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Abstract

This paper demonstrates the concept of
adaptive cruise control and vehicle follow-
ing where by a safe distance is maintained
between vehicles. A follower robot identi-
fies a leader by using a stereo vision cam-
era that determines the distance between
the robots. The speed and direction of
the robot are controlled by fuzzy logic
controllers. The system performs consid-
erably well in unstructured environments
and exhibits good straight line perfor-
mance. We put forward our framework
for comparative analysis with alternative
controllers.

1 Introduction

Adaptive Cruise Control (ACC) extends the
concept of cruise control by adapting the speed
of a vehicle so as to maintain a safe speed and
distance between vehicles. Vehicles with ACC
autonomously slow down or speed up so that
they are not too close or far from the vehicle
in front. ACC was first brought to the mar-
ket by Toyota in 1998 with the Progres model
and more recently VW, Volvo and Ford have in-
corporated this technology during production.
A fleet of autonomous taxis have been trialled
in Daventry that use ACC to follow other taxis
when tailing behind them. This paper demon-
strates the current state of the art in Intelligent
Transportation Systems and presents an experi-
mental methodology for comparative analysis of
control methods.

A follower must be able to detect a leader
in order for it be followed. Our approach uses
machine vision to detect the leader. This has
previously been done by recognising features
such as vehicle symmetry [7], shadows [10], edge
detection and colour [13]. The techniques for
such approaches range from artificial neural net-
works, support vector machines to clustering al-

gorithms. We aim to reduce the computational
complexity of the recognition problem and have
done so by recognising a distinct colour of a pink
ball attached to the vehicle rather than the ve-
hicle. Histograms have been applied to real time
robotic vision for recognising colour features as
well as the location in cluttered environments
[18]. The RoboCup has seen many approaches
for recognising a pink ball in a football game,
these include colour recognition with threshold-
ing [1] as well as circle detection using the Hough
Transform, ball detection using wavelets and in-
dependent component analysis [8] and geometric
primitive detection with genetic algorithms [17].

A follower must also be able to determine
the distance to the leader, for this we propose
the use of machine vision, alternative methods
include radar, sonar. Monocular vision can de-
termine depth by using visual cues such as size
of objects. Stereo vision can determine depth
by stereopsis as well as artificial neural net-
works [5] and dynamic programming. Stereo
vision has been used specifically for vehicle fol-
lowing with the BART (Binocular Autonomous
Research Team) system [4].

In this paper the robot’s speed is controlled
with a fuzzy logic controller. Nissan first pub-
lished their research into utilising fuzzy logic for
speed control [12] of vehicles in 1983. This was
later developed further into ACC by [11] for
Daimler-Benz AG (Mercedes-Benz). For con-
trolling the direction of the robot visual servoing
has been applied to vehicle following [3, 2] as well
as trajectory planning [4]. Waypoints have been
applied in a tropical jungle [14] with a 12-ton
skid steer autonomous vehicle, they experienced
issues with occlusions in the line of sight and also
uneven terrain changing the direction of sensors
i.e. aiming into the ground. Daimler-Benz AG
[16] used potential fields with visual sensors but
it was found to be unsafe.

The remainder of this paper is structured
as follows; Section 2 presents an overview of
the system with detailed discussions of its key



components. Section 3 discusses the experimen-
tation. Section 4 presents preliminary results.
Section 5 discusses our conclusions and section
6 presents future research.

2 The System

Here we present an overall description of our
framework and describe key features of its archi-
tecture. Two robots act as leader and follower,
see Figure 1.

We use MobileRobots P3-AT robots running
Linux, which have skid-steer locomotion that is
suitable for unstructured environments; indoor
and outdoor. A pre-calibrated, stereo vision
camera (PGR Bumblebee) mounted on the fol-
lower captures images of the environment. The
images are processed to identify the leader, cal-
culate the position and distance to the leader
relative to the follower. Two fuzzy logic con-
trollers use the leader’s location to determine
the follower’s change in speed and direction. The
robot’s vision system tracks the movement of the
leader by mounting the camera upon a pan tilt
unit.

Figure 1: Robot setup

The follower has three concurrent processes
for the main tasks: vision, controller and PTU.
The controller forks execution for the other two
processes and inter-process communication is
achieved with POSIX shared memory, Figure 2
illustrates the communication model. The dis-
tance between leader and follower Z is passed di-
rectly to the controller while the local position of
the leader θvl

,θhl
is passed through the PTU pro-

cess to produce global coordinates θvg
,θhg

. We
now discuss these individual processes in more
detail.

2.1 Vision

A stereo vision camera serves three purposes:
image acquisition, object recognition and re-
construction of 3D points in the environment.
Images are acquired through a firewire inter-
face in the RGB colour space at a resolution of

Vision Controller

Pan Tilt Unit

Z

θvl
,θhl

θvg
,θhg

Figure 2: Processes and Communication model

1024x768 bit depth.
The majority of the reviewed techniques for

vehicle and object detection are too computa-
tionally expensive for our purposes. The leader
is uniquely identified by its colour feature; we se-
cured a pink ball upon the robot. The pink hue
is crucial since this is not a commonly occurring
colour in the environment. This simplifyies the
problem of recognition, which can be acheived
with a thresholding algorithm, this is presented
in Algorithm 1.

Algorithm 1 Ball Recognition

loop

Resample (1024x768 to 320x240)
RGB to HSV conversion
Hue and Saturation thresholding
Hue ∧ Saturation
Erode image
Calculate centroids of balls
Calculate disparity of balls’ centroids
Calculate distance to ball

end loop

The HSV colour space extracts the hue to a
single component. We discovered that the pink
ball had a very distinct saturation and so ex-
tracted this additional component. Doing this
also further reduced the effects of surface re-
flections on the ball. We used OpenCV for all
morphological operations. A logical conjunction
of the two thresholded, binary images results in
an image with a large blob representing the ball
and occasionally speckles of noise. Erosion re-
moves outer pixels from sets of adjacent pixels
that match a structuring element. This is used
to remove small clusters of pixels, assumed to
be noise, from the image. We now have a binary
image that represents the ball in the scene for
each lens.

The centroid of the ball is taken for both im-
ages to produce 2D coordinates of the ball in
images of the scene. Using the focal length (f)
and baseline (T ) of the pre-calibrated stereo vi-
sion camera and the calculated disparity from
the two images (xl, xr) we triangulate the depth



of the ball (z) in the 3D environment as

z = f
T

xl − xr

(1)

We only reconstruct the centre point of the
ball in the 3D environment. The depth is then
used to calculate the X and Y coordinates. The
inverse tangent function is used to calculate the
horizontal and vertical angles of the balls loca-
tion so that the PTU can use these rotational
units for actuations. With several optimisation
techniques of our algorithm a frame rate of 7fps
was achieved.

Strong, bright sunlight shining directly into
the camera’s lenses can cause the object recog-
nition component to fail due to a large patch of
illuminance which reduces the hue and satura-
tion.

2.2 Object Tracking with PTU

A Pan Tilt Unit (PTU) tracks the leader and
prevents it from leaving the camera’s field of
view. This is controlled with horizontal and ver-
tical actuations of the PTU. We aim to maintain
the pink ball’s location’s in the centre of the im-
ages to reduce the effects of radial distortion,
which occur nearer to the perimeter of the im-
ages. This process acts as an intermediate for
calculating the leader’s location.

The PTU process receives horizontal and ver-
tical angles of the ball’s pose relative to the epi-
centre of the camera’s lenses. A proportional
controller produces PTU commands to move the
PTU. The local angles of the ball are then trans-
formed to global angles that describe the ball’s
pose relative to the mount point of the camera
on the robot. This is a global position of the
ball which is passed to the controller process via
shared memory.

2.3 Fuzzy Controllers for Speed and

Direction

We can now recognise the leader, locate its po-
sition and track it in a 3D environment, we now
discuss the robot’s navigation system.

In order to maintain a safe distance between
the leader and follower the speed of the follower
is controlled. The heading of the follower will
also change so that it follows the leader’s path.
This is essential since the robots are to traverse
around corners.

Fuzzy logic controllers are used for there is
much uncertainty and imprecision present. We
operate in an unstructured environment and

Z
θ

v δv

δθ

Longitude

Latitude

Figure 3: Fuzzy logic controller architecture

take measurements using a camera that inher-
ently carry imprecision through pixel resolution.
The kinematic model of skid steering over vary-
ing terrain possesses a huge problem which is
partially overcome by the use of fuzzy logic con-
trol. Furthermore, the fuzzy sets that represent
the control actions are intuitive to that of a hu-
man operator. We aim to operate this system in
hard real-time and so more complex localisation,
additional mapping and planning techniques are
omitted to reduce computational complexity.

Figure 4: Longitudinal control surface

Actuator control is split into lateral and lon-
gitudinal(ACC) subsystems to simplify the rela-
tionship between the two, Figure 3 depicts the
architecture. The Mamdani inference model is
used because the outputs are known a priori, in
fact the consequent sets model the desired out-
put extremely well e.g. slow down a little. Both
controllers have multiple input and single output
architectures that are isolated from each other.
The longitudinal controller’s inputs are the cur-
rent speed of the follower, v, and the distance
to the leader, Z, while the output is a change in
speed, δv. The lateral controller’s inputs are the
direction of the leader, θ, and the speed of the
follower while the output is a change in heading
δθ. We define normal speed as 0.3ms−1 and a
safe distance as 1m, these act as the set points.
The universe of discourse for the distance be-
tween leader and follower ranges from 0m to 2m
and the universe of discourse for the direction



of the leader relative to the follower ranges from
-90◦ to 90◦.

Exemplification [6] is used to determine the
membership functions from our own experience
and heuristic knowledge of driving vehicles and
the robots. Both controllers have 5 membership
functions per input and 9 output membership
functions that are all triangular. With further
use of our experience and knowledge we were
able to determine the control rules. The control
surface was visualised to ensure its smoothness,
see Figures 4 and 5. A total of 25 rules accom-
modate for all scenarios that are encountered.
The controllers were manually tuned.

Figure 5: Latitudinal control surface

The minimum t-norm is used for intersection
and the maximum t-conorm is used for the ag-
gregation of the fuzzy sets. Larsen’s product
is chosen for implication operations for its abil-
ity to produce smooth control surfaces and its
popularity amongst engineers and control appli-
cations [9]. For rule aggregation the maximum
t-conorm is used and the centre of area method
performs defuzzification.

The fuzzy sets are implemented as discrete
data sets and integrated into the robot’s API,
Aria. An inference is performed for each con-
troller every 100ms.

3 Experimentation

For evaluating the performance of the system
our objective is to illustrate through compara-
tive analysis a statistically significant difference
between two types of fuzzy logic controller. The
experimental methodology is presented here.
We have a type-1 fuzzy controller and propose to
implement a non-stationary fuzzy set controller.
This was not done during this work but is dis-
cussed in section 6 as future research.

A SICK laser rangefinder mounted back-

wards on the leader collects distance measure-
ments between the two robots, Figure 1 depicts
the setup. This facilitates the ability to measure
the accuracy of the system which is computable
and also more accurate than the stereo vision
camera. It records the distance to the base of
the PTU on the follower. To achieve consistency
between runs a track was drawn on a tarmac sur-
face, see Figure 6 for the plan, that has varying
degrees of corner, points T1, T2 and T3.

finish
line

LF
b

T1

b

T2

b

T3

Figure 6: Plan of track with robots (F and L)
and turns (T1, T2 and T3)

A human operator teleoperates the leader
with a joystick and throttle button so that the
middle of the robot is aligned with the track.
Consistency and repeatability cannot be guar-
anteed with a human operator and so a 10m
straight line starts the track to assess the fol-
lower’s straight line performance. Measure-
ments are recorded from the laser rangefinder
and stored on the hard drive for parsing. This
data is parsed offline to determine the root mean
square error (RMSE) of a sample’s variation
from the set point of 1m. The experiments were
conducted outdoors over two bright summer’s
days.

4 Preliminary Results

Figure 7 depicts a sample of the results recorded
from the laser rangefinder. The first 150
measurements show good performance of the
controller by maintaining a constant distance.
Thereafter, the performance degrades. The peak
just below the 400th measurement shows the
largest amount of error, which reduces rapidly
towards 0. This pattern was consistent with all
runs, it is caused by the follower cutting a cor-
ner. Turn T2, see Figure 6, is the tightest turn
that the follower cuts across. Various sources
of error can be introduced into the experiment:
consistency of leader’s path, controller start, vi-
sion (finite resolution of images, defocusing, ra-
dial distortion), vibrations caused by skid steer-
ing on firm surface.

Figure 8 shows a plotted histogram of the
preliminary results. This shows that the samples
have a non normal distribution which implies
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Figure 7: A single run

that a comparative analysis of nonparametric
statistics would be suitable. Appropriate tests
for this would be the Mann-Whitney-Wilcoxon
and Kruskal-Wallis tests.

5 Conclusions

In this paper a control system is presented for
following vehicles that integrates a stereo vision
camera and fuzzy logic controllers for operation
in an unstructured environment. The follower
successfully recognised the leader and followed
it to demonstrate the concept of vehicle follow-
ing and ACC along a track. Although, the pre-
liminary results suggest the performance is not
yet consistent or reliable enough for compara-
tive analysis we have proposed a framework for
future research.

Figure 8: Histogram of samples

The vehicle recognition process worked well

in an unstructured environment, albeit the oc-
casional interference from light sources. The fol-
lower’s straight line performance of maintaining
a constant distance is good. Difficulty was expe-
rienced when traversing through turns especially
tight turns which often caused the follower to
cut across the corner which suggests reconsider-
ing the track design or the navigation method.

6 Future Research

Enhancing the accuracy, reliability and robust-
ness of the vision and controller sub-systems is
required for further use as a tool for data col-
lection. A more accurate camera model, that
considers radial distortion, and improved tech-
niques for reliable and unique identification of
the ball will increase the accuracy of localising
the leader. Refining the controllers is crucial,
either by employing an online or offline train-
ing method for the design that uses free motion
to map the controllers’ output to the real be-
haviour and an extension to this would be op-
timising the controller. A way point method of
navigation could be utilised to consider situa-
tions where tight corners are encountered. This
would coincide with our next point, the design
of the track and experiments.

Our experimentation methodology is a key
area for further development since there is much
scope for experimental error. Teleoperating the
leader produces inconsistent and unrepeatable
control, so to prevail against this we propose (vi-
sual) servoing of the track.

Finally, for comparative analysis of our sys-
tem we propose to create a non stationary fuzzy
set controller. Non stationary fuzzy sets attempt
to model the variation of human decisions [15].
This is achieved by perturbing the membership
functions and aggregating many inferences. This
presents an interesting area for future research
especially for creating a method for inferring the
fuzzy sets and perturbation parameters. It is en-
visaged that prior experiments would capture an
operator’s teleoperated control of a robot which
would then infer the perturbation function.
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