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Abstract. In this paper we describe a close-to-sensor low latency visual
processing system. We show that by adaptively sampling visual informa-
tion, low level tracking can be achieved at high temporal frequencies
with no increase in bandwidth and using very little memory. By having
close-to-sensor processing, image regions can be captured and processed
at millisecond sub-frame rates. If spatiotemporal regions have little use-
ful information in them they can be discarded without further process-
ing. Spatiotemporal regions that contain ‘interesting’ changes are further
processed to determine what the interesting changes are. Close-to-sensor
processing enables low latency programming of the image sensor such
that interesting parts of a scene are sampled more often than less in-
teresting parts. Using a small set of low level rules to define what is
interesting, early visual processing proceeds autonomously. We demon-
strate system performance with two applications. Firstly, to test the
absolute performance of the system, we show low level visual tracking at
millisecond rates and secondly a more general recursive Baysian tracker.

1 Introduction

There is increasing interest in low cost computer vision systems with a wide
range of applications including gesture based user interfaces, surveillance, au-
tomotive systems and robotics. As the complexity of consumer, sensing and
military systems increase the demands on energy resources becomes critical for
high-level computing performance. Vision systems are proving to be extremely
valuable across a range of applications and to be able to efficiently process visual
information offers a huge advantage in the functionality of such systems.

Traditional computer vision systems typically consist of a camera continually
capturing and transmitting images at a fixed frame rate and resolution with a
host computer sequentially processing them to obtain a result such as the trajec-
tory of a moving object. A major drawback of this pipeline is that large amounts
of memory are required to store the image data before it is processed, especially
as frame rate and image resolution increase. Additionally large amounts of the
image data is transmitted to the host for processing regardless of the amount
of information contained in this data. In the case of object tracking, computer
vision algorithms work towards creating a concise description such as, ‘a group
of pixels at a certain location is moving in a particular way’. Often the object is
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relatively small compared to the whole image and the background maybe static.
In cases like this, the traditional computer vision processing pipeline could be
considered as being highly inefficient as large amounts of image data are being
captured, transmitted to the host, stored in memory and being processed on a
per-pixel basis while most of the visual information comes from a small num-
ber of changing pixels. In such cases most of the image data is discarded as it
contains no useful information.

In the case of a scene with an object moving across a static background most
of the image data changes very little while some pixel areas might change rapidly
or move a different speeds. The fixed temporal sampling rate of standard camera
systems cannot take this into account and artifacts such as motion blur and tem-
poral incoherence are introduced. These artifacts consequently confound down
stream processing necessitating ever more complex computer vision algorithms
to overcome these imaging effects.

A significant problem with digital video capture is that of temporal quantiza-
tion. Given a finite set of resources, digital video capture proceeds by sequentially
sampling frames at fixed temporal rates and spatial resolution within a range of
luminance in a non-interactive passive manner. Biological systems proceed very
differently; unable to sequentially process entire views, selective scene sampling
is performed using a combination of eye movements. In Rucci et.al. [1–5] it is
shown that a number of strategies exist for visual sampling in human vision
depending on the task being carried out. A human eye is constantly moving in
order to avoid fading, the loss of sight due to a lack of change on the retina.
As well as head movement, eye movements include saccades, micro-saccades and
drift. These movements enhance and stabilize the binocular view allowing the
process of foveation to create a highly detailed perception capable of difficult
tasks such as threading a needle.

Modern high speed cameras are capable of capturing images at thousands of
frames a second and can have dedicated processing modules close to the sensor.
In [6] the wing of a fly was tracked using regions of interest (ROI) at 6000Hz.
The system used edge detection to analyse the shape and motion of the fly’s
wing via feedback from a tracker which predicted the next ROI. One problem
with such systems is they are rigid in their FPGA based design, are task specific
and highly implementation and environment dependent.

In order to increase the flexibility and efficiency of high-level downstream pro-
cessing, image sensor design companies are developing devices that can compute
interest points and local descriptors in silicon [7]. Other silicon devices include
the artificial retina [8]. The artificial retina is being investigated in a number of
contexts, one of which is ‘event-based stereo vision in real-time with a 3D rep-
resentation of moving objects’ [9]. The low latency of this device is of particular
interest. However, there is no illumination detail provided. This is overcome in
a hybrid system that includes a traditional digital camera system to investigate
selective attention or saliency for real-time active vision [10].

In a keynote speech Ed Dowski [11], lead for new technologies at OmniVision
CDM Optics, Inc. suggested that:“An important class of future imaging systems,
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in our view, will be Application-Specific Imaging Systems (ASIS). These imaging
systems will not be general purpose in that they are meant primarily for human
viewing, but will be specialized systems that capture and communicate specific
types of information depending on the particular application.”

The central hypothesis of this paper is that low latency visual sampling can
provide a framework for solving many challenging real world vision problems.
The proposed system has characteristics similar to those of several compressive
sensing methods [12]. Non-linear visual sampling in the spatial and temporal
domains followed by image reconstruction of whole image sequences is a popu-
lar research avenue. However, current compressive sensing techniques generally
involve highly specialised and expensive components with the results being re-
constituted using time consuming and computationally demanding algorithms
rendering them difficult to apply to practical real-world problems.

In this paper we are particularly interested in exploiting spatiotemporal
redundancy and the low latency control offered by close-to-sensor processing
through the use of non-linear visual sampling and piecewise visual process-
ing. By exploiting spatiotemporal redundancy, high speed imaging can be ac-
complished without increasing bandwidth while reducing errors introduced by
temporal quantization. Low latency enables software pipelines that can be switched
so as to adapt to changes in visual input and be posed as a functional visual
sampling problem. The proposed system and associated algorithms are strictly
real-time in the sense that the capture and image processing relationship is di-
rectly linked and interdependent. An advantage of the proposed systems is that
a broad range of traditionally hard or impossible vision based processing tasks
can be addressed within a novel, cost and energy efficient framework. We pro-
pose a highly programmable visual sampling approach for application specific
imaging pipelines (ASIP), that can provide output for machine vision systems
as well as human observers.

1.1 Hardware system

Central to the system design is the XMOS microprocessor and the ability to re-
program image sensor parameters with very low latency. The processor allows
a direct connection to an image sensor, has no operating system, does not use
interrupts and supports concurrent threads within a parallel architecture. The
XMOS1 XCore is a multi-threaded processing component with instruction set
support for communication, I/O and timing. Thread execution is deterministic
and the time taken to execute a sequence of instructions can be accurately
predicted. This makes it possible for software executing on an XCore to perform
many functions normally performed by hardware, especially DSP and I/O.

To investigate the exploitation of spatiotemporal redundancy via piecewise
visual processing a development board has been designed and built. Figure 1
shows the layout of the latest visual processing system. The design is such that
pixel information is read in from an image sensor a one end of the pipeline and

1 www.xmos.com
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then processed into higher and higher representations as data passes through
the system. Communications via ethernet and RAM is available at the far end
of the pipeline. The pipeline can be configured in software and feedback to the
image sensor control thread can be provided at any stage of processing. It should
be noted that the original sampled pixel information need never be lost and in
the simplest configuration the system behaves as a standard camera. With nine
xcores in total 4500MIPS of processing across 36 concurrent threads is available
for processing. XLinks provide fast inter core bi-directional communications and
extensive GPIO is available.
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Fig. 1. Block diagram for the latest hardware design. It consists of four dual core
and a single core processors, 128MB SDRAM, ethernet phy, approximately ten smaller
chips (flash, buffers, oscillator, reset supervisors, etc), one FFC connector for the image
sensor (H5 and H7), one FPC connector for the LCD (H6), male and female 16 pin IDC
headers for XLinks (H1 and H2). XLinks enable multiple boards to be connected with
each other and have a bandwidth of 320Mb/s. XLinks are also what form the backbone
of the pipeline connecting the processor in series from sensor input at L2D to ethernet
and RAM on L2A and L1 respectfully. Extensive GPIO is available on header H4.

Figure 2 shows an advanced system layout that could be implemented by
the design in figure 1. For the work described in this paper less elaborate sub-
system designs have been used. The minimal configuration consists of an image
sensor connected to an XMOS processor and software running on a single xcore;
one thread being used to read in pixels and control the sensor and a further
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two threads to run a UDP ethernet transmitter. The architecture is highly pro-
grammable; if several xcores are linked a wide range of processing and feedback
designs can be implemented.

The underlying imaging used in this paper is, rather than capture an entire
image and then process the pixels at a standard frame rate, regions of interest
(ROI) are captured and processed at high frame rates. An advantage gained
using this approach is that an ROI can be processed in the time it takes to
expose the next ROI. The key advantage of this approach is that areas of an
image that have interesting changes occurring in then can be sampled more often
than in image areas where no changes are occurring. Throughout this paper the
pixel depth was set to 8 bits and ROI were set to 64 by 40 pixels, the sensor
resolution was set to 640 by 480 pixels and 2 by 2 pixel binning was used to
give an effective image resolution of 320 by 240 pixels. Each xcore has 64KB of
on chip memory, all of the follow experiments use only this memory and were
carried out using two quad-core XMOS processors.

Image sensor

Early
Processing

Sensor
Control

Multi

Core

Higher

Level

Processing
128MB
RAM

GPIO

Host
PC

Pan
Tilt

Focus
etc.

XLink inter-board connection

Ethernet

Fig. 2. A system diagram for a fully functioning processing pipeline. Early processing
and sensor control execute in separate dedicated threads close to the sensor. Higher
level processing and communications occurs in many threads over several cores and
processors.

In the following section two applications for low level visual tracking are
described. They are based on the system layout of figure 2. As such the two
trackers can be seen as running in parallel with each other. If there are no
interesting changes with respect to the millisecond tracker pixel data is passed
on to the higher level Baysian tracker. The Baysian tracker then directs the re-
programming of the image sensor according to what it determines as the next
interesting ROI to sample. However, if the millisecond tracker does detect pixels
that are interesting to it, it now overrides higher level processing and proceeds
of its own accord. When the millisecond tracker no longer detects interesting
changes control of the sensor re-programming is handed back to the higher level
processing system. These two application are now described in more detail.
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1.2 Experiments and Results

After initialization the system proceeds by repeating the following; program the
ROI position on the sensor, exposing the ROI, read in ROI pixels from sensor,
process ROI pixels. After a short period of time temporal differences can be
computed, i.e. the difference between two spatially coherent but temporally offset
ROI. This temporal differencing provides the basis for low level event detection
and tracking. The sensor can be run in two modes; free running or triggered.
The design in figure 1 allows for both. However, the hardware used in this paper
could only function in free running mode. To understand the performance and
limitation of the system the sensor was run at full speed, table 1 describes the
low level timings and identifies when and how processor cycles are being used.

Frame Data Frame Frame
Grab Send Update Delay

FPS

42384 2042 46480 61296 964

42384 a 2042 32544 61296 964

42384 b 32 32538 61296 964

42384 c 32 4682 9455 1928

42384 d 32 34 9455 1928

Table 1. Timing information in CPU cycles at 100MHz with frame and row delay at
zero and sensor clock at 25MHz. One frame is dropped in the first three rows with
overall frame time being ∼ 103000 cycles (frame grab plus frame delay, 964fps). The
time between row read-ins is 816 cycles.

a No display window update. OK if display columns remain constant.
b No data send.
c No window update, with display window update.
d No update at all.

In table 1 timing information in CPU cycles at 100MHz with frame and row
delay at zero and sensor clock at 25MHz is given. The order of processing is as
follows; the frame ready pin is pulled high (this is when timing starts), pixels
are read in on a line by line basis, the pixel data is transmitted to the ethernet
transmitter thread, the ROI position is updated via I2C and the next exposure
begins. This cycle is repeated over the whole sensor surface, returning back to
(0, 0) after each 320 by 240 composite image is read if the sensor windows are
updated. From table 1 it is clear that transmitting the pixel data on to the next
thread takes roughly two thousand clock cycles. The display window is the sensor
width by ROI height region that the sensor exposes and the window update is
the region of pixels that the sensor reads out. The time it takes to update the
display window does not effect the FPS value, however updating the read out
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window involves programming over twice as many registers. Updating the read
out window with or without updating the display window takes longer than the
exposure time, consequently a whole frame is dropped before the frame ready
pin is pulled high. With no window updates and no data send the absolute
performance is demonstrated; it take 42384 cycles to read in the pixel data
and 9455 cycles to expose the sensor giving an absolute frame rate of 1928FPS
(100000000/(42384 + 9455)). If the sensor windowing updates take less than the
exposure time then a frame is not dropped.

Millisecond tracker The above timings are with respect to a single thread
running at 100MHz and with the delay between rows read-ins (816 cycles) there
remain roughly 50000 cycles for processing the 64 by 40 ROI. To perform single
ROI low level tracking a background model is built for each incoming ROI. This
consists of two histograms, one for the maximum values of each row and one for
the maximum of each column. If a single peak over a certain threshold exists a
point of interested is considered as detected. If in the next ROI a similar point
exists tracking begins and the x and y offsets between the two peaks are used
to initialize a predictive tracker. The mean value of the previous and current
prediction is used to estimate where the point in the next ROI will be. The
position of the ROI on the sensor is updated and the process is iterated until
the interest point is lost. Figure 3 show the laser point stimulus. The motion
is so fast that at 30fps the light is smeared across the exposures. In figure 4
some example frames from the tracking result are shown, behind the text there
is a bright point light. It should be noted that there is not a direct one to one
match of fields of view or temporal synchronization between the images shown
in Figures 3 and 4 as the different sensors are in different positions and are not
fully aligned.

Fig. 3. The the laser point stimulus. The motion is so fast that at 30fps the light
is smeared across the exposures. The point light is moved using a servo that has a
maximum rotation speed of 0.16s for 60 degrees.

Baysian tracker If the above criteria for a point of interest is not met, ROI
pixel data is transmitted on to a more complex tracking system. This is now
described in detail. Given an image sensor surface, S, with resolution [X,Y ] a
spatiotemporal volume is described as v(x, y, t) where x ∈ [1, X] and y ∈ [1, Y ]
are the row and column coordinates respectively and t is the temporal coordinate.
A non-overlapping rectangular grid is defined as go ∈ G ≡ S and gs is the set
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Fig. 4. Fast point tracker. Behind the text there is a point light. The top row of numbers
shows the x and y positions within the ROI of the max pixel value. The second row
shows the predeicted position of the point ligth according to the first order tracker.
The third row shows the x value of the predictive tracker.

of all possible rectangles that belong to G. The image sensor is programmed by
registers that can be set, on a sub-image by sub-image basis, enabling selective
sampling of G with variable intervals of t. Initially, over all go we sample sub-
images, s(xs, ys), where xs and ys are the rows and columns of each sub-image,
generally xs < (X/4) and ys < (Y/4). There are No non-overlapping sub-images
in go that cover S and as each sub-image is captured some sparse feature vector
representation, f , of each sub-image is computed. After t(No + 1) samples, sub-
images s1 and sNo+1 are compared to determine if any changes have occurred.
Any metric can be used to determine if and how the samples might have changed,
the simplest is a difference, dgo(1) = (fNo+1−f1). When t(2×No) samples have
been captured a multi-modal distribution of differences across the extent of G
is computed as:

p(d)t=0 = pdf(d) =

∫
go

1√
2π
e−d2/2 (1)

Equation 1 initializes the system; if p(d) = 0, no changes in the pairs of sub-
images have occurred otherwise p(d) is proportional to the magnitude of change
according to the feature description and metric used. p(d) is updated with each
new differential observation, d, in a manner similar to a large class of algorithms
that include sequential Baysian filtering, Kalman filters, particle filters, HMMs,
etc.

p(d)t =

∫
go

1√
2π
e−(p(d)t−1+dt)

2/2 (2)

So far, xs and ys belong to go and δt is constant. The proposed algorithm
now proceeds by re-sampling p(d) such that a new set of sub-images, sgp , where
gp ∈ gs, predict likely visual changes at some time in the future:

(gp, tgp)← p(d) (3)

The algorithm proceeds to iterate over the Equation 2 and 3 effectively track-
ing visual changes that are ‘interesting’ according the feature set description
and difference metric. The above description represents the simplest formula-
tion of the proposed system, more complex formulations easily fit within the
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same framework. Equation 3 provides the basis for the hypothesis of this pa-
per; δtgp and the number of sub-images, sgp are not fixed. There are several
interesting consequences of this; firstly no whole images exist in the traditional
sense, secondly there is no fixed frame rate, sub-images are captured at differ-
ent spatial location and at different temporal rates depending on changes in the
visual scene. An area of a scene where little or no change occurs gets sampled
infrequently and the δt between corresponding temporal sub-images will be rel-
atively large. An area that changes a lot and rapidly will be sample frequently
and δt will tend towards its minimum. In the current and proposed hardware
design min(δt) ≤ 0.5ms. As fewer sub-images are sampled more frequently there
is no significant difference in bandwidth compared to the bandwidth of standard
frames rates and resolutions. It should be noted that the original sampled pixel
information need never be lost and offers the potential for compressive sensing
or other more standard techniques to be implemented further down the pipeline.
Figure 5 shows the overall composition of the higher level tracking system. Fig-
ure 6 shows the individual components of the image processing pipeline and
figure 7 shows selected frames of an object being tracked.

320x240 LCD

Image sensor

Sensor
Grabber
Control

LCD
Driver

Buffer
Manager

Ethernet

LCD
Buffer1

LCD
Buffer2

Image Processing

Multi-core

5.9MHz

25MHz

>30KBs

Host PC UDP/IP server
debug interface

Fig. 5. The composition of the recursive Baysian tracker system. The full system is
shown including a host PC that enables the internal states of the pipeline to be visu-
alised.

1.3 Discussion

The work presented in this paper is in its infancy and the authors expect to be
able to create much more advanced systems as dedicated hardware and higher
quality image sensors become available. We will research and develop multiple
pixel processing pipelines that implement low latency detection and tracking,
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Fig. 6. The the individual components of the image processing pipeline. Each units
represents a single concurrent thread running on a quadcore XMOS processor.

Fig. 7. Adaptive camera tracker, selected frames of an object being tracked. Blue rect-
angles are sensor surface regions that are momentarily being less frequently sampled.

autonomous stereo alignment and higher level vision processing. Multiple spa-
tiotemporal resolutions will be used to direct focus of attention and stabilize vi-
sion algorithms. A major potential of the work is to investigate image sampling
strategies given a particular stimulus and/or task. We will learn the underlying
rules that enable the system to change its mode of operation. We will investigate
autonomous pan, tilt and focus so as to provide continuously changing perspec-
tives of any given visual stimulus. Sensor-processors will be able to change their
line of sight automatically based on low level rules for tasks such as; follow and
focus on the largest moving object in a scene. To understand how a stereo pair
of sensors might automatically configure themselves is particularly interesting,
being able to move and focus independently allows a sensor pair to optically
search over the depths of multiple objects within a scene.

Initial work on an adaptive processing pipeline for low level visual tracking
has been presented, more advanced tasks could include; ‘track a single object at
a frame rate that minimizes motion blur’, ‘track the depth of the most interesting
moving object in the scene’, ‘generate a super resolution snap shot of the most
interesting object within a scene’ or ‘compute optical flow if the whole scene
changes rapidly’, etc. These tasks can be combined such that as a scene changes
the most appropriate mode of pipeline operation is selected.
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1.4 Conclusions

Traditional digital imaging is generally a passive process whereby images of
fixed size and frame rates are captured regardless of what is occurring in the
scene. Understanding motion cues is often made easier by increasing frame rate.
However, this greatly increases the amount of data that needs to be transmitted
and processed. Additionally, reprogramming a cameras image sensor often takes
a number of frames leading to a latency between what an artificial system has
processed and what the next image content might be. We have shown that by
adaptively sampling visual information with respect to what is occurring in a
scene, the performance of low level vision systems can be improved without
increasing bandwidth. By having close-to-sensor processing, image regions can
be captured and processed very rapidly. If spatiotemporal regions have little
useful information in them they can be discarded without further processing.
Spatiotemporal regions that contain ‘interesting’ changes are further processed
to determine what the interesting changes are. Close-to-sensor processing enables
low latency programming of the image sensor such that interesting parts of a
scene are sampled more often than less interesting parts. Using a small set of low
level rules to define what is interesting, early processing proceeds autonomously
with very low latency.

The presented hardware design offers a cost effect high frame rate compu-
tational camera. As image processing is carried out in a piecewise manner a
traditional frame store is not required. This in turn reduces the complexity of
the system. The deterministic and parallel nature of the XMOS architecture
allows for efficient and flexible visual processing pipeline designs.

1.5 Future work

It should be noted that the default behaviour of the proposed system is that of a
standard camera and original pixel information need never be lost. The proposed
system is a computation camera capable a wide range of functionality. Multiple
systems can be connected within the plug and play design to create multi-sensor
systems. A four part system could consist of a monochrome stereo pair, a colour
sensor and an IR sensor all with fast interconnections and 18000MIPS of par-
allel computing resources. With the existing design this would cost less than
1000USD, be the size of a small laptop and interface via a standard ethernet
connection. In future work we plan to build a much smaller and more powerful
design. One motivation for this is to be able to make the system more widely
accessible to the vision and robotics community. Figure 8 shows the latest hard-
ware design and roughly mirrors the layout described in figure 1.
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Fig. 8. The latest hardware design which is based on the block diagram layout de-
scribed in figure 1.
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