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ABSTRACT 
In this paper we describe the use of kick gestures for 
interaction with mobile devices. Kicking is a well-studied 
leg action that can be harnessed in mobile contexts where 
the hands are busy or too dirty to interact with the phone. In 
this paper we examine the design space of kicking as an 
interaction technique through two user studies. The first 
study investigated how well users were able to control the 
direction of their kicks. Users were able to aim their kicks 
best when the movement range is divided into segments of 
at least 24°. In the second study we looked at the velocity of 
a kick. We found that the users are able to kick with at least 
two varying velocities. However, they also often 
undershoot the target velocity. Finally, we propose some 
specific applications in which kicks can prove beneficial.  

Author Keywords 
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ACM Classification Keywords 
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INTRODUCTION 
Mobile phones are often used in contexts where users’ 
hands are either too dirty to touch the screen or are covered 
due to environmental conditions (weather, sterile 
environments, etc.). In such contexts user’s can at best hold 
their phone but often cannot use touch for even basic 
interactions. One interesting approach to touchless 
interaction is to use foot gestures (e.g. [3, 5, 7]). For 
example, foot gestures are available/doable in cold weather, 
where users cannot remove their gloves to operate a phone, 
or on farms where farmers with dirty hands wish to use 
their phones to research fertilizers while in their fields.  

Foot movement is a robust input method for many tasks 

(i.e. driving, dancing, running) leading researchers to study 
foot gestures in various contexts [3]. Foot input has been 
used for selecting menu items [7], for game interaction [5] 
and to control a device [3]. Multitoe [2] enabled identity 
tracking from foot imprints and with computer vision 
techniques users can play a mock football game on a PDA 
using their own foot [5].  

More closely related to our work is that of applying foot 
gestures, such as ankle rotations for discrete selection [3, 7]. 
This prior work mapped specific foot movements to an 
interaction. We instead investigate interactions that take 
advantage of the multiple degrees-of-freedom available in a 
foot gesture, such as a kick (Figure 1). This also has the 
benefit of being easily learned and adopted by users for a 
variety of tasks, since foot gestures are most likely to be 
used occasionally when the hands are busy. 

    
Figure 1. Kicking as a method of interaction with mobile 

applications: (left) Directional ‘kick’ gesture, (right) Velocity 
based ‘kick’ gesture. 

This paper investigates the dexterity of using ‘kicking’ as a 
foot gesture in mobile interaction through two studies. The 
first reveals that kicks are precise enough to distinguish up 
to five different directions in front of the user. The second 
shows that users undershoot their goal targets in velocity-
based kicking movement. The main contributions of this 
paper are: a) an exploration of kicking as an interaction 
technique; and b) an investigation of the dexterity of kick 
direction and velocity for use in interactive tasks. 

KICKING 
We first explain our use of the term ‘kick’ and then 
describe the details of our kick detection algorithm.  

Kick Gesture 
The meaning of a ‘kick’ is usually placed within a context, 
such as ‘to kick a ball’, ‘a round house kick’, or ‘kicking off 
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ones shoes’. Such actions require a large number of muscle 
groups. While kicking takes on different forms we limit our 
definition to those actions that seem socially acceptable and 
practical to perform on a mobile device. As such, a ‘kick’ 
gesture in our context consists of moving one’s foot 
forward, left or right, and thus only using the muscles of the 
lower leg (tibialis anterior or shin muscle, and calve 
muscles, along with foot and ankle tendons).  

Detecting a Kick  
When a user kicks an item (e.g. a soccer ball), up to six 
muscle groups in the leg cooperate to perform the action in 
a controlled manner [1], with up to three muscles for a short 
range kick. As a result, kicking can be extremely 
expressive. However, discretizing a kick into its component 
actions for interaction would limit the amount of 
expressivity it can afford. Instead other alternatives are 
needed for interpreting a kick to fully harness its power.  

Unlike prior work that primarily discretized foot movement 
for extracting taps or ankle rotations, we instead interpret 
kick gestures by capturing a complete foot gesture with a 
camera and feeding it into a physics engine. The advantage 
of this approach is that it allows the users to formulate their 
own impression of what to do with a kick. This also permits 
a wider range of mappings that would not be possible by 
simply breaking down a complex movement into subparts. 

To detect a kick we used an Xbox Kinect camera (placed 
~3.5m in front of the users) and computer vision algorithms 
to extract the foot gesture information. The depth camera 
extends the operating dimensions from 2D to 3D space so 
that users can freely perform any foot gestures. This 
solution was selected as while such depth cameras are not 
currently available on mobile devices, it is likely they will 
be in the near future. Furthermore, we need a resilient 
detection system to perform our evaluations and to 
demonstrate our concept. The Open Natural Interaction 
(OpenNI) library provides a user skeleton model and helps 
to track users’ bodies easily. We extract the users’ right foot 
coordinate information, and detect kick gestures from it 
using the following algorithm. 

The system runs at ~25 fps and even when the user is still, 
it detects minor movement (change in the spatial 
coordinates of the foot). Thus we characterize the ‘kick’ 
gesture as significant movement of the foot (above a preset 
threshold). Natural movements like shuffling or adjusting 
balance from one foot to another are gradual and not 
detected as a ‘kick’ by our filter criteria. A normal ‘kick’ 
gesture was found to take more than 0.35s to execute during 
preliminary studies. So we also filtered out any actions 
which did not last longer than nine frames (~0.35s).  

The spatial position of the foot was recorded in every frame 
during a kick. To detect the direction (with respect to the 
ground plane), we ignored the vertical axis data. Using the 
method of least squares the system calculates a line of best 
fit with the foot trajectory (again with respect to the ground 

plane). The slope of this equation provides the direction. 
The vertical axis data along with the direction is used to 
detect the ‘kick’ velocity. Velocity is converted to force (for 
the physics engine) using a linear equation. 

USER STUDY 1: A KICK IN THE RIGHT DIRECTION 
To establish a basic understanding of kick interactions and 
to determine the accuracy with which users can control 
their kicks, we conducted an initial user study. This study 
had two goals: 1) to establish the feasibility of using kick 
gestures to interact with a mobile device and 2) to 
determine in how many distinct directions users can 
accurately perform a kicking gesture.  

To do this, we designed a football game (see Figure 2a) that 
required users to kick the virtual ball into a highlighted 
target goal. We began with a football representation so that 
participants could easily associate their physical actions 
with a familiar (virtual) representation. Moving 
immediately to an abstract representation such as a menu 
could potentially increase the learning time and break the 
inherent metaphor transferred by the kick action. 

  
Figure 2. User studies: (left) Using direction of ‘kick’ to propel 
football towards the (blinking) grey goal (right) Using velocity 

of ‘kick’ to propel football while keeping it within the blue-
band target range.  

Participants and Apparatus 
Eight volunteers (three female), between the ages of 20 and 
35 years, participated in the experiment. All participants 
were right leg dominant. Participants held a 7” display at 
approximately waist height—they looked down onto the 
screen as if they were looking down to the ground to kick a 
football (as illustrated in Figure 1a). Their gestures were 
tracked by a Microsoft Xbox Kinect, as described earlier.  

Experimental Interface and Tasks 
The experimental interface (Figure 2a) filled the 7” display, 
which had a resolution of 800×480 px. The ball always 
began in the same starting location. A black semi-circle 
indicated the 120° range where the ball may be directed, 
while the target goal was the blinking color strip on this 
semi-circle. To perform a trial, the user kicked in the 
direction of the goal. The ball would then move in the 
direction of the kick until it had passed over the semi-circle. 
In this study, the velocity of the kick was ignored and so the 
ball always moved at a constant velocity. 

Design and Procedure 
The experiment consisted of a practice session (five kicks) 
and the recorded trials. Participants were free to rest at any 



point during the experiment. The single independent 
variable was the goal width, measured in degrees. This took 
values of 40°, 30°, 24°, 20°, 17.1°, 15°, 13.3° and 12° 
(derived from having 3–10 divisions around the 120° semi-
circle). We recorded the position at which the ball crossed 
the semi-circle, giving us a success/miss record and an 
angular measure of error (when a miss occurred). Erroneous 
kicks were not repeated.  

Post-practice, all participants moved from the largest goal 
width through to the smallest goal width. Participants were 
required to kick the ball into each possible goal position 
three times (the positions were provided in a random order). 
So for example when the number of divisions were 5 
(angular width 24°) the total number of trials per participant 
was 5×3 = 15. The total number of trials per participant was 
156 (9+12+15+18+21+24+27+30). 

Results and Discussion 
The total number of misses was 438 out of 1248 trials. 
There was a significant effect of goal width on accuracy (p 
< 0.01, F(7,49) = 24.3). 40° divisions had an accuracy of 96%, 
while 12° divisions had 46%. Five divisions, with an 
angular width of 24°, had an accuracy of 88%, a value we 
would recommend for use in further kick-based selections. 

 
Figure 3. Study 1 results – accuracy of directional kicks 

 
Figure 4. Number of misses in the dominant and non-

dominant sides for each number of divisions. 

We also found that there was a total of 192 misses on the 
dominant side of the target goal while there were 246 
misses on the non-dominant side (where the dominant side 
of the target goal is the halve of the goal that is on the same 
side as the user's dominant leg). Figure 4 shows a 
breakdown of these misses for each number of divisions, 
suggesting that there are fewer misses when participants 
tried to kick the ball towards their dominant side.  

This study has shown that participants can accurately direct 
their kicks into divisions spaced 24° apart. Users are also 
more accurate on their dominant side than the non-
dominant side. We now wish to investigate whether it is 
feasible to use kick velocity as an interaction parameter.  

USER STUDY 2: A KICK WITH THE RIGHT VELOCITY 
Having gained an understanding of users’ abilities to 
correctly direct a kick, we wished to explore how users can 
control kick velocity. This will allow us to judge the 
feasibility of using velocity as an input dimension. This 
study was run using the same setup as User Study 1. 

Participants and Apparatus  
Eight volunteers (two female) between the 20�35 years old 
participated in the experiment, seven of whom were right 
leg dominant. We used the same hardware setup as Study 1.  

Experimental Interface and Tasks  
A football game was again employed, this time with users 
having to kick the virtual ball with a specified velocity. We 
disregarded the direction of the kick, but encouraged 
participants to kick straight instead of sideways. The 
velocity of each kick was visualized on-screen by a velocity 
meter, as shown in Figure 2b. The velocity meter was 
updated in real-time as the participants performed a kick, 
providing them feedback about the kick velocity. In each 
task the user was shown a target range of velocities. The 
participant’s goal was to then kick the ball such that the 
kick velocity would be within the target range. 

Design and Procedure 
The experiment consisted of a practice session (6 kicks), a 
user calibration session (users' performed 6 kicks to register 
maximum and minimum velocities: 3 for minimum velocity 
(VMIN) and 3 for maximum velocity (VMAX)) and the 
recorded trials, with participants free to rest at any point. 
The single independent variable was the number of velocity 
divisions. The velocity divisions were spread equally over 
the calibration range (between VMAX and VMIN) for the user. 
The number of divisions varied between 2 to 4. For each 
trial we recorded the velocity of the kick, giving us a 
success/failure record and a measure of error when a kick 
was too fast or too slow. Erroneous kicks were not repeated. 
All participants moved from the smallest number of 
divisions (2) to the largest (4). For each value of number of 
velocity divisions, participants were required to kick the 
ball within the velocity values of the required segment three 
times. For example, in the four divisions’ case, the 
participants completed 4×3=12 tasks while they completed 
6 and 9 tasks for the two and three divisions respectively. 
The target division was provided in a random order.  

Results and Discussion 
There was a significant difference between the accuracy of 
the user and the number of kick divisions (p < 0.05, F(2,14) = 
7.8 when analyzed using a Univariate ANOVA with 
participants as random factors).  

The two divisions condition was the best (statistically 
significant in post-hoc pair-wise comparisons with p < 
0.01) with an overall accuracy of 87.5% (42 out of 48 
trials). We found no statistical difference between 3 and 4 
divisions. Figure 5 shows the average percentage accuracy 
for each division. We further analyzed the data to see if 
users were undershooting or overshooting the target. Our 



results showed that users were often undershooting the 
target. Of the 73 cases where they failed to reach the 
desired level, 49 cases were undershot while only 24 were 
overshoot errors. Figure 6 shows the breakdown of errors 
over each division.  

 
Figure 5: Average accuracy of tasks (expressed in %) for each 

division. We use average instead of actual numbers as the 
number of trials for each division was different.  

 
Figure 6: Total undershoots and overshoots per division.  

DISCUSSION 
Based on the results of our studies, we consider several 
possibilities where the kick gesture could be useful. 

Kick to flick: Our studies show that it is harder to precisely 
control the velocity of the kick gesture. However, the users 
can remember two broad ranges of velocity. Thus the flick 
action is easily interpreted with the kick. The flick action on 
a menu would be triggered by a higher velocity kick. The 
slower velocity kick and direction of kick can be used to 
provide additional control as required for a Superflick [6].  

Kick to navigate: A circular contextual marking-menu like 
the hierarchical marking menu [8] is a good example of a 
menu that can work well with the kick action.  A naïve user 
would receive feedback for slower directional gestures as 
they progress through sub menus. However an expert user, 
who remembers the menu layout, could navigate quickly in 
a single continuous gesture. Our studies suggest that five 
divisions at each level of the menu would be helpful for 
retaining the selection accuracy. The velocity of the kick 
can be leveraged for navigation in a hierarchical step. 

Kick to zoom: Igarashi et al.[4] demonstrated speed-
dependent zooming actions. The kicking is well suited for 
to this interaction as the user has two kick velocities that 
can be used to control the interface’s zoom action. 

Improving kick distance: Study 2 showed that users tend to 
undershoot the target. Pressure based interaction techniques 
have successfully applied quadratic mapping functions to 
increase the number of selection levels. Future studies 
could look at such non-linear mapping functions between 

the kick gesture speed and document movement speed to 
further increase the step size for direction.  

Our study only explored stationary interactions and future 
research could look at kick gestures integrated with a 
walking action. In such cases relative alignment of the 
phone to the body can change. Further areas for 
consideration include the social acceptability of such 
gestures and the minimum space requirements for 
performing these gestures. 

CONCLUSION 
In this paper, we investigate the dexterity of using kicking 
as an effective foot gesture in mobile interaction contexts. 
The two studies indicate that the users can distinguish 
between and control up to five directions and two kicking 
velocities. A mobile interface using kick gestures as input is 
feasible if due care is taken not to make it complex. Simple 
interactions like choosing menus, scroll lists and navigating 
maps can be easily adapted for the kick gesture.  
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