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Atmospheric Turbulence Mitigation using Complex
Wavelet-based Fusion

N. Anantrasirichai, Member, IEEE, Alin Achim, Senior Member, IEEE, Nick Kingsbury, Fellow, IEEE,
and David Bull, Fellow, IEEE

Abstract—Restoring a scene distorted by atmospheric turbu-
lence is a challenging problem in video surveillance. The effect,
caused by random, spatially varying, perturbations, makes a
model-based solution difficult and in most cases, impractical.
In this paper, we propose a novel method for mitigating the
effects of atmospheric distortion on observed images, particularly
airborne turbulence which can severely degrade a region of
interest (ROI). In order to extract accurate detail about objects
behind the distorting layer, a simple and efficient frame selection
method is proposed to select informative ROIs only from good-
quality frames. The ROIs in each frame are then registered to
further reduce offsets and distortions. We solve the space-varying
distortion problem using region-level fusion based on the Dual
Tree Complex Wavelet Transform (DT-CWT). Finally, contrast
enhancement is applied. We further propose a learning-based
metric specifically for image quality assessment in the presence
of atmospheric distortion. This is capable of estimating quality
in both full- and no-reference scenarios. The proposed method
is shown to significantly outperform existing methods, provid-
ing enhanced situational awareness in a range of surveillance
scenarios.

Index Terms—image restoration, region-level fusion, DT-CWT,
quality metrics.

I. INTRODUCTION

VARIOUS types of atmospheric distortion can influence
the visual quality of video signals during acquisition.

Typical distortions include fog or haze which reduce contrast,
and atmospheric turbulence due to temperature variations or
aerosols. In situations when the ground is hotter than the air
above it, the air is heated and begins to form horizontal layers.
When the temperature difference between the ground and the
air increases, the thickness of each layer decreases and the
air layers move upwards rapidly, leading to faster and greater
micro-scale changes in the air’s refractive index. This effect
is observed as a change in the interference pattern of the light
refraction. In strong turbulence, not only scintillation, which
produces small-scale intensity fluctuations in the scene [1] and
blurring effects are present in the video imagery, but also a
shearing effect occurs and is perceived as different parts of
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Fig. 1. Block diagram of image restoration for atmospheric turbulence

objects moving in different directions [2]. Examples of this
effect are found at locations such as hot roads and deserts,
as well as in the proximity of hot man-made objects such as
aircraft jet exhausts. This is particularly a problem close to
the ground in hot environments and can combine with other
detrimental effects in long range surveillance applications,
where images can be acquired over distances up to 20km [3].

Turbulence effects in the acquired imagery make it ex-
tremely difficult to interpret information behind the distorted
layer. Hence, there has been significant research activity
attempting to faithfully reconstruct this useful information
using various methods. In practice, the perfect solution is
however impossible, since the problem is ill-posed, despite
being simply expressed with a matrix–vector multiplication as
in Eq. 1.

Iobv = DIidl + ε (1)

Here Iobv and Iidl are vectors containing the observed and
ideal images, respectively. Matrix D represents geometric dis-
tortion and blur, while ε represents noise. Various approaches
have attempted to solve this problem by modelling it as a
point spread function (PSF), in which D is considered as a
convolution matrix, and then employing deconvolution with an
iterative process to estimate Iidl. For the atmospheric distortion
case, the PSF is generally unknown, so blind deconvolution is
employed [4]–[6]. However, the results still exhibit artefacts
since the PSF is usually assumed to be space-invariant.

It is obvious that removal of the visible spatio-temporal
distortions is not possible with a single image. Hence all
methods utilise a set of images to construct one enhanced
image. Current multi-frame methods that address this problem
are illustrated in Fig. 1, where most approaches employ all
functions or a subset of them. The restoration process can be
described by two main routes through the diagram. The first
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(green dashed line) employs an image registration technique
with deformation estimation [7]–[12]. This process attempts to
align objects temporally to solve for small movements of the
camera and temporal variations due to atmospheric refraction.
The image fusion block may optionally be employed (blue
line) in order to combine several aligned images. Then, a
deblurring process is applied to the combined image (this in
itself is challenging since the blur is space-varying).

The other route (red solid line) employs image selection and
fusion, often referred to as ‘lucky region’ techniques [13]–[17].
Those regions of the input frames that have the best quality
in the temporal direction are employed. They are selected
using an image quality metric, which is normally applied
in the spatial frequency domain, to extract the best quality
frames (minimally distorted and least blurred). These are then
combined in an intelligent manner. Recently, this method has
been improved by applying image alignment to those lucky
regions [18]. Again, a deblurring process can be applied as a
final step.

Effective mitigation of atmospheric turbulence is thus an
important yet challenging problem. Model-based solutions
are impractical and blind deconvolution methods suffer from
spatial and temporal variation due to PSF. Furthermore, con-
ventional registration methods are ineffective for large distor-
tion and are also time-consuming. Finally conventional fusion
methods require a large number of frames in order to select
lucky regions. In this paper we introduce a new approach
that overcomes these problems. Fusion is performed in the
Dual Tree Complex Wavelet Transform (DT-CWT) domain
since this provides near shift-invariance and good directional
selectivity [19]. We also propose novel frame selection and
ROI alignment methods for pre-processing region of interest
(ROI) since this will frequently exhibit significant offsets and
distortions between frames. Contrast enhancement is then used
as the final step.

Our proposed algorithm is tested with real distorted se-
quences as well as with simulated sequences. The latter case
includes heat distortion generated from gas burners and hence
ground truth information is available. We also investigate a
quality metric that is suitable for measuring restored image
quality for atmospherically distorted content where genererally
the ground truth is not available. Existing no-reference assess-
ment (NR) methods [20]–[23] are tested with our simulated
sequences. The results however do not show high correlation
with the objective results. Therefore we introduce a new NR
measure based on machine learning.

The remaining part of this paper is organised as follows.
The proposed scheme for mitigating atmospheric distortion
is described in detail in Section II. A test methodology
for objective assessment is introduced in Section III. The
performance of the method is evaluated on a set of images
and is compared with other techniques in Section IV. Finally,
Section V presents the conclusions of the paper.

II. PROPOSED MITIGATION SCHEME

We propose a new fusion method for reducing the effects
of atmospheric turbulence as depicted in Fig. 2. First, before

ROI Alignment
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Fig. 2. Block diagram of the proposed method
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Fig. 3. ROI alignment technique

applying fusion, a subset of selected images or ROIs must
be aligned. Here we introduce a new alignment approach for
distorted images. As randomly distorted images do not provide
identical features, we cannot use conventional methods to find
matching features. Instead, we apply a morphological image
processing technique, namely erosion, to the ROI (or whole
image) based only on the most informative frames. These are
selected using a quality metric based on sharpness, intensity
similarity and ROI size. Then, non-rigid image registration is
applied.

We then employ a region-based scheme to perform fusion
at the feature level. This has advantages over pixel-based
processing since more intelligent semantic fusion rules can
be considered based on actual features in the image, rather
than on single or arbitrary groups of pixels. The fusion is
performed in the Dual Tree Complex Wavelet Transform (DT-
CWT) which employs two different real discrete wavelet
transforms (DWT) to provide the real and imaginary parts
of the CWT. Two fully decimated trees are produced, one
for the odd samples and one for the even samples generated
at the first level. This increases directional selectivity over
the DWT and is able to distinguish between positive and
negative orientations giving six distinct sub-bands at each
level, corresponding to ±15◦, ±45◦, ±75◦. Additionally, the
phase of a DT-CWT coefficient is robust to noise and temporal
intensity variations thereby providing an efficient tool for
removing distorting ripples. Finally, the DT-CWT is near-shift
invariant - an important property for this application. After
fusion, the effect of haze is reduced using locally-adaptive
histogram equalisation.

For convenience, we refer to this algorithm as CLEAR
(Complex waveLEt fusion for Atmospheric tuRbulence). De-
tails of each step in our algorithm are described below.

A. ROI Alignment

Capturing video in the presence of atmospheric turbu-
lence, especially when using high magnification lenses, may
cause the ROI in each frame to become misaligned. The
displacement between the distorted objects in the successive
frames may be too large for conventional image registration,
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(a) (b) (c)

Fig. 4. Average frame of Number Plate sequence by (a) using 200 original
frames, (b) using 50 frames most similar (lowest MSE) to (a), and (c) using
200 frames after applying ROI alignment approach.

using non-rigid deformation, to cope with. Equally, matching
using feature detection is not suitable since strong gradients
within each frame are randomly distorted spatially. Hence, an
approach using morphological image processing is proposed.
The ROI (or ROIs) is manually marked in the first frame.
Then the histogram, generated from the selected ROI and
the surrounding area, is employed to find an Otsu threshold
[24], which is used to convert the image to a binary map. An
erosion process is then applied and the areas connected to the
edge of the sub-image are removed. This step is performed
iteratively until the area near the ROI is isolated. The same
Otsu threshold with the same number of iterations is employed
in other frames. The centre position of each mask is then
computed. If there is more than one isolated area, the area
closest in size and location to the ROI in the first frame is
used. Finally, the centre of the mask in each frame is utilised
to shift the ROI and align it across the set of frames (Fig. 3).
Note that the frames with incorrectly detected ROIs will be
removed in the frame selection process (section II-B). These
frames are generally significantly different from others.

Fig. 4 demonstrates the improvement due to the proposed
ROI alignment approach. The left image represents the average
frame of the whole Number Plate sequence (see B4 in Table
II and Fig. 9) and it reveals high variation due to camera
movement which significantly impacts on image quality more
than the turbulence. A simple alignment method might choose
a subset of the original frames where the inter-frame distance
is not too large. Fig. 4 (b) shows an example of this where,
based on mean square error (MSE), 50 original frames with the
smallest difference from the average image are selected. The
alignment of these frames is consequently improved as shown
by their average image in Fig. 4 (b). However, this truncation
may lead to loss of some useful information. In contrast, the
proposed ROI alignment approach keeps all frames so that
an intelligent approach can be employed later to select the
best subset. The average frame of the whole sequence of our
method is shown in Fig. 4 (c), which is clearer and sharper
than the other two images (Fig. 4 (a) and (b)). This means that
the aligned frames are more stable thereby producing better
image registration results.

B. Frame Selection

In CLEAR, not all frames in the sequence are used to restore
the image since the low quality frames (e.g. the very blurred
ones) would possibly degrade the fused result. A subset of

images are carefully selected using three factors: sharpness,
intensity similarity and detected ROI size.

- Sharpness Gn is one of the most important image quality
factors since it determines the amount of detail an image can
convey. Here, the sharpness parameter Gn is computed from
the summation of the highpass coefficient magnitudes. Inten-
sity gradients can also be used as the result is insignificantly
different from highpass coefficients.

- Intensity similarity Sn is employed to remove outliers.
This operates under the assumption that most frames in the
sequence contain fairly similar areas. Frames with significantly
different content to others are likely to be greatly distorted. To
compute Sn, the average frame of the whole sequence is used
as a reference for calculating the mean square error (MSE)
for frame n. Then MSE−1 represents the similarity of each
frame. It should be noted that this approach is not robust to
illumination changes.

- Detected ROI size An is the total number of pixels
contained in the ROI. This is used because, from observation,
larger ROIs are likely to contain more useful information.

The cost function Cn for frame n is computed using Eq. 2.

Cn =
wGGn

λG + |Gn|
+

wSSn
λS + |Sn|

+
wAAn

λA + |An|
(2)

where wk and λk are the weight and slope control of the factor
k ∈ {G,S,A}, respectively. The sigmoid function is used here
to prevent one factor dominating the others, e.g. a blocking
artefact may cause significantly high values of sharpness, yet
this frame should probably not be included in the selected data
set. The λk is set to equal the mean of factor k so that at the
mean value, its cost value is 0.5. The cost Cn is ranked from
high to low. The Otsu method can then be applied to find how
many frames should be included in the selected set.

C. Image Registration

Registration of non-rigid bodies using the phase-shift prop-
erties of the DT-CWT, as proposed in [25], is employed. This
algorithm is based on phase-based multidimensional volume
registration, which is robust to noise and temporal intensity
variations. Motion estimation is performed iteratively, firstly
by using coarser level complex coefficients to determine large
motion components and then by employing finer level coeffi-
cients to refine the motion field. Fig. 5 shows an improvement
in temporal direction (z) of the Number Plate sequence after
applying the proposed ROI alignment and image registration.

D. Image Fusion

Due to its shift invariance, orientation selectivity and multi-
scale properties, the DT-CWT is widely used in image fusion
where useful information from a number of source images
are selected and combined into a new image [26]–[28]. We
employ a region-based scheme in the DT-CWT domain to
implement image fusion at the feature level. In general, region-
based fusion methods start the process by segmenting N
images individually or jointly [26]–[29]. The segmentation
map Sn of each image is then down sampled by 2 to give a



4

Fig. 5. The yz planes at column x=160 of each frame of Number Plate. Left:
Distorted sequence corresponding to Fig. 4 (a). Top right: Aligned sequence
corresponding to Fig. 4 (c). Bottom right: Registered sequence
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Fig. 6. Region-based image fusion process in CLEAR.

decimated segmentation map Sθ,ln , n ∈ N of level l and sub-
band θ of the DT-CWT representation, where θ ∈ (1, . . . , 6).
If Rn = {rn,1, rn,2, . . . , rn,Tn}, is a list of all Tn regions of
image n, a multi-resolution priority map Pn is generated as

Pn =
{
pn,rn,1 , pn,rn,2 , . . . , pn,rn,Tn

}
(3)

for each region in each image n. Regions are then either
chosen or discarded based on this priority. If Si 6= Sj , a
segmentation map in the fused image, SF , is created such
that SF = S1∪S2∪ . . . SN . Thus, where two regions ri,p and
rj,q from image i and j overlap, both will be split into two
regions, each with the same priority as the original.

The fusion rule, φ, can be defined to select the region
with the maximum priority [26] or could employ a weighted
average of these regions [28] to yield the wavelet coefficients
of the fused image. Finally, the fusion image is obtained
by performing the inverse transform on the fused wavelet
coefficients.

In this paper, we have adapted the fusion technique ex-
plained above to specifically address the air-turbulence prob-
lem. The proposed region-based image fusion employed in
CLEAR is illustrated in Fig. 6. For image segmentaion, we
employ the joint segmentation approach of O’Callaghan and
Bull’s joint morphological spectral unsupervised approach
with a multiscale watershed segmentation from [30] to divide
each image into similar regions, Rn. The lowpass DT-CWT
coefficients of the fused image are simply constructed from the
average of the lowpass values of all registered images, while
the highpass (detail) coefficients are selected according to the
priority P indicating the importance of each region. Here we
employ the average magnitude of highpass coefficients in each

Fig. 7. Left: Region-based fusion result without the mask. Middle: Mask
Bθ,l. Right: Enhanced result with the mask

region, since wavelet coefficients having large absolute values
contain information on the salient features of an image such as
lines and texture. To produce sharper results compared to the
results in [26]–[28], we operate on each sub-band separately.
The priority P of region rθn ∈ Rn in image n is computed with
the highpass coefficients dθ,ln (x, y) of level l and sub-band θ
as shown in Eq. 4, where

∣∣rθn∣∣ is the size of such area used
for normalisation. The fusion rule, φ, selects the region with
maximum priority to construct the fused image.

P (rθn) =
1

|rθn|
∑

∀l,(x,y)∈rθn

∣∣dθ,ln (x, y)
∣∣ (4)

The air-turbulence scenario differs from other image-fusion
problems as the segmentation boundaries which separate in-
homogeneous regions vary significantly from frame to frame
(due to turbulence distortion). To provide the sharpest and
most temporally consistent boundaries for each region, we
use the maximum of DT-CWT coefficient magnitudes over all
frames instead of selecting only one region based on P (rθn).
To each boundary map Bθ,l (constructed from the multiscale
watershed segmentation approach for each subband θ at level
l), the dilation operation with a size of 1 pixel is applied.
A 2D averaging filter is then applied to Bθ,l to prevent
discontinuity after combining neighbouring areas. The DT-
CWT coefficients, dθ,l, of the fused image can be written as
in Eq. 5.

dθ,l = (1−Bθ,l)
∑
R φ(d

θ,l
1 , dθ,l2 , . . . . , dθ,lN )

+ Bθ,lmax(dθ,l1 , dθ,l2 , . . . . , dθ,lN )
(5)

The example of Bθ,l is illustrated in Fig. 7 (Middle). The
improvement can be seen by comparing images in Fig. 7 (Left)
and Fig. 7 (Right). The enhanced result shows sharper edges
without boosting noise in homogeneous areas.

To reduce the distortion due to edge undulation, the phase
of the complex wavelet coefficients plays an important role
since it corresponds to the precise location of directional fea-
tures in its support regions. Hence, the DT-CWT coefficients,
dθ,l(x, y), of the fused image are adjusted with a unit vector
representing the average phase from all N frames used in the
fusion process as shown Eq. 6.

d̃θ,l(x, y) =

∑N
n=1 d

θ,l
n (x, y)∣∣∣∑N

n=1 d
θ,l
n (x, y)

∣∣∣
∣∣dθ,l(x, y)∣∣ (6)

Although the turbulent motion also depends on wind velocity
and direction, a simplifying assumption can be made, in that
pixels deviate from their actual positions with approximately
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Fig. 8. Fusion technique with phase adjustment shows improved result.
Left: Fused image without phase adjustment. Right: Fused image with phase
adjustment.

zero mean and with a quasi-periodic motion [9]. In this case,
the average phase can be used. The improvement of the
fusion result can be seen in Fig. 8. Clearly, the image with
adjusted phases produces straighter lines which, in this case,
are obviously closer to the truth.

To reduce noise, we apply a shrinkage function, As, derived
as Maximum A Posteriori (MAP) estimators as in [31]. Then,
if sharpening is required, a gain Ag > 1 can be applied to
boost highpass-coefficient magnitudes. However, this simple
technique may amplify any remaining noise. Therefore we
enhance only those high-pass coefficients where they form
regions of large magnitude. We create the binary map Qθ,l

for each subband, in which Qθ,l = 1 if
∣∣dθ,l∣∣ > τ , where

τ is a predefined threshold. Isolated pixels are subsequently
removed from Qθ,l. The modified highpass coefficients are
finally rewritten as Eq. 7.

dθ,l =
(
Aθ,lg Qθ,l + (1−Qθ,l)

)
Aθ,ls d̃θ,l (7)

E. Post-Processing

1) Contrast enhancement: In many cases, atmospherically
degraded images also suffer from poor contrast due to severe
haze or fog. In such cases, pre- or post-processing is needed to
improve image quality. Numerous techniques have been pro-
posed for haze reduction using single images [32], [33]. Here
we employ a simple and fast method using contrast limited
adaptive histogram equalisation (CLAHE) [34]. The method
enhances intensity locally, so it is suitable for applications
which consider the ROI and its information content.

2) Other possible enhancements: Generally the embedded
parameter Ag in our approach produces sharp results; however,
in cases which are out-of-focus or which lack a ‘lucky region’,
post-processing may be required to further sharpen the images.
A number of sharpening methods exist, such as [35], [36].
However, if the constituent images are very poor, it is almost
impossible to obtain a sharp result. Moreover, it may exhibit
a halo effect due to over sharpening.

III. QUALITY ASSESSMENT

Image quality assessment is used to measure perceived
image degradation, typically compared to an ideal or perfect
image. This is important when assessing the performance of
individual systems or for comparing different solutions. Image
quality metrics can be classified according to the availability

of a reference (distortion-free) image, with which the distorted
image is to be compared. Most existing approaches are classed
as full-reference (FR), meaning that a complete reference
image is available. Example FR methods include Peak Signal
to Noise Ratio (PSNR), Multiscale Structural Similarity (MS-
SSIM) [37], Visual Signal to Noise Ratio (VSNR) [38] and
Perception-based Image Model (PIM) [39]. These metrics are
employed for evaluating the performance of the proposed
method in Section IV-A and IV-B4.

When a reference is not available, as is often the case for
heat haze reduction, quality assessment becomes challenging,
and is referred to as no-reference (NR) or blind quality
assessment. This is described in the following section.

A. No-Reference Image Quality Assessment

The JPEG quality score was one of the first NR quality
assessment methods introduced. It attempts to align image
quality with HVS perception by characterising blockiness
and blurring [20]. Subsequently, the JPEG2000 (JP2K) score
was proposed for blind assessment of images compressed by
wavelet based coding [21]. The Anisotropic Quality Index
(AQI) is another NR metric based on measuring the variance of
the expected entropy of a given image in a set of predefined
directions [22]. Recently, the combination of five distortion
types, namely JPEG, JPEG2000, white noise, Gaussian blur
and fast fading, were used in the Blind Image Quality Index
(BIQI) [23].

B. Proposed NR Method for Atmospheric Distortion

The methods described in section III-A do not work well
with atmospheric distortion, since they are usually based on
prior knowledge of the distortion characteristics and none
are derived from spatially varying distortions. In this paper,
we therefore introduce a new blind image quality assessment
metric specifically for this scenario. We employ support vector
regression (SVR) [40] to model and predict image quality
scores using the features listed in Table I. There are three
groups of features:

- Individual scale The magnitude of highpass coefficients
relate to details and sharpness of the image, while the phase
can be linked to edge information. We therefore employ the
mean and variance of both values to compute the feature
vectors at each scale level. We decompose the image into 3
levels using the DT-CWT.

- Inter-scale Weighted mean and variance at level l are
computed using the magnitudes of the next coarse level to
calculate a weight as shown in Eq. 8. Here d̂θ,l ∈ D̂l is
the upsampled version of dθ,l by 2 so that d̂θ,l has the same
size as dθ,l−1. The weighted mean is computed as shown in
Eq. 9, where κθ,l is the magnitude or the phase of complex
coefficient dθ,l. The weighted variance is calculated from
all κθ,l(x, y) that have wθ,l(x, y) > 0.1. This follows the
assumption that the coefficients adjacent to strong edges (high
|dθ,l|) are more important, since the distortions in those areas
affect human perception more than others. Moreover, moderate
atmospheric turbulence consistently manifests itself as clearly
visible ripples along object edges.
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TABLE I
FEATURES FOR MODELLING THE QUALITY OF THE IMAGES DISTORTED BY

ATMOSPHERIC TURBULENCE

Features # dimensions
Individual scale ( 3 scales)
Mean and variance of magnitude of CWT coefficients 6
Mean and variance of phase of CWT coefficients 6
Inter-scale
Weighted mean and variance of magnitude 4
Weighted mean and variance of phase 4
Entropy of phase around high magnitude of coarser scale 2
Existing NR methods
JPEG, JP2K, AQI, BIQI scores 4

wθ,l(x, y) =

∣∣∣d̂θ,l+1(x, y)
∣∣∣∑

∀θ,(x,y)

∣∣∣d̂θ,l+1(x, y)
∣∣∣ (8)

Slκ =
∑
∀θ,(x,y)

wθ,l(x, y) · κθ,l(x, y) (9)

We also utilise entropy to measure the randomness of the
phase in the vicinity of strong edges, since a higher phase
randomness can imply more edge-waviness. We employ the
weighted average formula in Eq. 8 and 9 to compute entropy
features. Here κθ,l(x, y) represents local entropy at position
(x, y) calculated in a 5-by-5 neighbourhood.

- Existing NR methods Existing NR scores are also
included in the regression to model image quality, since these
have been developed for, and generally work well for, general
natural images.

The SVR parameters are selected by cross validation. As the
number of features is not large, principal component analysis
is not required for dimensionality reduction. Instead, to find the
best features for regression, different combinations of features
were tested. We found that the combination including all
features performs best. We refer to this new metric as QSVR.

IV. RESULTS AND DISCUSSIONS

First, we examine which NR methods (section III-A) are
suitable for the turbulence case. Measurement values are
compared with the chosen FR methods (PSNR, MS-SSIM,
VSNR and PIM). Then the selected metrics are used to assess
the results of our proposed atmospheric turbulence mitigation
and to compare with existing methods.

A. Quality Metric Selection

We generated a number of image sequences containing
objects distorted by turbulence using 8 gas hobs. All sequences
were acquired with a Canon EOS-1D Mark IV camera with
105mm lens. The distance between the nearest gas hob and
the camera was 1m, while the objects were 3.5m away from
the camera. The space between each gas hob was 30cm.
The flow of gas created temperature gradients leading to
distortions in the scene. We captured 8 sequences containing
different objects, including faces, common objects and text.
The distortions in each video were varied by altering the

A1. Books A2. Barcode A3. Back car A4. Faces

A5. Boxes A6. Plant A7. Front Car A8. Toys

(a) Simulated datasets (A1-A8)

B2. Hot RoadB1. Hill House

B4. Number Plate B6. MirageB5. Monument

B3. Cold Car

(b) Real datasets without ground truth (B1-B6)

Fig. 9. Distorted sequences. (a) Simulated datasets generated from gas
burners. (b) Real datasets.

gas flow to produce three classes referred to as low, medium
and high distortion with 100 frames each. Frames from each
sequence are shown in Fig. 9 (a) and were used to investigate
the performance of the NR methods.

The data for each sequence was divided randomly into
training and validation sets. As subjective scores for these
sequences do not exist, we attempt to find the NR metric
that achieves the highest correlation with the FR scores. The
values of the FR and the NR approaches are computed and
normalised so that the measured qualities span 0 and 1 for
better comparison. The performance of the NR methods is
also assessed according to the correlation with the average
of the FR scores. Fig. 10 shows the average correlation
value for the 8 sequences using three statistical parameters:
Linear Correlation Coefficient (LCC), Spearman Rank Order
Correlations Coefficient (SROCC) and Root Mean Squared
Error (RMSE). It can be concluded that only JP2K, AQI and
our QSVR are suitable for the air turbulence problem.

The JPEG method is not well matched to our problem
since it emphasises blocking artefacts. BIQI is also based on
distortions present in compressed data rather than atmospheric
distortions. It can be clearly seen from Fig. 10 that QSVR
outperforms all other NR methods.

B. Results for Static Scenes

CLEAR has been tested using the three datasets summarised
in Table II. The first set (A1-A8) contains the simulated data
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Fig. 10. Correlation comparison between NR methods

TABLE II
DISTORTED SEQUENCES

type # name colour type resolution # frames

Simulated
datasets

A1 Books RGB 1024×1024 100
A2 Barcode RGB 512×256 100
A3 Back Car RGB 256×256 100
A4 Faces RGB 512×512 100
A5 Boxes RGB 320×240 100
A6 Plant RGB 512×512 100
A7 Front Car RGB 512×512 100
A8 Toys RGB 1200×800 100

Real datasets
without

ground truth

B1 Hill House grey 512×512 75
B2 Hot Road grey 320×240 175
B3 Cold Car RGB 720×576 75
B4 Number Plate RGB 320×240 200
B5 Monument RGB 512×512 100
B6 Mirage RGB 256×256 50

Real datasets
with ground

truth [10]

C1 Chimney grey 237×237 100
C2 Building grey 237×237 100
C3 Books grey 109×109 100

Note that sequences B5 and B6 can be downloaded from www.bristol.ac.uk/vi-lab.

described in section IV-A (Fig. 9 (a)), while the other two
datasets include real effects of turbulence in long range imag-
ing. These real datasets have been captured without ground
truth (B1-B6) and with ground truth (C1-C3) as shown in Fig.
9 (b) and Fig. 14 (first row), respectively. The distance between
object and camera corresponding to B2-B6 is approximately
500m, 760m, 200m, 1.5km and 200m, respectively. The ROIs
in the sequences B1 (house) and B5 (monument) were on the
hill where there was a valley between the objects and camera,
while ROIs of other sequences were about 50cm - 1.5m from
the ground. Sequence B3 was captured in cold conditions,
while the rest were shot in hot weather. Sequences B5 and B6
were collected by one of the authors using a Canon EOS-1D
Mark IV camera with 400mm lens at a temperature of 46oC
in dry desert conditions.

In the case of colour sequences, the images are converted
into YCbCr colour space and only the greyscale channel (Y)
is processed. The output colour channels (Cb and Cr) are
generated using the average values of all selected registered
frames. This simple technique can be applied successfully
because the distortions of the colours have less influence
on human vision perception. At the end of the process, the
greyscale fusion result is combined with the colour channels
and converted back to the original colour space.

The parameters used in our experiments are as follows.
The DT-CWT is applied with 3 or 4 decomposition levels

TABLE III
ASSESSMENT OF EACH STEP OF CLEAR

sequence metrics average ROI Frame Regis− Fusion CLAHEoriginal Align Select tration
Cold
Car

JP2K 41.57 49.08 52.12 52.74 69.24 69.93
QSVR 39.25 39.54 39.71 39.86 43.54 43.70

Number
Plate

JP2K 42.35 51.35 51.60 55.29 78.02 78.49
QSVR 32.17 39.96 40.21 40.23 42.87 43.15

when the image resolution is smaller or larger than 128× 128
pixels, respectively. The weights for the frame selection wG,
wS and wA are set to 1. The value τ for cleaning the map
Qθ,l is individually set for each subband in each level to
τθ,l = |d|

θ,l
+ 0.5 σθ,l, where |d|

θ,l
and σθ,l are the mean

and the standard deviation of the magnitude of the highpass
subband. The gains Aθ,lg are equal for each subband at the
same level and are 2.5, 1.8, 1.2 and 1 for l = 1, 2, 3 and 4,
respectively. For CLAHE, a window of 8×8 pixels is used to
compute local histograms which are clipped at 1%.

1) Relative Contribution of Each Stage in CLEAR: To
better understand why CLEAR produces excellent results, we
have analysed the contribution of each stage in the algorithm.
The results for 2 sequences, Cold Car and Number Plate, are
shown in Table III. This presents the JP2K and QSVR metrics
for each stage in the algorithm cumulatively. The results of
ROI alignment, frame selection and registration stages are
obtained from the average frame. As it is clearly seen, the
fusion stage makes a major contribution toward our method’s
performance.

2) Simulated datasets: The sequences generated with gas
burner turbulence (Fig. 9 (a)) are used to compare the perfor-
mance of CLEAR with that of Shan’s Blind Deconvolution
(BD) [41] and with the space-variant overlap-add method
(SVOLA) by Hirsch et al. [10]. In this case, an FR image qual-
ity assessment can be used. Fig. 11 shows the performance of
the proposed scheme, BD and SVOLA applied to the Toys and
Plant sequences. The blind quality assessment metrics (SVR
and AQI) are also computed to demonstrate the correlation
between FR and NR methods.

3) Real datasets without ground truth: Six sequences, Fig.
9 B1-B6, that exhibit significant turbulence distortions are
employed in this trial. It should be noted that, since the
Number Plate, Mirage and Monument sequences show a
significant shift of the ROI between frames, we also artificially
apply spatial shifts of between 1-20 pixels randomly to the
other sequences. For comparisons with BD and SVOLA, it is
important to note that these two methods have also benefitted
from, the ROI alignment, frame selection and registration
methods used in CLEAR. If BD and SVOLA are applied
without this, their results are significantly inferior. Despite this
benefit, the reconstructed images in Fig. 12 and Fig. 13 show
that CLEAR can restore better detail and more easily readable
text.

The objective results shown in Table IV support the sub-
jective results. The proposed fusion approach achieves better
JP2K, AQI and QSVR scores for all distorted sequences,
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Fig. 11. Performance comparison between SVOLA and CLEAR using: Left:
FR methods, Right: NR methods.

apart from Number Plate where the AQI value of SVOLA is
slightly better (probably insignificant: 0.003 ≈ 0.092 %) than
CLEAR. However, referring to Fig.12 the subjective result of
the Number Plate using the proposed approach clearly reveals
more readable numbers. It should be noted that this sequence
is highly distorted and the number on the plate is impossible
to read in any single frame. It should be further noted that the
quality values calculated from the whole frame are slightly
different from those in Table IV, which relate solely to the
ROI.

The subjective results clearly show that the CLEAR algo-
rithm removes atmospheric distortion more efficiently than the
other approaches. Shan’s BD is inefficient for the sequences
degraded by spatially-varying blur since the PSF is assumed
to be similar for the entire image, while our method processes
sets of homogeneous regions separately. Shan’s method also
takes four times longer to process than CLEAR mainly due to
PSF estimation. SVOLA subdivides an image into overlapped
regions and estimates the PSF separately; as a result, it
provides better results compared to Shan’s method. However,
the computation time is even longer and the results are not as
sharp as the proposed method. In addition, prior knowledge
of PSF size is required for both previous methods.

4) Real datasets with ground truth: Three sequences,
Chimney, Books and Building have been made available with
their ground truth by Hirsch et al. [10]. Also, the results from
their approach are available. The results are also compared to
another atmospheric turbulence removal approach from Zhu
[12]. The subjective and objective results for these sequences
are shown in Fig. 14 and Table V, respectively. The PSNR,
MS-SSIM, VSNR and PIM values reveal that CLEAR out-
performs SVOLA and Zhu’s approach, but the VIF value is
highest for SVOLA. Interestingly, the subjective results shown
in Fig. 14 reveal that our results are the most similar to the
ground truth. The results of Zhu’s fusion appear sharpened
around structural features, but lose texture in homogenous
areas thereby yielding the lowest objective scores.

Fig. 12. Reconstructed images from real sequences (B1-B5). Left:
Shan’s BD [41]. Middle: SVOLA [10]. Right: CLEAR. It should be
noted that SVOLA and BD results have benefited from CLEAR’s
selection and registration processes.

C. Results for Sequences Containing Moving Objects

This section shows the potential of the proposed algorithm
when applied to videos containing moving objects. Here, part
of the moving object is manually selected as the ROI. A
number of forward and backward frames are stored in a refer-
ence buffer. The forward frames are the future video frames,
while the backward frames are the reconstructed frames using
the proposed fusion process. The ROI of all frames in the
buffer are aligned to the ROI of the current frame using the
proposed ROI alignment method. Then, they are registered to
their average. Subsequently, these registered frames are fused
using the proposed method to remove distortions. Using the
reconstructed frames as one of the references can lead to
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Fig. 13. Mirage sequence (B6). Top-left: Magnified number plates of
(from top) original frame, SVOLA, CLEAR and undistorted frames
captured at closer distance). Top-right: Original image. Bottom-left:
Result of SVOLA. Bottom-right: Result of CLEAR. Again it should
be noted that BD and SVOLA results use CLEAR’s preprocessing.

TABLE IV
OBJECTIVE RESULTS USING NR METHODS

sequence method JPEG BIQI JP2K AQI QSVR

Hill House
BD 10.07 2.22 52.61 2.13 54.32

SVOLA 11.15 2.04 51.35 2.22 56.12
CLEAR 11.05 2.24 61.71 2.99 56.88

Hot Road
BD 8.11 2.42 78.70 2.41 47.77

SVOLA 9.25 4.09 78.43 2.56 47.81
CLEAR 10.04 3.28 78.77 3.18 48.72

Cold Car
BD 9.02 1.87 58.40 0.16 42.26

SVOLA 9.95 2.04 59.85 0.09 42.62
CLEAR 10.44 2.57 69.93 1.90 43.70

Number
Plate

BD 8.21 3.62 68.62 2.00 42.29
SVOLA 8.99 3.21 58.79 3.26 42.75
CLEAR 10.36 3.25 78.49 3.26 43.15

Mirage
BD 7.91 2.59 65.32 8.12 41.73

SVOLA 10.64 3.99 66.83 9.39 42.49
CLEAR 10.83 4.20 73.83 11.77 43.19

Monument
BD 8.65 2.47 72.84 0.88 45.23

SVOLA 9.14 3.39 79.65 1.94 47.81
CLEAR 9.93 3.32 79.98 3.44 48.13

error accumulation over long time periods. Therefore, periodic
refresh of the reference buffer is required. Fig. 15 shows
parts of the Wine sequence where the wine bottle is moved
from the right to the left of the display over time. The
online process employs two forward and two backward frames
and the reference buffer is cleared every 20 frames. The
results clearly show improvement in sharpness and motion
smoothness. However, we acknowledge that more intelligent
algorithms could be developed to remove motion jitter and
to indicate the static background so that more reference

C1.Chimney C2.Building C3.Books

Fig. 14. Hirsch’s Data (C1-C3). Top-Bottom: Original frame, Ground
truth, SVOLA’s results, ZHU’s results and CLEAR’s results

frames can be used to produce better results on such areas.
Furthermore, alternative methods such as MOVIE [42] and
AVM [39] may be more appropriate for quality assessment.

V. CONCLUSIONS

This paper has introduced a new method for mitigating
atmospheric distortion in long-range surveillance imaging.
Significant improvements in image quality are achieved using
region-based fusion in the DT-CWT domain. This is combined
with a new alignment method and cost function for frame
selection to pre-process the distorted sequence. The process
is completed with local contrast enhancement to reduce haze
interference. CLEAR offers class-leading performance for off-
line extraction of enhanced static imagery and has the potential
to achieve high performance for on-line mitigation for full
motion video – this is topic of ongoing research. Experiments
with real data show superior performance compared with
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TABLE V
OBJECTIVE RESULTS USING FR METHODS

sequence method PSNR MS-SSIM VSNR VIF PIM

Chimney
SVOLA 31.93 0.96 11.19 0.21 35.25

ZHU 28.90 0.95 10.60 0.13 33.29
CLEAR 32.02 0.96 12.98 0.19 35.58

Building
SVOLA 24.88 0.88 6.52 0.33 31.03

ZHU 23.83 0.87 5.89 0.24 30.47
CLEAR 25.18 0.91 6.95 0.26 31.34

Books
SVOLA 19.39 0.83 8.61 0.43 32.11

ZHU 20.34 0.85 8.59 0.35 32.12
CLEAR 25.36 0.94 10.58 0.39 32.57

y

x

x

z

y=200 y=100

Fig. 15. The Wine sequence. Top: from distorted video. Bottom: from
reconstructed video. Left: the ROI of the 5th frame showing the barcode area
which includes the row (y) of the middle pictures. The xz planes (z=temporal
direction). Middle: at y=200. Right: at y=100.

existing methods. Using simulated data, full reference metrics
clearly show the superiority of this method. We have also
introduced a new metric, QSVR, based on support vector
regression for blindly assessing image quality. This learning-
based method shows higher correlation with the FR methods
than existing NR methods.
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