed in a 

number of empirical applications, studying social trends in happiness (Yang, 2008a), voter 

turnout (Dassonneville, 2012), obesity (Reither et al., 2009), religious service attendance 

(Schwadel, 2010) and cannabis use (Piontek et al., 2012), to name a few.  With the relatively 

speedy uptake of this method, understanding how and when it works (if it works at all) is of 

profound importance. 

We thus use a simulation study to assess the model: the assumptions that it makes, the bias 

that occurs when those assumptions are broken, the situations in which it could be of use 

and the situations in which it is not.  In doing so, we bring into question both the value of 

the model as a ‘solution’ to the identification problem, and the conclusions of a number of 

empirical studies that have used it.  This is not to say that the conceptual distinction 

between age, period and cohort is useless, nor that the model could not be of use in a 

number of situations in finding substantive conclusions.  However we hope our study will 

warn against the mechanical application of this, or any, age-period-cohort model, without 

any critical forethought about what the model may be hiding. 

The paper proceeds as follows.  The next section reviews the conceptual arguments that 

have accompanied the development of various attempts to solve the APC identification 



problem.  The paper then assesses the model suggested by Yang and Land, considering its 

conceptual structure, its technical specification and some problems that we see with Yang 

and Land’s justification of it.  Section 4 outlines the simulation study that we use to assess 

the model, and section 5 presents the results from this, before the implications of these 

results are discussed in section 6. 

2 The Age-Period-Cohort identification problem 

When studying longitudinal social processes, researchers are in essence looking at change.  

However the form of that change can be multifaceted.  The distinction between ageing, 

change between periods and change over cohort groups has been considered for decades.  

Ryder (1965) was one of the first to make the distinction, by considering cohorts as a source 

of social change, rather than thinking of change as occurring over time through successive 

years.  The division is well summarized by this fictional dialogue by Suzuki (2012 p. 1): 

A: I can’t seem to shake off this tired feeling. Guess I’m just getting old. [Age effect] 

B: Do you think it’s stress? Business is down this year, and you’ve let your fatigue 

build up. [Period effect] 

A: Maybe. What about you? 

B: Actually, I’m exhausted too! My body feels really heavy. 

A: You’re kidding. You’re still young. I could work all day long when I was your age. 

B: Oh, really? 

A: Yeah, young people these days are quick to whine. We were not like that. [Cohort 

effect] 

Having made this distinction, it is worth noting that there are other ways in which change 

can be categorized.  Firebaugh (2008) distinguishes between social change (studied with 



repeated cross-sectional data) and individual change (studied with panel data).  This can 

similarly be conceived as within- and between-individual change (Bell and Jones, 2012): an 

individual can age, or individuals can differ because they were born into a different cohort1.  

Thus individuals are nested within a context (their cohort group) and cohort change is 

considered across those contexts.  Another conceptual distinction is between change within 

an individual and change by cohort replacement (Firebaugh, 1989, 2008).  Here, cohort 

replacement effects are the result of old cohorts dying or leaving the sample, and young 

cohorts joining the sample (a mixture of age and cohort effects) and within-cohort change 

over time (which can be thought of as a mixture of age and period effects).  Thus, whilst the 

age-period-cohort division remains conceptually attractive, and is linked in various ways to 

the divisions proposed here, it is not necessary to model all three in order to study social 

and individual change in a manner that is both robust and meaningful. 

Furthermore, there is a problem in attempting to distinguish between the effects of these 

three sources of change in a statistical model.  The three are perfectly correlated, such that: 

                  

(1) 

In such an equation we are always able to know the value of one of the three terms, if we 

know the value of the other two.  As such, each of the following three (and an infinite 

number more) data generating processes (DGPs) will produce exactly the same data: 

                    

(2a) 

                                                           
1
 In a repeated cross-sectional study, the mean age of a cohort of individuals will be equivalent to the cohort 

variable itself (Freitas and Jones, 2012).  Usually in such studies, period effects are assumed to be non-existent; 
this is done on the basis of theory regarding the processes that are thought to be operating. 



Substituting        with            gives us 

                 

(2b) 

And then substituting            with        gives us 

           

(2c) 

As such, a DGP with equal age, period and cohort linear effects (3a) would create the same 

data as a DGP with (larger) age and cohort effects and no period effects (3b), and the same 

data as a DGP with just a single (larger) period effect (3c), because of the dependence 

expressed in equation 1. 

Whilst different DGPs can be clearly conceived for linear effects, it is perhaps less obvious 

that a similar problem occurs with non-linear effects.  For example, consider the following 

DGPs, each of which, again, will each produce identical data. 

          

(3a) 

Substituting        with            and expanding gives us 

                           

(3b) 

Then, substituting the second        term for            and simplifying gives us 

                      

(3c) 



The same problem apples to other non-linear effects.  Log effects are less easy to split apart 

because          does not have an additive decomposition; so, for example, the term 

           , whilst mathematically identical to                , cannot be split 

mathematically into separate age and cohort trends in a DGP.  However, following Box and 

Draper (1987:424), who state that “all models are wrong, but some are useful”, we argue 

that a real-life DGP is not the same as a mathematical approximation to it.  As such, the 

presence in a DGP of a mathematical approximation that is ‘un-confoundable’ does not 

suggest that the real-life, non-mathematical process that it represents is correct. 

It follows that, given a dataset, it is impossible to know which of the infinite possible effect 

combinations such as those listed above actually produced the data.  Without the help of 

time machines or age accelerators (Suzuki, 2012), it is impossible to assess the effect of one 

of the terms independent of the others, because keeping any two of the APC terms  

constant automatically holds the third constant as well. 

It is worth reiterating that this dependency lies not with a model that is fitted to the data, 

nor with the data itself, but with the underlying processes that created the data.  The 

confounding is mathematical or logical, and as such cannot simply be solved by 

manipulation of the data or the model (Goldstein, 1979).   Failing to realize this has led to a 

number of solutions being proposed which allow the model to be fitted but which produce 

arbitrary results.  For example, Robertson and Boyle (1986) ‘solved’ the problem by 

aggregating the data in such a way to produce ‘non-overlapping cohorts’ which are not 

perfectly collinear.  Similarly, Mason et al. (1973) propose a method which constrains two 

age groups, period groups or cohort groups to be aggregated together.  However both of 

these methods, whilst able to produce a result, will not produce the correct result unless 



that constraint or aggregation exactly matches constraints in the (unknown) DGP.  Glenn 

(1976) shows that in the case of the Mason et al model, even non-linear effects will be 

biased where constraints are imposed arbitrarily (see also Glenn, 2005:14).  And Osmond 

and Gardner (1989) show that different aggregations will produce wildly different results: 

unless those aggregations are present in the (unknown) DGP, they will produce incorrect 

results more often than not.  Very solid theory about aggregations in the DGP is required for 

such methods to be of any use, and that theory is rarely forthcoming in applied research. 

It is clear from the above that aggregation does not solve the identification problem; it 

simply hides it beneath coarser data.  The fact that the model is able to estimate a solution 

simply means that the constraint or aggregation used is forcing the model to arbitrarily 

make a choice, on the basis of the researcher’s arbitrary aggregation, not the data itself.  

Whatever parameterisation of the model are used to make the model fit, the problem of 

multiple possible underlying DGPs is not solved because it is the model that is being 

changed, not the DGP. 

Despite these clear difficulties (impossibilities) in attempting to model age, period and 

cohort simultaneously, the desire to be able to explore all three terms remains, and as such 

there have been numerous attempts to ‘solve’ the problem, including Yang’s Intrinsic 

Estimator (Yang, 2008b, Yang et al., 2004, Yang et al., 2008) and Tu’s Partial Least Squares 

Regression (Tu et al., 2011).  This paper looks at a single proposal, the Hierarchical Age 

Period Cohort (HAPC) model (Yang and Land, 2006).  However, we hope that the results 

found in this paper should act as a cautionary tale to anyone considering using a model that 

claims to disentangle APC effects. 



3 Yang and Land’s HAPC model 

The ‘solution’ to the APC identification model proposed by Yang and Land uses a multilevel 

model (also called a random effects, hierarchical linear, or mixed model) with a cross-

classified structure.  This structure treats individuals as nested within both periods and 

cohorts, and this must be conceived of as cross-classified because there is not exact nesting 

of periods into cohorts, or vice versa.  As the data are (repeated) cross-sectional, an 

individual is only observed at one age and one period.  Periods and cohorts are thus treated 

as random effect contexts at a higher level, in which individuals reside.  Age is specified as 

an individual-level variable and is included in the fixed part of the model as a (potentially 

non-linear) function.  The model structure can thus be expressed in a classification diagram 

as shown in figure 1. 

[Figure 1 about here] 

Conceptually, this presents a new angle to APC processes that is quite enticing.  Treating 

periods and cohorts as contexts, and age as an individual characteristic, is intuitive to some 

degree because we move from one period into another as time passes, and we belong to a 

cohort group that have common characteristics, whereas ageing is a process that occurs 

within an individual.  Multilevel models in general assume that the higher level residuals are 

independently and identically distributed (IID).  Thus, period effects are considered as, for 

example, ‘the effect of being in 1990’, independent of the periods around it, rather than 

‘the effect of moving from 1989 to 1990’, a linear effect that is constant across all periods 

and so equal to the effect of moving from 1990 to 1991; similarly, cohort effects are 

considered in terms of ‘the effect of being born in 1960’ rather than ‘the (linear) effect of 



societal change between children born in 1959 and 1960.’  Whilst periods and cohorts are 

unlikely to be truly independent even if there is no trend (near cohorts are likely to be more 

alike than cohorts that are far apart in time), techniques can be used to allow 

autocorrelation to be taken into account in the model (Stegmueller, 2012).  Crucially, 

conceiving of separate periods and cohorts as quasi-independent contexts that have 

(random) effects individually, rather than as part of an overall continuous linear fixed effect, 

changes how the collinearity of APC works.  In the cross-classified structure, because we are 

modelling a different facet of period and cohort effects to that of the age effects (random 

variation compared to a linear trend), we are able to model both a period and a cohort 

effect for individuals, whilst still controlling for their age; the effects are not collinear in the 

same way as they are for linear trends. 

Given this conceptual structure, the model is specified2 algebraically as follows: 

                                         
           

                    

               
               

               
   

(4) 

The dependent variable,          is measured for individuals i in period j1 and cohort j2.  The 

‘micro’ model has linear and quadratic age terms, with coefficients    and    respectively, a 

constant that varies across both periods and cohorts, and a level 1 residual error term.  The 

macro model defines the intercept in the micro model by a non-varying constant   , and a 

                                                           
2
 Brackets in the subscript indicate that levels are at the same level of the hierarchy.  This notation is in the 

manner of Goldstein et al. (2002:3304). 



residual term for each of period and cohort.  The period, cohort and level-1 residuals are all 

assumed to follow a Normal3 distributions, each with variances that are estimated. 

Multilevel models also allow for additional levels to be included, where data is available.  As 

previously stated, with repeated cross-sectional data a given individual is only observed at 

one age and in one period.  However, if instead of repeated cross-sectional data we have 

panel data, an additional individual level could be included, thus allowing multiple 

observations (and so multiple ages and periods) per individual (Suzuki, 2012).  Further, if the 

data has some kind of geographical indicator (such as neighborhoods, or countries), then 

these could also be considered as an additional level in this conceptual model.  As such, 

Yang and Land’s original 3-level model can (conceptually at least) be extended to account 

for other contexts in which measurements exist, leading to a more complex structure such 

as that shown in figure 2. 

[Figure 2 about here] 

In addition to extra levels in the model’s random part, covariates can be added to the fixed 

part of the model, and these can vary at the individual level (in the micro model) or at the 

period or cohort levels (in the macro model).  Random coefficients could be placed on any 

of the fixed part coefficients, so that, for example, the effect of age can be allowed to vary 

by cohort group.  Whilst it is certainly true that you can have too complex a model, these 

possibilities make it seductive, where there is data that allow it and research questions that 

require such complexity. 

                                                           
3
 Non-Normal distributions are also possible.  For example where the response variable is categorical, the 

level-1 residual would not be assumed Normal (see Jones and Subramanian, 2013). 



However, such extensions are of little use if the model does not function as we wish it to.  

Conceiving of cohorts and periods as discrete temporal entities rather than as continuous 

temporal variables does not make them so in the DGP of real life.  Any age, cohort or period 

trends (linear, or otherwise) in the DGP will still have the potential to be confounded by this 

process because multiple combinations of them will produce identical data, and no model is 

able to distinguish between identical datasets. 

Yang and Land concur (Yang and Land, 2006) that the cross-classified structure does not 

solve the identification problem, as any age effect could in fact be a combination of period 

and cohort effects, and so on.  They offer two solutions to this problem within the above 

framework; they suggest (1) specifying age as a quadratic polynomial, and (2) grouping 

cohorts into (for example) 5-year intervals.  They argue that only one of these is necessary 

to allow identification and thus ‘resolve’ the problem outlined above: 

the underidentification problem of the classical APC accounting model has been 

resolved by the specification of the quadratic function for the age effects. 

Yang and Land (2006:84) 

However, as the argument in section 2 hopefully made clear, we regard the ability of either 

of these techniques to solve the identification problem with some skepticism.  Including a 

quadratic term in the model does not put it in the DGP, nor does not remove any linear 

term from the DGP.  In any case, a quadratic term in the DGP can itself be confounded.  

Similarly, grouping the data does not put those groupings in the DGP and so it will not solve 

the identification problem either. 



Yang and Land argue that the model can be estimated using maximum likelihood, but that, 

where there are few cohorts or few periods, the model should be estimated using Monte 

Carlo Markov Chain (MCMC) methods (Yang, 2006).  In a later paper (Yang and Land, 2008), 

they also argue that there is a choice to be made between fixed and random effects for 

period and cohort terms.  The advantages of random effects as specified above is that it 

uses fewer parameters, it is likely to be more efficient, and it is more easily extendable than 

the fixed effects version.  The downside is that the model estimates will be biased if 

covariates are correlated with the higher level residuals.  This is likely to be problematic 

here because if there is a cohort trend, with repeated cross-sectional data the age variable 

will always be correlated with the cohort residuals because older cohorts will have a higher 

age than newer cohorts, over the time period being studied (this point is not addressed in 

Yang and Land’s paper4).  A solution to this could be to include the group (cohort5) mean of 

the age coefficient (Bell and Jones, 2012, Mundlak, 1978); however in this case, the cohort 

mean of age is identical to the cohort variable itself.  As with any model that has both age 

and cohort in the fixed part of the model, it must assume that there is no period trend. 

4 Simulation design 

The preceding discussion raises a number of issues regarding the situations in which Yang 

and Land’s model works, and the situations in which it does not.  We are particularly 

interested in how the model treats linear period or cohort trends, compared to randomly 

distributed effects that are assumed by the HAPC model.  For the model to work in the 

                                                           
4
 Indeed, the paper uses an example where the FE and RE solutions produce quite clearly different results (the 

FE result is nine times the size of the RE result!).  However by running a Hausman Test (Hausman, 1978) on all 
coefficients simultaneously rather than individually, they ignore the differences in the age coefficient and 
claim erroneously that there is no problem in this regard (Yang and Land, 2008:317-318, and table 4 on p.319). 
5
 With repeated cross-sectional data, the period group mean will in general not vary a great deal, because of 

the way the data is sampled. 



presence of linear effects, it must be able to accurately convert these linear6 cohort or 

period trends into a separate random effect for each cohort or period.  Further, we are 

interested in whether the grouping of cohorts aids in this conversion, as is claimed by Yang 

and Land.  This includes not just assuming the presence of certain groups in the fitted 

model, but also in understanding how the model copes with actually occurring groupings in 

the DGP.  This might occur if people born in a time-period of longer than a year share 

particular characteristics (for example, those born in the 1960s, or ‘baby-boomers’).  Finally, 

if the model is able to do the above successfully, we want to know the extent of bias caused 

by correlation between the age variable and the cohort residuals, and the ability of the 

methods suggested by Mundlak (1978) and Bell and Jones (2012) to solve these problems 

within the HAPC framework. 

These issues can be reduced to the following five questions: 

i. Does the HAPC model work when periods and cohorts are Normally distributed in 

the DGP? 

ii. Does the model work when there is a linear trend in the period or cohort effects in 

the DGP? 

iii. Does grouping of cohorts in the fitted model help to achieve the correct answer? 

iv. What happens if there are groupings in the DGP as well as the fitted model (both 

matching those in the fitted model, and not) 

v. Does including a linear cohort (mean age) term in the fixed part of the model remove 

bias from the random part, and solve any biased caused by correlation between the 

age variable and the cohort residuals. 

                                                           
6
 The same applies to non-linear period and cohort trends in the DGP, which would also need to be converted 

into discrete effects, and not reassigned into other APC combinations as in equation 3.  However, for the sake 
of simplicity, in these simulations we focus on linear trends. 



Thus, these five questions inform the design of the simulation scenarios outlined in table 1.  

The first scenario tests the model’s capability where there are no period or cohort trends, 

thus answering question (i) above.  The second scenario adds a cohort trend, allowing us to 

find an answer to question (ii).  Scenario 3 will find an answer to question (iii) by grouping 

cohorts in the fitted model.  Scenarios 4 and 5 will provide an answer to question (iv), 

assessing the affect of grouping in the DGP and the fitted model, both when those groupings 

match (4) and when they do not (5).  Finally, scenarios 6 and 7 aim to answer to question 

(v), including a cohort term in the fixed part of the fitted model, and assessing the 

performance of the model in the presence of a cohort trend (6), and then a period trend (7). 

[Table 1 about here] 

For each scenario, 1000 datasets were randomly generated and the scenario model was 

fitted to each of these datasets.  Each dataset consisted of 20,000 individuals, with a 

random uniform distribution of ages (between 20 and 60), and periods (between 1990 and 

2010).  Cohorts were calculated on the basis of these values, and the dependency expressed 

in equation 1.  The dependent variables were generated with trends and residuals7 as 

specified by the DGPs in table 1.  The data were generated in Stata, and the models were 

estimated using MCMC8 Gibbs sampling in MLwiN v2.25 (Rasbash et al., 2011) with the 

runmlwin (Leckie and Charlton, 2013) command in Stata.  When using MCMC methods, a 

number of issues need to be considered.  First, we must choose what starting values should 

                                                           
7
 Where cohorts were grouped, residuals were calculated [with the variance (of 1) as stated in table 1] and 

then averaged over those groupings, before being included in the DGP.  For grouped cohort trends, cohort 
groups were assigned the value of their earliest year, before being included (centred) in the DGP [with the 
coefficient (of 0.1) as stated in table 1]. 
8
 We use MCMC rather than maximum likelihood methods because of the small number of periods that are in 

our sample (and which is typical of the data we use.  Stegmueller (2013) finds that having only a small number 
of higher level units will significantly bias variance estimates using ML, whilst affecting MCMC estimations only 
slightly.  See also Browne and Draper (2006). 



be used.  Here, as we are simulating our data, we know what the true values are.  As such, 

we use these values as starting values.  Whilst we would not have this information in reality, 

doing the simulations this way allows us to assess biases in the model unencumbered by any 

issues of convergence and bad starting values.  If the model fails to work when we are 

telling it the answer, we can be pretty sure that something is seriously wrong! 

Despite this, it is still important to test for convergence of each model that we run.  In order 

to do this, we create a version of the Potential Scale Reduction Factor (PSRF) (Brooks and 

Gelman, 1998, Gelman and Rubin, 1992).  The original version of this compares the variance 

of 5 different chains (from 5 different starting values) compared to the variance of the 

pooling of all five of these chains.  As we are not interested in starting values here (and 

know that the starting values we are using could not be better), instead we use a single 

chain divided in 5, and compare the 95% coverage intervals of each of the five chains to that 

of the whole chain.  In addition to this, we use the Effective Sample Size (ESS) for each 

parameter (which is automatically calculated by MLwiN) to assess whether the chain has 

been run for long enough for sufficient ‘independent’ draws to characterize the distribution 

of the parameter.  Finally, we use hierarchical centering (Browne, 2009:401) at the cohort 

level to reduce autocorrelation in the chains. We have found that a chain of 100,000 

iterations, with a 5,000 iteration burn-in, is in general more than sufficient to achieve good 

values for both the PSRF and the ESS for the vast majority of the simulations. 

5 Simulation results 

The full simulation results (and the Stata code used to create them) can be found online, 

and graphs representing the results of each of the seven simulation scenarios can be found 



in figure 3.  The first row of graphs shows the relative bias9 of the estimates (the medians10 

of the monitoring chain) for each of the parameters in the model.  If the model is fitting 

correctly, the median bias of each parameter should be zero.  The second row shows the 

cohort shrunken residuals, where each line represents one of the 1000 simulation runs for 

each scenario.  We expect these to appear as random white noise, except where there is a 

cohort linear trend in the DGP (i.e. scenarios 2-5), in which case we would hope to see that 

trend in the residuals (given the size of the linear trends in comparison to the size of the 

random variances in the DGPs).  Similarly, the final row shows the period level residuals, and 

again, with the exception of scenario 7 where there is a period trend in the DGP, we would 

hope that these appear as random white noise. 

[Figure 3 about here] 

Here, the results are structured by the five questions outlined above. 

5.1 Does the HAPC model work when periods and cohorts are normally 

distributed in the DGP? 

Scenario 1 illustrates a situation in which there is no cohort or period trend, but there is 

random cohort and period variation.  The model does not group cohorts, and nor is there 

any grouping of the data in the DGP.  As can be seen in figure 3, this model estimates have 

with very little bias11, and the model has not put any erroneous trends in the cohort or 

period residuals (they appear as white noise).  As such in situations where there is no period 

                                                           
9
 Relative bias is calculated as the difference between the estimated and actual values, divided by the actual 

value 
10

 The median was found by Browne and Draper (2006) to be the least biased point summary (rather than 
mean, or mode) of the MCMC parameter chains.  However the results were not substantively different when 
the mean or model was used. 
11

 There is some positive bias in the period variance term.  This is caused by the small number of periods in the 
data. 



or cohort trend in the data, the HAPC model seems to work, and this applies even when 

cohorts are ungrouped. 

5.2 Does the model work when there is a trend in the period or cohort 

effects in the DGP? 

Scenario 2 is the same as scenario 1, but with an additional linear cohort trend in the DGP.  

As can be seen the model suffers from severe bias.  The age and cohort trends have 

effectively been combined by the model to create a period trend, as shown in the period 

residuals, and eliminating the age and cohort trends (which do not appear in the model 

estimates at all).  This is unsurprising because the data would be identical if it had been 

created by a simple period trend.  To reiterate, we know that the MCMC starting values we 

have used are as good as they can be, so these cannot be blamed for the poor performance 

of the model. 

5.3 Does grouping of cohorts in the fitted model help to achieve the 

correct answer? 

Scenario 3 is the same as scenario 2, except that cohorts are grouped into 5-year groups 

prior to estimation.  Yang and Land (2006) argue that this can solve the identification 

problem, but as the graphs in column 3 of figure 3 show, this is not the case.  The model 

suffers from exactly the same average bias as in scenario 2.  What is different is that the 

model is much less reliable in how it assigns effects to age period and cohort.  Whilst 

scenario 2 always (erroneously) assigned the entire trend to period instead of cohort and 

age, the results from scenario 3 produced a range of combinations of APC linear effects.  

Each of these combinations produces the same data so the combination that a given model 



chooses cannot be based on the data or the DGP that created it.  There is also some positive 

bias in the level 1 variance, but this is not hugely surprising – when the cohorts are grouped, 

the between cohort, within cohort-group cohort variance transfers to level 1. 

5.4 What happens if there are groupings in the DGP as well as the fitted 

model? 

Scenario 4 fits the same model as scenario 3, but the data was generated with cohorts 

grouped in the same 5-year intervals used to define cohorts by the model being fitted.  As 

can be seen the model works relatively well.  The model correctly assigns a trend to the 

cohort residuals and not to the period residuals.  There is some bias (in this case, about 9%) 

in the estimation of the age coefficient; this is caused by correlation between the age 

variable and the cohort level residuals.  But in comparison to the bias present in the other 

scenarios, this is relatively minor. 

However, it is not enough to simply know that the cohorts are grouped in some way; it is 

necessary to know exactly how those groups are formed.  Scenario 5 investigates 

mismatched groupings between the DGP and the fitted model, and it has the same 

problems of bias found for scenarios 2 and 3.  In some cases we may be able to make 

educated guesses as to how cohorts are grouped – baby boomers may share characteristics, 

for example – but it would be very rare to be able to delineate accurate cohort groupings 

because we rarely have theory that is so exact in the social sciences.  Whilst we may agree 

that the baby boomers share characteristics, it would be difficult to reliably say exactly 

where the baby boomers started and finished.  As such, the success of the model in scenario 

4 is rarely going to be of much use to an applied researcher, using real data and an unknown 

DGP. 



5.5 What does including a linear cohort (mean-age) term in the fixed part 

of the model do? 

We have seen in scenario 4 that, when we have solved the identification problem (albeit in a 

way that is rarely practical with real-life data) there remains some bias because the age 

variable is correlated with the cohort residuals.  In their work comparing Fixed and Random 

Effects models, Bell and Jones (2012) argue that this bias can be solved by including the 

group mean of the biased variable, decomposing the variable’s effect into a ‘within’ and a 

‘contextual’ effect.  However with the age variable here, its cohort mean is exactly collinear 

with the cohort variable itself.  As such, including it in the model as a linear fixed effect is 

equivalent to including the cohort variable, and in doing so assuming that there is no linear 

period effect in the DGP. 

When such a model is fitted (scenario 6), we see that the problem of bias in the age variable 

is solved.  The age and cohort trends are correctly estimated in the fixed part of the model, 

whilst the random period and cohort variation is correctly estimated in the random part 

without the trend.  The problem with this model is that it assumes there is no period trend.  

When this assumption is violated (as in scenario 7), the period trend is redistributed into age 

and cohort effects, which are then overestimated.  As such this model is not able to 

correctly assign APC trends.  Indeed, it is clear to us that no model can.  

6 Discussion 

We hope that this paper will function as a warning to those hoping to disentangle APC 

effects.  The results make clear that no technical solution can break the logical or 

mathematical relationship of age, period and cohort without strong a priori assumptions 



being imposed and being correct.  Whilst we have only addressed one method here, other 

methods have also been proposed in recent years (Tu et al., 2011, Yang et al., 2008), and we 

would encourage anyone considering using them to run simulations of the sort used here 

first, before claiming a Panacea has been found. 

Unsurprisingly, given the results of our simulation, we have found papers whose authors 

have been misled by the results that their HAPC model has produced.  A recent example 

using the HAPC method (Dassonneville, 2012) looked at voter turnout volatility over time in 

the Netherlands.  Much like the results from scenarios 2, 3, and 5 of our simulation study, 

they find a strong trend in their period-level residuals, which they argue goes against the 

prevailing view that societal change occurs by cohort replacement. 

The result that cohort effects are much less important in explaining volatility than 

period effects are, raises a number of questions with regard to previous findings. It is 

remarkable that research on time effects explaining the decrease in turnout in 

Western Europe does find generations to be crucial. 

Dassonneville (2012:9-10) 

We suspect that, much like our simulation results, the period trend that they find is 

erroneous.  It could easily have been produced by a combination of a cohort and an age 

effect. 

This paper is not alone in findings of trends in periods and cohorts that are potentially 

problematic.  Reither et al. (2009:1443) find that there is a very significant period trend in 

obesity; that “the pattern of predicted probabilities for U.S. adults shows a monotonic 

increase over time, with no sign of abatement in recent periods of observation”.  



Conversely, Schwadel (2010:13) argues that his model shows evidence for “a large across-

cohort decline in [religious] service attendance when control variables are included in the 

model”.  Whilst Piontek et al. (2012) do not find a significant overall period or cohort 

variation in cannabis use, their results are suggestive of a period trend in some of their 

models, and they express surprise at the lack of a cohort trend.  All of these results are 

questionable, with the APC effects found potentially being formed by a combination of 

other APC trends in the DGP. 

Having said this, we do think that the conceptual structure that underlies the HAPC model 

may be valuable.  It is necessary to understand the difference between a linear (or, indeed, 

a non-linear) trend and random variation.  If there are linear (or non-linear) trends in the 

DGP, no model will be able to tell them apart, even if they are treated as random variation 

as they are in the HAPC model.  However, the HAPC model is able to assess random 

variation in periods and cohorts, so long as any trends are absorbed in the fixed part of the 

model.  These may well be of substantive interest, telling us, for example, that baby 

boomers have a higher level of literacy (a cohort effect), or that voter turnout in America 

was particularly high in the 1960 election between Kennedy and Nixon (a period effect); 

both of these results can be interpretations of the examples used by Yang et al. (2011)12.  In 

both of these cases, it seems that the age terms in the fixed part of the model accounted for 

all APC trends13.  However where this is not the case, a cohort term should be included in 

the fixed part of the model as in scenario 6 in this paper.  This of course makes the 

                                                           
12

 The former example is also used in Yang and Land’s other papers on HAPC models (Yang, 2006, Yang and 
Land, 2006, 2008).  In addition, Yang’s (2008a) paper on social inequalities in happiness also found minimal 
trends in the period and cohort residuals, meaning the results of that paper are probably justifiable. 
13

 The authors do not recognise this, however; they do not distinguish between linear trends and random 
variation.  In the case of the literacy example, they even argue that their results suggest “that there has been 
an intercohort decline in vocabulary knowledge” (Yang and Land, 2006:93). 



assumption that there is no period trend, and this assumption, whilst often reasonable, 

must be made explicit. 

Finally, it is worth pointing out that there are other challenges associated with using the 

HAPC model.  We have not addressed issues of MCMC starting values and how sensitive the 

model is to these.   The model also makes the assumption that periods and cohorts are 

independent of each other; this assumption is likely to be broken as near cohorts and 

periods will usually be more related than far apart ones.  However, methods to overcome 

this have been suggested elsewhere (Stegmueller, 2012) so we do not address them here. 
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Table 1: DGPs and fitted models for ten scenarios for simulation.  If the model works, the estimate of the cohort variance (   
 , that is the variance of the residuals    ) in 

the fitted model should include the combined variance of the random cohort term (  ) and the linear cohort trend (          ) when they are both present in the DGP.  

The bracketed superscripts on the cohort terms in both the DGP and the fitted model refer to the cohort groupings.  So a grouping of 5 on the cohort terms in the DGP 

means that cohorts were grouped into 5-year intervals and these groups used as the units making up the cohort normal distribution (    and/or linear effect (      ) 

found in the DGP.  In the fitted model, a grouping of 5 on the cohort residual term means that the fitted model uses 5 year groups to define the cohort’s random effects 

units (   ).  A value of 1 in either column means there is no grouping.  All variables in both the DGP and the fitted model were grand-mean-centered. 
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Figure 1: Cross-classified structure of Yang and Land’s HAPC model for repeated cross-sectional data. 

 

 

 

 

Figure 2: Potential extension to the structure of Yang and Land’s HAPC model.  Where panel (rather 

than repeated cross-sectional) data is available, there are multiple occasions (and thus multiple 

periods and ages) per individual.  Individuals are still nested within birth cohorts.  Those individuals 

can also be nested within geographical units (here, countries) where the data is present. 
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Figure 3: Results for each of the simulation scenarios explicated in table 1.  Row 1: Relative bias (median, and 95% coverage intervals14) of each of the parameters in the 
model; corresponding to the fitted model equations in table 1, 0 is    (coefficient associated with the constant), 1 is    (coefficient associated with the linear age term), 2 is 

   (coefficient associated with the quadratic age term), 3 is    (coefficient associated with the linear cohort term, where present in the model), 4 is    
  (cohort level 

variance), 5 is    
  (period level variance), and 6 is   

  (level 1 variance).  If the model is unbiased, all the medians should lie on the zero line.  Row 2: Cohort-level shrunken 
residuals as estimated for each of the 1000 simulations.  Row 3: Period-level shrunken residuals as estimated for each of the 1000 simulations. 
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 Some of the parameter estimates for scenario 3 had relative biases with coverage intervals extending beyond the range of the graph; these have been cropped out, as indicated by ‘x’. 


