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Abstract 

In the present study, we have successfully combined the biocompatible properties of 

chitin with the high electrical conductivity of carbon nanotubes (CNTs) by mixing 

them using an imidazolium-based ionic liquid as a common solvent/dispersion 

medium.  The resulting nanocomposites demonstrated uniform distribution of CNTs, 

as shown by scanning electron microscopy (SEM) and optical microscopy. Fourier 

transform infrared spectroscopy (FTIR) and X-ray diffraction confirmed the α-crystal 

structure of chitin in the regenerated chitin nanocomposite scaffolds. Increased CNT 

concentration in the chitin matrix resulted in higher conductivity of the scaffolds.  

Human mesenchymal stem cells adhered to, and proliferated on, chitin/CNT 

nanocomposites with different ratios.  Cell growth in the first 3 days was similar on all 

composites at a range of (0.01 to 0.07) mass fraction of CNT.  However, composites 

at 0.1 mass fraction of CNT showed reduced cell attachment.  There was a 

significant increase in cell proliferation using 0.07 mass fraction CNT composites 

suggesting a stem cell enhancing function for CNTs at this concentration. In 

conclusion, ionic liquid allowed the uniform dispersion of CNTs and dissolution of 

chitin to create a biocompatible, electrically conducting scaffold permissive for 

mesenchymal stem cell function. This method will enable the fabrication of chitin-

based advanced multifunctional biocompatible scaffolds where electrical conduction 

is critical for tissue function.  

 

Keywords: Chitin, carbon nanotubes, ionic liquids, stem cells, biomaterials. 

 

1. Introduction 

Chitin, which is derived from sea creatures and insects1, is the second most abundant 

and renewable polymer in the world after cellulose2. Despite its abundance, excellent 

mechanical properties and biocompatibility, chitin is not used extensively due to the lack 

of a benign solvent for effective dissolution and processing into a final product. 

Traditionally, harsh chemicals like lithium bromide3, formic acid and 

hexafluoroisopropanol4 are used for processing chitin. In the last decade, ionic liquids 

have emerged as a new generation of benign solvents for dissolving cellulose, chitin and 
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other natural polymers5-8. Recently, a small number of researchers have carried out 

chitin processing using ionic liquids to prepare films, fibres, gels and foams9-13.  

However the resulting regenerated chitin was electrically non-conductive and hence 

could only be used for monofunctional tasks. The goal of the current work is to 

manufacture electrically conductive and biocompatible chitin and multiwall carbon 

nanotube (MWNT) composite scaffolds, which can support cell growth and electrical 

stimulation. Such a scaffold would be of value in regenerative medicine for promoting 

the differentiation of stem cells into a specific lineage 14,15, increasing the functionality of 

cardiomyocytes 16 and neurons 17, and increasing the cell density of chondrocytes18. 

Composites of chitin/MWNT will have the advantage of chitin’s natural origin19, 

exceptionally low immunogenicity, antimicrobial activity and biocompatibility 20 and 

MWNTs excellent electrical conductivity and high aspect ratio.  Importantly, the blending 

of chitin and MWNTs should minimise or even avoid the toxic effects of nanotubes 

reported elsewhere21. A soft and biocompatible chitin-based electrically conductive 

scaffold, as proposed in the current study, is likely to be more effective in the electrical 

stimulation of cells than traditionally-used metal-based conducting scaffolds/implantable 

electrodes that demonstrate a limited lifespan in vivo due to an elastic mismatch 

between the metal and surrounding tissues22
. 

 

To manufacture chitin/MWNT composites we have used ionic liquid as a common 

platform for dissolution of chitin, as well as exfoliation and good dispersion of MWNTs. 

Uniform dispersion of MWNTs in most common solvents and polymers present a major 

challenge in the preparation of polymer nanocomposites 23. In the present work we have 

developed a non-covalent functionalisation method of carbon nanotubes that can 

achieve homogeneous dispersion of MWNTs in ionic liquid, which can subsequently be 

used as a common solvent to dissolve chitin and fabricate well-dispersed electrically 

conductive chitin/MWNT composite films. The biocompatibility of these multifunctional 

electrically conductive films was evaluated by testing the viability and proliferation of 

mesenchymal stem cells (MSCs) on the chitin/MWNT composite films. 
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2. Materials and Methods 

 

2.1 Preparation of the chitin nanotube films 
 
Chitin (MW 100,000) was purchased from Heppe Medical Chitosan GmBH 

(Germany). The ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMI Ac) was used 

as a solvent for chitin and was purchased from Sigma Aldrich. All the tissue culture 

chemicals were purchased from Sigma unless otherwise stated. The two-

dimensional membranes of chitin were produced using the following procedure:  

0.015 weight fraction of chitin was dissolved in 5 g of EMI Ac in a glass vial 

accompanied by constant heating and stirring for 2 h at 130 °C. Multiwall carbon 

nanotubes (MWNTs) coated with carboxymethyl cellulose were used to prepare 

chitin and MWNT composite films. To prepare the carboxymethyl cellulose coated 

MWNTs, the chemical vapour deposition (CVD)-grown highly-aligned MWNTs (the 

process for synthesis of which has been described in our previous work 24) were 

mixed with carboxymethyl cellulose and distilled water solution. The MWNT and 

carboxymethyl cellulose solution was sonicated for 30 minutes to achieve good 

dispersion of the MWNTs in water, as shown in Figure 1A. It has been shown that 

carboxymethyl cellulose is an excellent surfactant allowing uniform dispersion of 

MWNTs in aqueous medium25-28. The dispersed MWNTs were dried to remove 

water, resulting in MWNTs coated with carboxymethyl cellulose. The carboxymethyl 

cellulose coated MWNTs were then dispersed in EMI Ac by heating them at 60 °C 

for 12 h. We found that carboxymethyl cellulose could be solvated in EMI Ac; hence 

the carboxymethyl-coated MWNTs (referred as coated MWNTs henceforth) could be 

easily dispersed in EMI Ac. Chitin was added to the coated MWNT suspension  in 

EMI Ac so as to achieve 0.01, 0.03, 0.07 and 0.1 mass fraction of MWNTs with 

respect to the amount of dissolved chitin. The solution was poured into a glass 

petridish and allowed to cool for 3 h. The cooled solution was coagulated by adding 

ethanol to the petri dish. The ethanol selectively dissolves the EMI Ac and 

coagulates the chitin. The coagulated films were soaked in distilled water for 2 d to 

remove traces of  EMI Ac29 then dried at room temperature.  Figure 1A shows a 

diagrammatic representation of the entire process for the preparation of membranes. 

Figure 1B shows optical microscope images of the final chitin/MWNT composites 

films with 0.01, 0.03, 0.07 and 0.1 weight fractions of MWNTs.  
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2.2 Characterisation of Chitin/MWNT Composite Films 

 

Scanning electron microscopy: The cross section of chitin/MWNT films was 

analysed using scanning electron microscopy (SEM) imaging with a field emission 

gun scanning electron microscope (JEOL JSM-6340 FEGSEM) with an accelerating 

voltage of 15.0 kV and working distances between 15 mm and 6 mm. Thin 2D films 

of chitin/MWNT composites were fixed to an aluminium stub with a carbon pad. In 

order to avoid surface charging, a thin film of gold was sputtered onto the samples 

with an EMITECH sputter coater.  

 

X-ray diffraction: X-ray diffraction was used to identify the presence and type of 

crystalline structures in the samples. We used the Bruker Nanostar diffractometer 

with 40 kV/40 mA X-ray gun settings and 2D Hi star detector. The 2D transmission 

mode X-ray diffraction studies were performed using Cu Kα radiation (λ=0.154 nm) 

as a source of X-rays. The 2D diffraction patterns were analyzed and converted into 

a 1D plot using the radial integration function. 

 

FTIR analysis: The molecular structure of chitin/MWNT films was assessed using 

Fourier transform infrared spectroscopy (FTIR) analysis.  The analysis was carried 

out in transmission mode using a Spectrum 100 FTIR spectrometer (PerkinElmer, 

Waltham, MA, USA).  

Conductivity measurement: The electrical conductivity testing was carried out with 

2-point probe conductivity setup (Keithley 2000 multimer). A thin strip of the film, 5 

mm by 20 mm, was cut and placed on the glass slide held in place by tape. The 

film’s contact points with the electrodes were coated with silver paint to reduce the 

contact resistance. The resistance of the films over a distance of 2 mm was 

measured. The electrical conductivity of the chitin and carbon nanotube composite 

films was calculated using the equation: 

σ = L / (R × A) 

R is the resistance measured over length L, and A is the cross-sectional area of the 

sample. 

 

Page 5 of 35 Green Chemistry

G
re

en
 C

h
em

is
tr

y 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

B
ri

st
ol

 o
n 

23
 F

eb
ru

ar
y 

20
13

Pu
bl

is
he

d 
on

 2
2 

Fe
br

ua
ry

 2
01

3 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

3G
C

37
08

7A

View Article Online

http://dx.doi.org/10.1039/c3gc37087a


6 
 

2.3 Cell culture   

 

Mesenchymal stem cells obtained from human bone marrow were used for this 

study. Bone marrow plugs were collected from the femoral head of patients 

undergoing total hip arthroplasty. All patients provided informed consent and the 

study was carried out according to local ethical guidelines. Cells were suspended in 

stem cell expansion medium consisting of low glucose Dulbecco’s Modified Eagles 

Medium supplemented with 0.1 volume fractions of Foetal Bovine Serum (FBS, 

Thermo Scientific Hyclone, Loughborough, UK), 0.01 volume fraction Glutamax 

(Sigma, Poole, UK) and 0.1 volume fractions of Penicillin G (10,000 

units/ml)/Streptomycin (10,000 mg/ml) antibiotic mixture (P/S; Sigma). The serum 

batch was selected to promote the growth and differentiation of mesenchymal stem 

cells30. The medium was supplemented with 2 ng/ml FGF-2 (PeproTech) to enhance 

MSC proliferation and differentiation 31. The cell suspension was separated from any 

bone in the sample by repeated washing with media. The cells were centrifuged at 

500 g for 5 minutes and the supernatant/fat removed. The resulting cell pellet was 

resuspended in medium and plated at a seeding density between 1.5 x105 and 2.0 

x105 nucleated cells per cm2. These flasks were incubated at 37 °C in a humidified 

atmosphere of 0.05 volume fractions of CO2 and 0.95 volume fractions of air. All 

experiments were done with passage two cells. 

 

Dry membranes were cut with a biopsy punch to produce 8 mm diameter discs.  

These were placed in a 24-well tissue culture plate. The membranes were 

disinfected with 0.7 volume fractions of ethanol for 30 minutes and washed a few 

times with sterile PBS. The membranes were coated with fibronectin (100 µg/ml) for 

5 h at 37 °C, washed with PBS and transferred to ultra-low attachment plates to dry 

overnight. 

 

Cells were loaded on the fibronectin-coated scaffolds at a density of 2.8x104 cells 

per cm2. The seeded cells were cultured in expansion medium with FGF-2 at 2 

ng/ml. Cells seeded on plastic as positive controls were maintained in the same 

medium.   
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2.4 Cell adhesion and viability assay 

 

Live monitoring of cell adhesion and viability was conducted using the LIVE⁄DEAD 

Viability/Cytotoxicity Kit for mammalian cells (Invitrogen, Paisley, UK) as per 

manufacturer’s instructions. Cell-loaded scaffolds were incubated for 3 d and 14 d at 

37 °C in a humidified atmosphere of 0.05 volume fractions of CO2 and 0.95 volume 

fractions of air. The constructs were washed with PBS and incubated with a kit 

reagent that stains live cells with green fluorescent dye (calcein AM, emission 488 

nm) and dead cells with red fluorescent dye (ethidium homodimer-1, emission 568 

nm). Briefly, calcein-AM is membrane-permeable but, once inside the cell, the AM 

group is cleaved by cellular esterases trapping the calcein in the cell. A loss of cell 

membrane integrity allows the cleaved calcein to leak from the cell into the 

surrounding medium leaving only the intact viable cells to fluoresce green. Dead 

cells, which retain ethidium homodimer-1 through damaged membranes, produce 

red fluorescence. Negative controls consisting of cells killed with methanol and 

positive controls consisting of cells grown on plastic tissue culture plates were run 

with each set of experiments. The plates were viewed under a digital fluorescence 

microscope system (Leica DMIRB inverted microscope, Houston, TX, USA).  

 

2.5 Cell proliferation assay 

 

Cell proliferation was evaluated using the CellTiter 96 AQueous One Solution MTS 

Cell Proliferation Assay (Promega) according to the manufacturer’s instructions. The 

assay is based on the reduction of a tetrazolium compound [3-(4, 5-dimethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS)] 

to a coloured formazan product, which is measured spectrophotometrically. The 

MTS assay was done in triplicate over a time course of 3 d and 14 d. The cells were 

loaded on the fibronectin-coated scaffolds and dried overnight with a density of 

28x103 cells per cm2. Cells cultured on plastic in a 96-well plate were used to 

construct the standard curve. The required volume of MTS solution was incubated 

with the constructs for 2 h at 37 °C in a 0.05 volume fraction CO2 incubator. The 

reaction was stopped by adding 25 μL of 0.1 mass by volume fraction SDS. 100 µl of 

MTS (purple-coloured) solution was transferred to a fresh 96-well plate for reading 
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from all the samples. The plates were read with a 96-well microplate reader at 490 

nm. Each data point was obtained in triplicate. 

 

2.6 Statistical analysis 

Comparisons between groups were performed using unpaired Student’s t-tests (two 

groups) or one-way analysis of variance (more than two groups).  A p value < 0.05 

was considered statistically significant. All statistical analyses were performed using 

Predictive Analytics SoftWare, PASW (v18, IBM, Chicago). 

 

3. Results 

3.1 Dispersion of MWNTs 

The optical microscopy images of MWNTs dispersed in 1-ethyl-3-methylimidazolium 

acetate (EMI Ac) was carried out to study whether the carboxymethyl cellulose 

coated MWNTs show improved dispersion compared to unmodified MWNTs.  Figure 

2 shows the qualitative comparison of the level of dispersion achieved by MWNTs 

dispersed in EMI Ac. As seen in Figure 2 a, the uncoated MWNTs show large 

aggregated clusters whereas the carboxymethyl cellulose coated MWNTs show 

much more uniform dispersion and very small aggregated clusters (Figure 2 b ).  

Since carboxymethyl cellulose is noncovalently functionalised on the MWNT surface, 

the resulting polymer-wrapped MWNT can be readily suspended in EMI Ac. The 

suspension of carboxymethyl cellulose coated MWNTs in EMI Ac was stable for 

several months. By contrast, the non-functionalised MWNTs did not have this 

dissolution effect and hence show large aggregated clusters. The acetate ion in EMI 

Ac can potentially form hydrogen bonding with the carboxymethyl cellulose. This 

enables facile mixing of the coated MWNTs in EMI Ac and, importantly, maintains 

the dispersion of the MWNTs once the chitin dissolves. 
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3.2 Morphological and molecular characterisation of chitin/MWNT films 

Scanning electron microscopy (SEM) analysis was carried out to investigate the 

surface structure and morphology of films prepared from chitin/nanotube composites 

with increasing CNT concentrations. Figure 3 shows SEM of MWNTs dispersed in 

chitin films at low (Fig 3 a, c, e, and g) and high (Fig 3 b, d, f and h) magnification. A 

cross section of chitin/MWNT composite films reveals that MWNTs were uniformly 

dispersed within the chitin matrix with no evidence of aggregation even when MWNT 

concentration was increased. This clearly indicated that the wrapping of MWNTs 

using carboxymethyl cellulose facilitates a good degree of dispersion in the chitin 

matrix.  

 

In order to understand the molecular crystal structure of regenerated chitin/MWNT 

composites, physio-chemical analysis using X-ray diffraction and infrared 

spectroscopy (FTIR) were carried out. The wide angle X-ray diffraction data of 0.01 

mass fraction (lowest concentration) and 0.1 mass fraction (highest concentration) of 

chitin/MWNT films (Figure 4) shows peaks at 2 θ equal to 9.3, 12.5 and 19.3°. The 

presence of these peaks confirms the α-chitin structure of the regenerated chitin 

films 12, 32-34 with an anti-parallel chain arrangement as reported in previous studies 

35. The presence of carbon nanotubes can be confirmed by the peak at 26.3° which 

arises from the multiwall carbon nanotube spacing corresponding to 0.34 nm.   

 

The Fourier transform infrared (FTIR) analysis was carried out to confirm the 

molecular structure of regenerated chitin and MWNT composite films. Figure 5 

shows the FTIR spectra of chitin film reinforced with 0.01 mass fraction (lowest 

concentration) and 0.1 mass fraction (highest concentration) MWNTs in chitin films. 

Both these films show a strong peak at 3444 cm-1 which corresponds to the O-H 

vibration 33, and a peak at 3265 cm-1 which corresponds to the N-H vibration 33.  The 

amide-I peak for all the film samples splits into two peaks, one at 1660 cm-1 and 

another at 1624 cm-1, due to the intramolecular hydrogen bonding between C-O and 

HOCH2 
36-39 present in α-chitin structure.  Such splitting was not observed in the β-

chitin structure 33. The amide II peak can be observed at 1554 cm-1 and the C-O-C 

ring vibration peak can be seen at 1155 cm-1. The FTIR analysis, as well as the X-
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ray diffraction analysis, confirms the presence of an α-chitin structure in the 

regenerated chitin and MWNT films. 

 

3.3 Electrical Conductivity of Chitin/MWNT Composite Films  

 

The electrical conductivity of chitin and MWNT composite film was measured as 

described above. Figure 6 shows the electrical conductivity of chitin and MWNT 

composite films as a function of MWNT mass fraction. The electrical conductivity of 

0.07 mass fraction and 0.1 mass fraction chitin/MWNT films was found to be 

significantly higher (10 S/m) than that for 0.01 and 0.03 mass fraction chitin and 

carbon nanotube composites (0.03 S/m). These results indicate that MWNT/chitin 

composite films have a range of electro-conductive capacities that correlates directly 

with MWNT mass fraction.   The resistance of the neat chitin film was found to be 

more than 100MΩ which was for all practical purposes was a non- conducting film. 

This observation is consistent with the very low value of conductivity of neat chitin 

reported by previous researchers40. 

3.4 Stem cell viability assay of chitin/MWNT composite films 

Having measured the electrical conductivity of chitin/MWNT composites films, the 

next step was to assess the biocompatibility of these films to determine how well 

mesenchymal stem cells (MSCs) can survive on the surface of these films. The MSC 

viability on all the chitin/MWNT films was tested using the LIVE/DEAD® viability 

assay as described above, where green fluorescence indicates live cells and red 

fluorescence shows dead cells. As seen in Figure 7, a large proportion of live cell 

attachment was observed after 3 d and 14 d with a negligible number of dead cells 

on all chitin and MWNT composite films. However, since the film transparency is 

significantly reduced for 0.07 and 0.1 mass fraction chitin/MWNT films (Figure 1 B), 

the MSCs do not appear as fluorescently bright as with the more transparent films. 

The negative control sample for the assay was the chitin/MWNT film without MSCs. 

These films had no background green or red fluorescence (data not shown). Images 

for positive controls using cells seeded on plastic (Figure 7I) and negative controls 

using cells killed by methanol (Figure 7 J) are shown for comparison. 
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3.5 MTS assay  

The LIVE/DEAD® assay gives a qualitative indication of MSC survival without any 

quantitative measure of the number of MSCs present and their proliferation rate.  To 

determine the growth rate and number of MSCs present on the chitin/MWNT films at 

various MWNTs concentrations, MTS assay was performed.  Tissue culture plastic 

was treated as a positive control for this analysis. Figure 8 shows the number of 

MSCs on a given set of membranes after 3 d and 14 d. All chitin/MWNT composite 

films from (0.01 to 0.1) mass fraction showed MSC attachment. We found that the 

MSC attachment level at 0.07 mass fraction was significantly higher compared to all 

the other membranes at day 14. It is interesting to note that the concentration of 

carbon nanotubes beyond 0.07 mass fraction of MWNTs in the chitin matrix is not 

ideal for good attachment and proliferation of MSCs. Cell attachment at 14 d was 

significantly better in both the 0.07 and 0.1 mass fraction membranes (p = 0.042 and 

0.019 respectively, vs. 3 d). 

4. Discussion 

In this study, we have demonstrated that ionic liquid can be used as a common 

solvent for the benign dissolution and processing of chitin, as well as for the uniform 

dispersion of non-covalently functionalised MWNTs, in the manufacture of electrically 

conductive chitin/MWNT composite films.  We have further shown that bone marrow-

derived MSCs can successfully grow and proliferate on the electrically conductive 

chitin/MWNT composite films. 

Traditionally, chitin has been processed using highly aggressive solvents such as 

hexafluoroisopropanol (HFIP) or formic acid 41.  Although ionic liquids have shown 

certain toxicological effects depending on the nature of cation, anion and alkyl chain 

length attached to cation42, 43 in our opinion  the  advantage of imidazolium-based 

ionic liquids in the processing of chitin is the improved operational safety compared 

to use of sodium hydroxide / carbon di-sulphide / sulphuric acid based solvents 

(viscous process for dissolving cellulose and chitin), or formic acid and hexafluoro 

isopropanol, which are highly volatile and can cause severe skin burns and eye 

damage (based on the Materials Safety Data Sheet for formic acid and hexafluro 

isopropanol). The imidazolium-based ionic liquids have been shown to have a very 

low vapour pressure44, 45  low flammability 46and lower risk when in direct contact 
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with skin (based on the Materials Safety Data Sheet for EMI Ac). EMI Ac was shown 

to have negligible toxicological effect on growth of Clostridium sp. bacteria below q 

concentration of 2.5 g/l47. The ease of handling EMI Ac when processing chitin 

reduces the health hazard and the need for investment in appropriate safety 

equipment (required for handling more aggressive solvents such as 

hexafluoroisopropanol and formic acid). Hence we believe that large-scale 

processing of chitin using EMI Ac will be safer and more economical. To study the 

long-term ecological impact of EMI Ac, detailed toxicological studies of its influence 

on aqueous organisms and its toxicological effects during biodegradation are 

necessary. 

 

In this study, we have shown that EMI Ac can also be effectively used as a common 

solvent for achieving uniform dispersion of carbon nanotubes as well as for 

processing natural polymer nanocomposites. Given the ability of ionic liquids to 

dissolve a wide range of natural polymers, the method proposed here will allow 

researchers to use ionic liquids as a common platform to disperse nanoparticles and 

then dissolve a range of natural, sustainable polymers to prepare nanocomposites in 

one step8, 10. Such a technique will lead to benign and more efficient ways to prepare 

natural polymer-based, electrically conductive nanocomposites from carbon 

nanotubes that can be used as multifunctional materials. 

The electrical conductivity of the 0.01 and 0.03 mass fraction MWNT composites 

was found to be low, whereas the 0.07 and 0.1 mass fraction MWNT-based 

composites was significantly higher. These results indicate that the percolation 

transition for chitin/MWNT composite films occurs between 0.03 and 0.07 mass 

fractions of MWNT concentration.  

The live and dead assay confirmed the viability of cells on all the chitin/MWNT 

composite film scaffolds up to 14 d. The qualitative assay revealed an increased cell 

binding capacity with the 0.07 mass fraction MWNT composites.  The poor binding of 

cells on the 0.1 mass fraction chitin/MWNT scaffold as compared to the 0.07 mass 

fraction is likely to be due to increased hydrophobicity with higher nanotube 

concentrations. Similar behaviour was reported by Koga et al while studying the 

interaction between primary hepatocytes and carbon nanotubes (CNTs)48. They 
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reported that there was a weak interaction between the two depending on the 

density of CNTs used and observed that CNTs promote spheroid formation, which 

increases with high density. Thus 0.07 mass fraction chitin/MWNT nanocomposites 

remain the most suitable scaffolds for attachment and proliferation of adult MSCs as 

well as for achieving high electrical conductivity.  

Previous studies have used neat carbon nanotubes films/fibres49-52 and carbon 

nanotube-based composites with synthetic polymers such as polycarbonate 

urethane and polylactic acid (PLA) as electrically conductive substrates for cell 

growth53.  However, the degraded products from polyurethane or polylactic acid-

based scaffolds are known to cause inflammation54-56. The chitin/MWNT carbon 

nanotube composite can overcome this limitation due to the natural origin of chitin, 

its exceptionally low immunogenicity, antimicrobial activity and biocompatibility. The 

electrical stimulation of polycarbonate urethane/carbon nanotube composite-based 

scaffolds showed improved cell density of chondrocytes18 and PLA/carbon nanotube 

composite scaffolds showed improved alignment of adipose-derived stem cells50. 

The electrical conductivity of our chitin/MWNT composites was found to be higher 

than the PLA/carbon nanotube composite scaffolds, as well as for the polycarbonate 

urethane/carbon nanotube composites as reported by previous researchers for 

electrical stimulation of cells. This observation suggests that our chitin/MWNT 

composites have sufficiently high conductivity for the electrical stimulation in tissues.  

Currently, the lifetime of prototype electrodes based on metal or silicon fibre is 

restricted at 3 to 6 months22. This is due to a mismatch in the elastic/mechanical 

properties of the stiff metal/silicon-based electrodes and the surrounding soft tissues, 

which causes premature loss of electrode function. The soft, electrically conductive 

and biocompatible chitin/MWNT scaffolds presented in the current work offer a 

method to overcome this limitation and design a new generation of implantable 

electrodes.  

Carbon nanotubes have excellent electrical conductivity and a high aspect ratio, 

secondary to which they can achieve electrical percolation in composite materials at 

a very low weight fraction57-59. However, a certain class of carbon nanotubes have 

been shown to have a toxicological effect on biological cell growth60, 61. On the other 

hand, some researchers have also shown an enhanced function of neurons62, 63 and 
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increased density of chondrocytes18 when they were grown on electrically conductive 

neat carbon nanotube films and composite scaffolds. To minimise the toxicological 

effect of carbon nanotubes we have used at least a 0.9 weight fraction of 

biocompatible chitin matrix with a small fraction of MWNTs. We were able to achieve 

soft biocompatible as well as electrically conductive scaffolds by using a small weight 

fraction of carbon nanotubes and a biocompatible chitin polymer. As mentioned in 

the previous discussion, the scaffold developed in the present work may prove to be 

more effective for the electrical stimulation of biological cells than metal-based stiff 

electrodes with limited biocompatibility22. Hence we believe that use of a small 

weight fraction of carbon nanotubes may justify its use in order to overcome the 

limitations of currently used metal-based electrodes for biological cell stimulation.  

5. Conclusions  

We have successfully manufactured electrically conductive biocompatible 

chitin/MWNT composite films using ionic liquid as a benign common 

solvent/dispersion medium. The non-covalent modification of MWNTs with 

carboxymethyl cellulose was shown to be effective in improving dispersion of 

MWNTs in ionic liquid. After achieving improved dispersion of MWNTs, chitin/MWNT 

composites with MWNT concentrations ranging from 0.01 to 0.1 mass fractions were 

manufactured. The 0.07 and 0.1 mass fraction chitin/MWNT composites were found 

to have high electrical conductivity and the 0.07 mass fraction chitin/MWNT 

composite scaffold was found to have the best combination of high electrical 

conductivity with good survival and proliferation of MSCs. Our results demonstrate 

the potential of electrically conductive, biocompatible, chitin/MWNT composites in 

regenerative medicine prepared using  a benign solvent. These soft biocompatible 

and electrically conductive films may offer an attractive alternative to metal-based 

electrodes for the electrical stimulation of tissues. 
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Figure1 

a: Schematic representation of the preparation of chitin/MWNT composite films. 

 

b: The chitin and carbon nanotube composite films with different concentrations of 

MWNTs. The 0.07 and 0.1 weight fraction MWNT composites show visibly reduced 

optical transparency. (Scale bar is 130 µm for all membranes) 

 

Figure 2a. Optical microscopy image of pristine MWNTs showing poor dispersion in 

EMI Ac. 2b. Optical microscopy images of carboxymethyl cellulose modified MWNTs 

showing improved dispersion in EMI Ac 

 

Figure 3:  SEM of MWNTs dispersed in chitin films at low (Fig 3 a, c, e, and g) and 

high (Fig 3 b, d, f and h) magnification. 

 

Figure 4: Wide-angle X-ray diffraction pattern of the lowest concentration (0.01) 

mass fraction and highest concentration (0.1) weight fraction of chitin/MWNT 

composite films.  

 

Figure 5: FTIR spectra of the lowest concentration (0.01) weight fraction and highest 

concentration (0.1) weight fraction of chitin/MWNT composite films.  

 

Figure 6: The electrical conductivity of chitin/MWNT composite films which shows 

excellent electrical conductivity for 0.07 and 0.1 weight fraction % of MWNT and 

chitin composites films. 

 

Figure 7: Live and dead viability assay to test the viability of MSCs on the 

chitin/MWNT film scaffolds. Cells were seeded on the scaffolds and were stained 

with the Live/Dead viability stain. Green cells showed the number of live cells and 

red cells showed dead cells due to the excitation of florescent dye (calcein AM) at 

490 nm. The images were obtained after 3 d (left column) and 14 d (right column) of 

cells seeding.  
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Figure 8:  MTS assay quantifying MSC proliferation on different concentrations of 

chitin/MWNT films. The positive control in this case is the tissue culture plate 

(plastic). A cell count below 250 was disregarded from the analysis due to the 

inherent limitation of the assay. Data are given as mean + standard error. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

Figure 5 

 

Chitin + 0.1 weight fraction MWNTs 

Chitin + 0.01 weight fraction MWNTs 

 %Transmission 
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Figure 6 
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Figure7 
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Figure 8 
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