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Abstract 

 As GaN power transistor technology matures it is increasingly important to 

understand any links between substrate “quality”, epi-layer growth and electrical 

characteristics of the 2-dimensional electron gas (2DEG) which forms the active part 

of devices. We present a study which makes use of full wafer mapping techniques to 

examine these relationships. Substrate off-cut is shown to be an important parameter 

in controlling the uniformity of GaN HFET device layers on SiC substrates. 
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1 Introduction 
 
 AlGaN/GaN based microwave hetero-junction field-effect transistors (HFETs) 

have the potential to give dramatic improvements in power applications compared to 

existing GaAs devices. Such devices have been demonstrated by many groups with 

radio frequency (rf) power densities of 5W/mm and above [1]. Over the last few years 

the maturity of GaN HFET technology has increased and commercial devices are 

now available from several US and Japanese suppliers [2,3,4,5]. A significant 

amount of research effort is therefore now being concentrated on the refinement of 

the AlGaN/GaN growth process in order to deliver consistent material properties for 

the production of transistor devices to well defined specification. 

Due to the lack of large area single crystal GaN substrates and the thermal 

requirements of devices with high power densities, the substrate of choice for the 

growth of high power GaN devices is semi-insulating SiC. As a result of the 3.5% 

lattice mismatch at the SiC/GaN hetero-epitaxial interface, a high threading 

dislocation density of around 109 to 1010 cm-2 is reported in most HFET devices [6]. 

Despite these high defect densities, devices with high performance and reliability 

have been produced. However, due to the relative immaturity and technical 

challenges of growing semi-insulating SiC compared to other common 

semiconductor substrates, in addition to threading dislocations, a significant quantity 

of defects may be present in the substrate which are transferred into the active parts 

of the device layer. For example, it is well known that micropipes, which represent 

large screw dislocations with open cores, are present in SiC substrates and are 

transferred into the GaN epi-layer during growth [7,8]. Other defects found in SiC 

substrates include graphite inclusions, grain boundaries and poly-type inclusions. 

One of the significant issues for a reliable GaN technology is a clear understanding of 

the link between substrate properties, GaN growth parameters and their influence on 

the final device performance and reliability. In this article we report results of a study 

of GaN HFETs grown on to 50mm SiC substrates which attempts to correlate 
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substrate defects with properties of the 2-Dimensional Electron Gas (2DEG) which 

forms the active channel of HFET devices. 

 

1.1 Experimental Details 

The epi-layers studied were grown by MOCVD in a Thomas-Swan close 

coupled shower head reactor as described elsewhere [9]. The basic layer structure 

consists of a 1.9m Fe doped GaN buffer layer and a 25nm AlGaN barrier layer with 

an Al fraction of approximately 0.25. Full wafer images shown in this article were 

collected using a proprietary full wafer imaging system  which has been developed by 

the authors. This system allows optical imaging of complete wafers before and after 

growth with a lateral resolution of about 10m and a height resolution of about 10nm. 

Since complete wafers are imaged on the same system before and after growth, 

tracking of individual defects from the substrate to the epi-layer is possible. Atomic 

Force Microscopy (AFM) data was collected on a Digital Instruments Nanoscope 

Dimension III AFM in tapping mode. 

 

2. Results and Discussion 

Figure 1a) shows a crossed polariser image of a 50mm diameter SiC 

substrate collected on the whole wafer imaging system.  The contrast in this image is 

due to birefringence in the SiC caused by strain along the crystal c-axis [10]. This 

strain results in rotation of the polarised light as it is transmitted through the substrate 

and therefore provides a map of the strain fields around crystallographic defects such 

as micropipes and crystal tilt boundaries. For the particular substrate shown, it can 

be seen that the crystalline quality varies significantly across the wafer. To the right 

hand side of figure 1a) there is a high density of crystal defects with the left hand side 

of the image showing evidence of very few defects except at the extreme wafer edge. 

Figure 1b) shows a transmitted light image of the same wafer collected following epi-
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layer growth. (The slight vertical banding and darker crescent on the right of the 

figure are imaging artefacts). In this imaging mode, the GaN epi-layers acts as an 

etalon which results in constructive and destructive interference of the transmitted 

light as the thickness of the epi-layer changes. The image therefore provides a 

relative thickness map of the epi-layer. It can be seen from the brightness (colour) 

changes in figure 1b) that defects present in the substrate have an impact on the epi-

layer growth and induce local changes in the growth rate and therefore total 

thickness of the epi-layer. The transition from dark to light (pink to green) in the 

image represents a change in thickness of about 30nm in the total film thickness of 

1.9m. By comparing Figures 1a) and b) individual features in the crossed polariser 

image of the substrate may be mapped directly onto the features seen after growth. 

Conventional wisdom, would predict that such defects and disruption to the growth 

would have a negative impact on the electrical properties of the 2DEG formed at the 

GaN/AlGaN interface. However, figure 1c) gives a map of sheet resistivity of the 

2DEG measured using a Lehighton contactless resistivity mapper. This resistivity 

map is generated from a 55 point grid measured across the wafer with a 5mm edge 

exclusion zone. Interestingly, the regions of the wafer which show a large density of 

defects in figure 1a) and disturbed growth in figure 1b) have uniform sheet resistivity 

and are at the lower end of the spread in measured resistivity values. This indicates 

that the 2DEG is undisturbed by the strain fields imaged in the crossed polariser 

image. In contrast, an approximately 10% increase in sheet resistivity is seen to the 

left of figure 1c) which correlates with the region of the substrate which is relative free 

of defects in figure 1b). 

 Inspection of figure 1b) at higher resolution reveals a region of islanded 

contrast on the wafer which can be correlated with the region of high Rsheet in figure 

1c). This islanded contrast is shown in figure 2a) which is an enlarged region from 

within the circled area of the wafer in figure 1b). In this enlarged image, the epi-layer 

has small localised height variations which AFM (figure 2b) confirms to be growth 
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islands of about 30m in diameter and about 30nm in height. These islands are 

present all over the circled area in figure 1b). Outside the area circled in figure 1b), 

the epi-layer is much smoother as shown in figure 3 which gives a similarly enlarged 

transmitted light image and AFM data from close to the centre of the wafer.  

Features which have the appearance of scratches can also be seen in figures 

2a) and 3a). These are consistently seen for our epi-layer growth on SiC and are 

believed to be due to sub-surface damage left during the SiC polishing process. As 

for the defects seen in the crossed polariser image shown in figure 1a), these 

disruptions to the crystallography cause small modifications to the local GaN growth 

rate, causing the scratches to be revealed in the transmitted light images after epi-

layer growth. No evidence for an impact on the sheet resistivity of long individual 

scratches or clusters of scratches has been seen in Lehighton resistivity maps, 

although it should be noted that the resolution of the Lehighton instrument is several 

mm and therefore it can not be ruled out that these features do have an effect, but 

the instrument resolution is not sufficient to reveal them. 

The origins of the islanded epi-layer morphology seen in figure 2 are revealed 

by high resolution AFM of the epi-layer surface. Figure 4) shows a series of AFM 

images collected from across the wafer surface. Figure 4a) was collected from the 

left hand side of the wafer shown in figure 1b) and shows the step terrace surface of 

the AlGaN barrier surface. The small pits that are observed in the AFM indicate the 

locations where threading dislocations appear at the epi-layer surface [11].  The step 

terrace structure of this image shows a random step direction with relatively large 

terraces. This is consistent with growth on a very close to on-axis crystal surface 

where the epi-layer grows via the formation of islands due to the limited surface 

diffusion length of add-atoms. The estimated off-cut of the wafer in this region, based 

on the terrace length and step height, is about 0.1 degrees. This is consistent with 

the facet angle for an island 30m in diameter and 30nm high as seen in figure 3b). 
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Figures 4b) and c) show similar AFM images collected from the centre and the right 

hand side of the wafer outside the circled region. In both cases the steps and 

terraces seen in the AFM are approximately vertically aligned and are consistent with 

growth on an off-cut crystal surface where growth proceeds by a step flow 

mechanism. The off-cut estimated from the terrace lengths and step heights 

measured from figures 4b and c are 0.21 degrees and 0.25 degrees respectively. 

These results suggest that the off-cut across the wafer is increasing from left to right. 

X-ray diffraction measurements  (not shown) performed on this and other SiC 

substrates in this batch also confirm that the SiC crystal planes bend across such 

wafers by up to 1.0 degrees. However, bow measurements of the optical surface of 

the wafer suggest that the value of wafer bow is relatively low (6m across the 50mm 

wafer diameter). Therefore these measurements are consistent with an increasing 

off-cut angle across the substrates as shown schematically in figure 5 due to bending 

of the SiC crystal planes. Thus the region of high sheet resistivity seen in figure 1c) 

may be correlated to the islanded growth mode of the GaN on a region of the 

substrate which is very close to on-axis.  

Sheet resistance is related to two different fundamental properties of the 

2DEG, i.e. the sheet carrier density, Ns, and the carrier mobility,, since Rsheet = 

1/Nse where, e, is the electron charge. Thus it is of interest to know which of these 

fundamental properties of the electron gas is affected by the change in growth mode. 

Spot Mercury Capacitance/Voltage (CV) measurements  of carrier density on several 

wafers suggest that the increase in Rsheet for growth on close to on-axis regions of 

substrate are related to reductions in Ns and not changes in carrier mobility.  

 

3. Conclusion 

 In conclusion, we have used full wafer mapping techniques to look at the 

correlation of SiC substrate features and the properties of the 2DEG in AlGaN/GaN 
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HFET structures. There is no direct evidence for an impact of crystallographic defects 

in the SiC affecting the 2DEG, although such defects do locally change the GaN 

growth giving rise to small changes in growth rate and could impact the reliability of 

devices. Instead, variations in substrate off-cut result in significant changes in the 

GaN growth mode. A transition from an island growth mode to a step flow growth 

mode for off-cuts above about 0.1 degrees is seen. This off-cut variation is also 

correlated with changes in the value of Rsheet across individual wafers and from wafer 

to wafer. Mercury CV measurements suggest that these changes in Rsheet arise from 

changes in the carrier density of the 2DEG. At present the origins of the change in 

carrier concentration across the wafer are not known. However it is noted that 

variations in the incorporation of Carbon impurities with substrate off-cut have been 

seen for GaAs during MOCVD growth [12]. As Carbon is a deep acceptor in GaN [13] 

a local increase in Carbon impurities could reduce the charge in the 2DEG. Clearly, 

accurate control of substrate off-cut and substrate crystal plane curvature are 

important parameters in order to achieve a repeatable growth process for the 

production of GaN based HFET devices.  
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Figure Captions 

 

Figure 1 (colour on line) a) Full wafer crossed polariser image of a 50mm SiC 

substrate before growth, b) full wafer transmitted light image of the same wafer after 

epi-layer growth of an HFET structure and c) Lehighton contactless sheet resistivity 

map of this epi-layer with a 5mm edge exclusion zone. The circled area in figure 1b) 

indicates a region of islanded morphology.  

 

Figure 2 (colour on line) a) Enlarged transmitted light image taken from within the 

circled area of figure 1b) and b) typical 60m square AFM image of the AlGaN 

surface in the circled area of figure 1b). The Z-range of figure 2b) is 30nm 

 

Figure 3 (colour on line) a) Enlarged transmitted light image taken from outside the 

circled area of figure 1b) close to the centre of the wafer and b) typical 60m square 

AFM image of the AlGaN surface outside the circled area of figure 1b). The Z-range 

of figure 3b) is 8nm.  

 

Figure 4) (colour on line) 2m square AFM images of the AlGaN surface taken from 

a) the left hand side of figure 1b), i.e. inside the circled area, b) the centre of figure 

1b) and c) the right hand side of figure 1b). The Z-ranges of the images are 3nm, 

5nm and 5nm respectively. 

 

 

Figure 5) schematic diagram of crystal plane bending in the SiC substrate. 
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Figures  
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Figure 2 
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Figure 3 
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Figure 4 
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