
 May, J. H. R. (2008). On Evolutionary Algorithms for Multiple Criteria
Decision Support in Bayesian Belief Networks Models of Dependable
Software Development Processes.. 1. Paper presented at 35th ESREDA
Seminar: Uncertainty in Industrial Practice - Generic best practices in
uncertainty treatment, Marseille, France.

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/on-evolutionary-algorithms-for-multiple-criteria-decision-support-in-bayesian-belief-networks-models-of-dependable-software-development-processes(e2d1855b-dfde-41f2-8674-7a174ad247aa).html
http://research-information.bristol.ac.uk/en/publications/on-evolutionary-algorithms-for-multiple-criteria-decision-support-in-bayesian-belief-networks-models-of-dependable-software-development-processes(e2d1855b-dfde-41f2-8674-7a174ad247aa).html

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 1

On Evolutionary Algorithms for Multiple Criteria Decision

Support in Bayesian Belief Networks Models of Dependable

Software Development Processes

Mario P. Brito

National Oceanography Centre

Southampton Waterfront Campus, European Way

SO14 3ZH, Southampton, England

John H.R. May

Safety Systems Research Centre, Bristol University

University walk

BS8 1TR, Bristol, England

Abstract

Recent research in software development process assessment and modelling has led

to an increase demand for formalisms capable of providing reasoning under

uncertainty. Such methods are used for providing decision support and build expert

consensus when there is a huge degree of subjectivity. Researchers have argued that

Bayesian belief networks (BBNs) is one of the most suitable formalism for this task.

However, Bayesian belief networks have typically been used to allow the user to

identify the most suitable software development process in light of one objective only;

this is usually product quality or number of latent faults in the product. In fact, the

current BBN formalism does not allow the user to identify the optimal process with

respect to many objectives. In this paper we argue that multiple objective genetic

algorithms (MOGAs) embedded with the BBN model of the software development

process can tackle this limitation. The proposed Decision support system (DSS)

searches for those solutions that maximize the confidence in the product integrity

whilst minimizing the costs and the time taken to develop the product.

Keywords: Software Process assessment, management, Bayesian networks,

evolutionary optimisation.

1. Introduction

Bayesian belief networks are maturing as a mathematical approach to support the

development of tools for software process risk management [1],[2],[3],[4]. In the field

of software dependability the use of BBNs has also been noted in major national and

international research projects such as FASGEP, Datum, SHIP, DeVa and more

recently, in the UK EPSRC INDEED project. The general approach for these projects

uses the underlying assumption that errors are introduced during development and

models of this process will allow the project manager to assess the level of the

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 2

problem and identify preventive measures needed in order to avoid the introduction of

errors [5][6][7][8][9][10]. In the specific context of software safety standards Gran in

used BBNs to model the requirements present in DO-178 software safety standard

[11].

One type of decision support system based on BBNs is designed by adding utility and

decision nodes to a Bayesian belief network model (pure BBNs contain chance nodes

only) [12][13]. This type of network is said to form an Influence Diagram or Decision

network [14]. This paper does not use these formalisms since they do not provide

sufficient support for multi-criteria decision making. In light of this limitation we

have proposed integrating the BBN formalism with multiple objective evolutionary

algorithms to search for optimal decisions in multiple criteria decision problems [15].

This paper is organised as follows. Section 2 gives an introduction to BBN modelling

and defines the model used in our problem. Section 3 presents the BBN decision

support system proposed in this paper. Section 4 provides two examples illustrating

the application of our DSS. Finally section 5 presents our conclusions.

2. The Bayesian Belief Network Formalism

A Bayesian Belief Network (BBN) is a graphical representation of a set of random

variables (the nodes) together with directed interconnecting links (arcs). The arrow

forming an arc indicates the direction of a causal relationship between parent and

child [16][17][18]. Where their aim is to encode human knowledge, such BBN

models can only be validated through evaluation, i.e. by testing whether predictions

made by the BBN model match those of the human expert.

Methods borrowed from social sciences are usually applied throughout the elicitation

process in order to reduce various forms of inaccuracy such as bias [16][17].

Verification of BBNs based expert systems can be performed by giving to the expert

system unseen scenarios and seeing if its predictions match those of the human

expert. In [18] Cockram illustrates how to validate a BBN based expert system

though sensitivity analysis.

For the BBN discussed here, each node has a set of discrete states, either numeric or

as ordered descriptions. At each node, a conditional probability table (CPT) captures

the relationships between the states of the parent nodes and those of the child node.

These conditional probabilities are assigned by experts – usually a domain expert

helped by a knowledge engineer.

A BBN model is typically composed of three types of nodes; these are namely target,

intermediate and observable nodes. Target nodes are nodes that represent the

variables of interest, variables for which we want to compute a probability

distribution. Observable nodes are used to represent variables that are measurable or

directly observable. In our case, the intensity at which a technique was applied and

experience of the personnel are examples of variables that could be captured with an

observable node. Note that observable does not necessarily imply ‘easy to measure’.

Intermediate nodes are often defined to help manage the size of the conditional

probability tables. These nodes often add transparency to the problem by representing

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 3

hidden variables or highlighting hidden interactions between variables. Thus,

Intermediate nodes are typically of a qualitative nature.

Figure 1 show how causal relations between observable, intermediate and target

nodes representing variables of our problem domain were established in order to

define a probabilistic model to predict the confidence at which an adopted software

development process complies with IEC61508-3 software safety standard [19]. The

model depicted in Figure 1 was implemented in Hugin [20][21]. There are two major

tasks when building BBN models: 1) defining the network structure; and 2) defining

the node probability tables. The latter are used to quantify the strength of the causal

relations. Similar to any other statistical problem in order to quantify the relations

between different nodes one must often make strong assumptions [22]. A

development process model is often broken into phases.

Figure 1. Generic BBN Multi-Level structure for several

phases of the safety software development lifecycle.

The BBN in Figure 1 attempts to capture interactions between phases. Each dashed

box on Figure 1 refers to a phase of the software development lifecycle. A detailed

model for phase 1 (requirements capture) is presented in Figure 3. A process integrity

level for each phase is estimated based on an estimated probability distribution of the

significance of outstanding errors in that phase and also the distribution obtained for

the criticality of errors found in later phases of the software development lifecycle

relevant to the earlier phase.

Overall
integrity after

phase i

Significance of outstanding

errors in phase i

Phase i overall

integrity

Quality of the development process at

phase 1, e.g. requirements

Significance of outstanding errors in

phase 1

Phase 1 overall

integrity

Quality of the development process

at phase i

Quality of

verification
process of phase i

relevant to phase i

Significance of errors found in

phase i relevant to phase 1

Quality of

verification
process of phase

i relevant to

phase 1

Size of the

verification team

Size of the

product

Complexity of the

verification task

.

.

.

.

Significance of errors found in

phase i relevant to phase i

To: Phase 2 overall

integrity

Significance of errors found in

phase i relevant to phase 2

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 4

3. The Decision Support System

The optimization algorithm was implemented in Visual C 6.0 and it communicates

with the expert system through the Hugin Application Interface (API), [20]. The

optimization algorithm collects ‘rigid evidence’ (this is evidence relating to facts that

are fixed for a given project, captured in terms of specified values for BBN nodes)

and runs “what-if” scenarios until it finds the most cost and effort efficient set. For

instance, the algorithm can ask “what-if” I increase the intensity at which formal

methods were applied, say from verifying a few key properties of the software

requirements to verifying all required properties? Similarly, “what-if” we increase the

number of the project review meetings? Given a set of user-specified fixed factors

(constraints) the optimization algorithm will run all possible remaining scenarios in

order to find the most cost and effort efficient solution or set of solutions. Figure 2

depicts the structure of the proposed system.

Figure 2. Framework of the general approach to risk
management.

Given the constraints identified the optimization algorithm will run different

scenarios. For each scenario the algorithm obtains the confidence in the SIL claim

from the BBN model, and the cost and effort from a database. The optimisation

algorithm operates binary strings that encode variable states. Each string aggregates

the states for all BBN variables for which the state is known. New MOGAs are

constantly being developed and their development usually involves large empirical

studies. Convergence depends on the nature of the decision problem and also on the

shape of the true Pareto front (whether the true pareto front is convex or concave).

The NSGA algorithm is known for being able to outperform other non-elitist MOGAs

A
p
p

li
ca

ti
o
n
 I

n
te

rf
ac

e

A
lg

o
ri

th
m

Cost & Effort

Database

Sort Dominance

Fronts

Assign fitness Select

Crossover

Mutation

Clustering and

Fitness reduction

New

Population

Select best front (1)

FrontParetoFront U1

Sort Pareto

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 5

[23] [24]. However there are some challenges when it comes to integrate this

algorithm with a BBN process model. For each generation the NSGA algorithm first

sorts the GA population into different fronts; the first front contains all elements (or

individuals or solutions) that are not dominated, the second front contains elements

that are dominated by at least one element of the first front, and so on for the

remaining fronts. The NSGA uses the Euclidean distance to measure the clustering

amongst solutions of elements in the first front. This is part of a strategy that ensures

diversity and spread of the optimal solutions. However the NSGA calculates the

Euclidean distance based on the decision variables (e.g. input variables such as the

‘intensity at which technique X is applied’) rather than the values given by the

objective functions (e.g. estimated process integrity level or costs or effort). BBNs

usually have many decision variables. A plausible alternative would be to use the

NSGA with a niching strategy that uses the Euclidean distance measured on the

objective functions instead of the decision variables. The proposed algorithm stores

all optimum solutions (non-dominated) on a separate set. So the algorithm contains

two populations: one standard GA population where genetic operators are performed

and another elite population containing all non dominated solutions found thus far.

The standard GA population consists of 30 individuals. For the non-elite population,

each individual is given a provisional fitness value according to its front, elements in

the first front are multiplied by a fitness factor that reflects how close solutions are to

each other. Thus solutions that are isolated are assigned a higher fitness level.

Consequently these individuals will have a higher probability of being selected to

create the next generation of individuals (solutions).

4. Using the Decision Support System

4.1 Two objectives: Optimisation of Integrity and Costs for the first phase of

the Software Development Lifecycle
This case study analyses the software requirements specification phase of the

software development lifecycle. It is assumed that the project manager has a clear

idea of the size of the project and its complexity. The process constraints or, in other

words, the variables that the DSS cannot vary to find the optimal processes are

presented in Table 1.

Table 1. DSS input data case study 1

Attribute State

Application factor Moderate

Complexity of the design Fair

Size of the verification team Small

Relevance of the verification method High

P
ro

ce
ss

 c
o
n
st

ra
in

ts

Complexity of the verification Fair

Probability of mutation 0.08

Probability of crossover 0.8

Population size 30

Elitism No

Chromosome size 30

O
p
ti

m
is

at
io

n
 a

lg
o
ri

th
m

Number of Generations 300

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 6

Suppose the project manager now wants to know which development techniques to

apply, the required competence of the staff and the type of verification technique that

must be applied. The target node (the node whose probability distribution we are

interested in) for this case study is the ‘Phase 1 overall integrity’. We will consider

two SIL targets, SIL 3 and SIL 4. SIL 4 is a highest level of integrity. It requires the

application of better techniques.

Figure 3 Hugin screenshot of phase 1 of the software

development lifecycle.

Figure 4 presents the Pareto front obtained for this case study. Each data point

represents a different process instantiation, i.e., a combination of techniques applied,

the intensity at which they were applied and also the competence of the personnel

involved in the development and in the review activities. Data point 1 in Figure 4

represents the cost-optimal process to follow in phase one in order to attain 83%

confidence that SIL 3 can be claimed. The cost of the associated process is £2,300. In

terms of techniques, this process (or scenario) involves the application of: a powerful

formal method at a low intensity (in practice this might mean use of a formal method

to provide a few key validated system properties, or maybe just the use of formal

specification without any formal validation activities); a ‘very good’ semiformal

method at a ‘low’ intensity; a ‘moderate’ verification method, such as a formal design

review meeting at a ‘low’ intensity; development staff with satisfactory training and

moderate qualifications, but lacking in experience (i.e. ‘low’ technical knowledge and

‘low’ experience); highly experienced verification staff (experience node was set to

‘moderate’ and technical knowledge node set to ‘good’); and a high level of

independence between the design team and the review team.

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 7

If the project manager wanted to have the same level of confidence (83%) that the

software could claim SIL 4 instead of SIL 3 then he would have to follow the process

corresponding to data point 2 in Figure 4. For this process, a ‘very good’ formal

method was applied at a ‘very high’ intensity and a ‘good’ semi-formal method at a

‘very high’ intensity. The qualifications of the design staff are satisfactory and the

experience and technical knowledge is ‘high’. The verification activities followed in

this process are identical to the verification activities followed in the process for data

point 1. However the qualifications, training, experience and technical knowledge of

the personnel involved in the verification process is ‘high’. The independence level

between the two teams is also ‘high’. The process present in data point 2 is similar to

the process present in data point 3. If one was to follow the process present in data

point 3 then one would attain 96% confidence that SIL 3 could be claimed. On the

whole the processes in data points 1 and 2 mirror the findings presented in industrial

reports.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

£2,000 £7,000 £12,000 £17,000 £22,000 £27,000

Costs [£]

B
e

li
e

f
[%

]

SIL 3

SIL 4

[1]
[2]

[3]

Figure 4 Non-dominated solutions after 2000 generations.

Concerning conformance to SIL 4, both Smith and Rivett in [25],[26] respectively

argue that a formal specification should be carried out for the complete system, which

in our example is addressed by the process represented by data point [2]. For SIL 3

however the two authors hold different views; whilst Smith argues that a semi-formal

specification for the complete system, Rivett suggests that a formal specification

should be presented for merely those functions that ought to meet SIL 3. In our

example the optimal process (present in datapoint [1]) two techniques (formal and

semi-formal specification methods) are applied at a low intensity.

4.2 Three objectives: Optimisation of Integrity, Costs and Effort for the first

phase of the Software Development Lifecycle

In this example we consider the scenario where the user aims to find the optimal

software development process with regard to three objectives: 1) belief that the target

SIL (SIL 4) can be claimed; 2) costs of the software development process; and 3) the

effort required by the process. The last two objectives are not conflicting by nature.

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 8

The initial assumptions concerning the software development process are identical to

the assumptions presented in the previous example (Table 1). The Pareto front

presented in Figure 5 contains the optimal processes for meeting SIL 4.

Figure 5 Non-dominated solutions after 2000 generations.

Data point 1 captures the process were a poor investment is made in terms of

techniques used in the development. Both formal methods and semi formal methods

were not used in this phase. Computer aided specification tools were applied at a high

intensity. As result, the confidence that SIL 4 can be claimed is only 6%. This is the

worst case scenario, it must be captured in the Pareto front because this captures the

case where effort is minimised. On the other end of the spectrum the user may choose

to adopt the process captured in data point 2. This process assumes that formal

methods were applied at a very high intensity, semi-formal methods were applied at a

high intensity and computer aided specification tools were applied at a very high

intensity and no verification methods were applied. In addition the process uses

highly qualified personnel with moderate experience. The process captured in data

point 2 provides 83% confidence that SIL 4 can be claimed, it has a cost of £22,900

and effort of 1676 man-hour.

This method can be used by both the product developer and the person that is auditing

the project. These two entities have different views on what is meant by an ideal

development process. The auditor main concern is to maximise his belief that the

target SIL is met while the product developer aims is to find the cost and effort

efficient process that allows compliance with the target SIL. The process

encapsulated in data point 2 is clearly not the ideal process from the developer

perspective. A better development process for software product developer is the

[1]

[2]
[3]

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 9

process encapsulated by data point 3 gives 78% belief that SIL 4 can be claimed; it

costs £14,600 and has an estimated effort of 1018 man-hours.

5. Conclusions

Bayesian belief networks have increasingly been used to framework expert

knowledge in complex problems where there is huge subjectivity. These graphical

probabilistic models have been used to support risk management and decision making

in many industrial sectors, e.g. Nuclear, Military and Aerospace. An important aspect

of any decision support system is that it should inform the user as to what is the

optimal decision in light of a set of observations. Before our research this would only

be supported using more or less classical approaches to utility theory. Bayesian

network models that encapsulate utility theory (in the form of utility and decision

nodes) are said to form an influence diagram. This method on its own is most suitable

for problems where the user aims to optimise one objective only, say confidence in

the product quality. Similarly to many BBN models, Influence diagrams can be large

in size, with many utility nodes. In this case, finding the optimal solution for all

objectives can be a tedious trial and error exercise, this effort increases exponentially

with the number of nodes and the number of their states.

Developing safety critical software is often a costly and error prone process. The

proposed DSS offers an interesting method to find a cost efficient set of techniques to

follow in order to meet a target SIL. This is important information to support

managerial decision-making regarding many key attributes, software product integrity

and development costs, for instance, and their relationship. In one organization the

project manager may be able to choose to increase the software safety integrity but

will want to do so in as cost efficient manner as possible. In another organization, the

project manager may choose to investigate whatever is possible in terms of integrity

within a fixed budget, and use that to decide whether to go ahead with a project. The

latter is a potential use of the tool in a contractual context, namely, to provide

evidence to a purchaser that the required software integrity can be achieved at the

quoted cost.

The examples used in the paper make use of notional figures. However, the method

presented demonstrates that it is capable of capturing some of the rich relationships

between quality and cost within the framework of development process modelling.

The existence of this method can act as a means of establishing consensus amongst

experts, both in terms of the structure of the model and in terms of the figures used.

With example one, we discussed processes present in the Pareto front obtained if

one is targeting SIL 3 and SIL 4 for phase 1 of the development lifecycle. The results

capture the simple idea that in order to have an effective and cost efficient process

one ought to employ an experienced team to carry out review activities. Perhaps

controversially, the BBN as built suggests that the experience of the personnel

involved in the development process (for requirements capture) does not necessarily

need to be high, provided that they have satisfactory training and good qualifications.

This is clearly a point on which one might question the knowledge encoded in the

BBN.

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 10

In the last example we looked at how the proposed DSS could be used to optimise

three objectives. We considered the case where the project is at phase 1 of the

software development lifecycle, and the target integrity level is SIL 4. The aim is to

find those processes that will maximize our belief that a target SIL can be claimed

whilst it minimizes the costs and effort. In many BBN applications the goal is to

optimise a huge number of objectives. This is the case of the model proposed by Neil

et. al [9]. Neil’s model has nine utility nodes: maintenance costs, debugging costs,

testing costs, assessment costs, design costs, assessment costs and benefits. The ideal

process would optimise all these objectives. Similarly to our problem some of these

objectives are conflicting, (e.g. for the same process an optimal design cost may lead

to a poor assessment costs). However the model proposed by Neil et. al [9] does not

address the problem of finding the best process with respect to all objectives. Finding

the most suitable process with respect to all utilities would require a trial and error

process that would take a long time, and in general, such an approach is not feasible

in practice. We targeted this limitation in this paper.

Our algorithm converges quite quickly to the optimal solutions and this aspect has not

been discussed in this paper. We may start to experience problems if we aim to

optimise more than three objectives. The proposed DSS is based on genetic

algorithms however it might be possible to improve the performance of the DSS

using a different type of meta-heuristic optimization algorithm such as tabu search.

Tabu search tackles an important issue in global optimization, namely, the multiple

evaluation of a solution. Such algorithm might provide a faster trajectory to the Pareto

front. There are many questions such as this remaining for further work. This paper

provides a start in what appears to be a promising direction.

Acknowledgements

The authors would like to acknowledge the UK HSE for their insightful comments on

the approach presented.

References

[1] Brito, M. and May J. (2006). Gaining Confidence in the Software Development

Process Using Expert Systems. In Gorski J. (eds), Computer Safety, Reliability

and Security; Proceedings of the 25
th

 International conference on Computer

Safety, Reliability and Security (SAFECOMP 2006), Gdansk, Poland, 26-29

September 2006. Lecture Notes in Computer Science 4166.

[2] Fenton N., Marsh W., Neil M., Cates P., Forey S. and Tailor M. (2004) Making

Resource Decisions for Software Projects. Proceedings of the 26th International

Conference on Software Engineering (ICSE'04), pp. 397-406.

[3] Chulani S., Boehm B. and Steece B. (1999) Bayesian Analysis of Empirical

Software Engineering Cost Models. IEEE Transactions on Software

Engineering, vol. 25, no. 4, pp. 573-583.

[4] Madachy R., Subramanian, G. H. and Rodger, J.A. (2005) A Probabilistic

Model for Predicting Software Development Effort. IEEE Transactions on

Software Engineering, vol. 31, no. 7, 2005, pp. 615-624.

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 11

[5] Cottam M, May, J., et al (1994) 'Fault Analysis of the Software Generation

Process - The FASGEP Project,' Proceedings of the Safety and Reliability

Society Symposium: Risk Management and Critical Protective Systems,

Altrincham, UK October 1994.

[6] Hall, P., May, J., Nichol D., Csachur, K. and Kinch, B. (1992) Integrity

Prediction during Software Development. Safety of Computer Control Systems.

(SAFECOMP'92), Computer Systems in Safety-Critical Applications,

Proceedings of the IFAC Symposium, Zurich, Switzerland, October 28-

30,1992, pp. 239-244.

[7] Fenton, N.E., Littlewood, B., Neil, M., Strigini, L., Sutcliffe, A. and Wright, D.

(1998) Assessing dependability of safety critical systems using diverse

evidence. IEE Proceedings Software Engineering 145 1, pp. 35–39.

[8] http://www.csr.city.ac.uk/projects/ship/ship.html.

[9] Neil, M. and Fenton, N. (1996) Predicting Software Quality using Bayesian

Belief Networks. Proceedings of 21st Annual Software Engineering Workshop

NASA/Goddard Space Flight Centre, December 4-5.

[10] Delic, K.A., Mazzanti, F. and Strigini L. (1997) Formalising a software safety

case via belief networks, Proceedings DCCA-6, Sixth IFIP International

Working Conference on Dependable Computing for critical Applications,

Garmisch-Partenkirchen, Germany.

[11] Gran, B.A. (2002) Assessment of programmable systems using Bayesian Belief

nets. Safety Science, vol. 40, pp. 797-812

[12] Fenton, N.E. and Neil, M. (2001) Making Decisions: Using Bayesian Nets and

MCDA. Knowledge-Based Systems, vol 14, 2001, pp. 307-325.

[13] Fan, C. and Yu, Y. (2004) BBN-based software project risk management.

Journal of Systems and Software, vol. 73, 2004, pp. 193-203.

[14] Burgess, C.J. Dattani, I., Hughes, G., May, J.H.R. and Rees, K. (1999) Using

Influence Diagrams in Software Change Management. Proceedings of the 7
th

International Conference on Software Quality Management, March 1999, pp

177-187.

[15] Brito, M. and May, J.H.R. (2007) Optimization of Safety Critical Software

Development Processes. Proc. European Safety and Reliability Conference

(ESREL 2007), Stavanger, Norway, 25-27 June, 2007.

[16] Pearl, J. (1988) Probabilistic reasoning in intelligent systems, Morgan

Kaufmann, San Mateo.

[17] Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L. and Cowell R.G. (1993)

Bayesian Analysis in Expert Systems. Journal of Statistical Science, vol .8, no.

3, 1993, pp. 219-283.

[18] Lauritzen, S.L. and Spiegelhalter, D.J. (1988) Local Computations with

Probabilities on Graphical Structures and their Application to Expert Systems.

Royal Statistical Society Journal, vo.l 50, no. 2, 1988, pp. 157-224.

[19] IEC61508 (1998-2000) Functional safety of electrical/ electronic/

programmable electronic safety-related systems parts 1-7. Published by the

International Electrotechnical Commission (IEC), Geneva Switzerland,.

[20] Hugin Expert A/S. (1990-2005) Hugin API Reference Manual version 6.4.

[21] Hugin A/S: http://www.hugin.com

[22] Littlewood, B. and Wright, D. (2007) The Use of Multilegged Arguments to

Increase Confidence in Safety Claims for Software-Based Systems: A Study

Uncertainty in Industrial Practice - Generic best practices in uncertainty treatment

 12

Based on a BBN Analysis of an Idealized Example. IEEE Trans. Software Eng.

33(5): 347-365.

[23] Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization & Machine

Learning, Addison-Wesley.

[24] Deb, K. (2001) Multi-Objective Optimization using Evolutionary Algorithms,

John Wiley and Sons Ltd.

[25] Smith, D., Simpson. K. (2004) Functional Safety – A straightforward guide to

applying IEC61508 and related standards. Elsevier (second edition), ISBN:

0750662697.

[26] Rivett, R.S. (1997) Emerging Software Best Practice and how to be compliant.

Proceedings of the Sixth International EAEC Congress.

