
                          Szalai, R., Champneys, A. R., Homer, M. E., O Maoileidigh, D., Kennedy,
H. J., & Cooper, N. P. (2011). On the origins of the compressive cochlear
nonlinearity.

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/on-the-origins-of-the-compressive-cochlear-nonlinearity(6b79f3e4-5d23-48a1-9568-a7658a3a46f7).html
http://research-information.bristol.ac.uk/en/publications/on-the-origins-of-the-compressive-cochlear-nonlinearity(6b79f3e4-5d23-48a1-9568-a7658a3a46f7).html


On the origins of the compressive cochlear nonlinearity

Robert Szalai,a) Alan Champneys, and Martin Homerb)

Department of Engineering Mathematics,

University of Bristol,

UK
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Abstract

Various simple mathematical models of the dynamics of the organ of

Corti in the mammalian cochlea are analysed. The models are assessed

against their ability to explain the compressive nonlinear response of

the basilar membrane. The specific models considered are: phenomeno-

logical Hopf and cusp normal forms, a recently-proposed description

combining active hair-bundle motility and somatic motility, a reduc-

tion thereof, and finally a new model highlighting the importance of

the coupling between the nonlinear transduction current and somatic

motility. The overall conclusion is that neither a Hopf bifurcation nor

cusp bifurcation are necessary for realistic compressive nonlinearity.

Moreover, two physiological models are discussed showing compressive

nonlinearities similar to experimental observations without the need

for tuning near any bifurcation.

PACS numbers: 43.64.Bt, 43.64.Kc
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I. INTRODUCTION

In this paper we will examine different simple local nonlinear mathematical models of the

organ of Corti in the mammalian inner ear (illustrated schematically in Fig. 1), comparing

and contrasting their strengths and weaknesses. The main test we shall apply to the models

is their ability to capture experimentally observed features of the dynamics in response

to a pure tone input of varying intensity. In particular, we are interested in the four key

aspects of the active hearing process proposed by Hudspeth1: significant amplification at low

sound pressure levels (SPL) (down to 0 dB), sharp tuning through a place theory of hearing

where different positions along the cochlea respond to different frequencies, compressive

nonlinearity to reduce 6 magnitudes of SPL variation into 3 magnitudes of basilar membrane

vibration; and spontaneous otoacoustic emissions whereby most ears continuously output

BM

TM OHC

IHC

AN
D

RLHB

FIG. 1. (color online) Schematic diagram of a cross-section through the organ of Corti of the

mammalian cochlea, showing the locations of the basilar membrane (BM), Deiters’ cells (D),

outer hair cells (OHC), the reticular lamina (RL), hair bundles (HB), tectorial membrane

(TM), inner hair cells (IHC) and one auditory nerve (AN) fiber.

a)Electronic address: r.szalai@bristol.ac.uk
b)Electronic address: martin.homer@bristol.ac.uk
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low levels of sound at one or more frequencies.

It is widely held that the active process originates in the outer hair cells (OHC), via

transduction channels in their hair bundles that allow a current to pass, which changes the

somatic membrane potential. This modulation of membrane potential leads, through the

OHC’s somatic motility, to significant changes in the configuration of the organ of Corti. The

motion of the OHC may lead to mechanical amplification of the organ of Corti’s motion.

On the other hand, the active motility of the hair bundles has also been proposed as a

mechanism for mechanical amplification. There is currently debate about which type of

motility is the primary mechanism for amplification. There is some hope that local models

might be able to resolve this debate, and this leads to our interest to examine such models

using the tools of nonlinear dynamical systems.

The rest of this paper is outlined as follows. We begin, in Sec. II by describing in

detail experimental evidence on the function of mammalian OHCs. This includes direct

BM displacement measurement obtained by Rhode2, who examined the chinchilla cochlea

in detail, and the results of Kennedy et al.3 who measured the response of OHC hair bun-

dles to mechanical stimulation. The following four sections then discuss a range of models

that aim to explain this observed behavior. Sections III and IV discuss and analyse two

phenomenological models: one the normal form of a Hopf oscillator, the other the (simpler)

normal form of a cusp bifurcation. In particular, we show that the cusp model obeys the

same 1/3-power compressive nonlinearity as the Hopf oscillator, at least for sufficiently high

input amplitude. Furthermore, we show that the cusp model can show tuning, as the Hopf

model does if it is coupled to a simple linear equation for the BM.

The next three sections consider two physiologically-inspired models. Sec. V examines a

model introduced by Ó Maoiléidigh and Jülicher4 that includes the effects of myosin motor

adaptation of hair bundles in addition to somatic motility. This model is shown to produce

a flatter than 1/3-power response curve at the CF, as seen in Rhode’s data. A bifurcation

analysis reveals that while the unforced version of this model can produce Hopf bifurcations

(and indeed cusps) neither is key to the observed forced response. Section VI introduces
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a modification of the Ó Maoiléidigh and Jülicher model, which only includes transduction

current nonlinearity, but not active hair bundle motility and a novel hypothesis for the

coupling through somatic motility back to the BM position and velocity. This model is also

able to provide a qualitative match to the experimental data, while having a minimal number

of tunable parameters which are physiologically measurable. We also note that this model

can accomodate a Hopf bifurcation, even though it does not include hair bundle motility.

Finally, Sec. VII draws conclusions and suggests avenues for future research.

II. REVIEW OF EXPERIMENTAL EVIDENCE

A typical basilar membrane response, taken from the work of Rhode2, is shown in Fig. 2.

There are several important features to notice from the data. From Fig. 2(a) we see that

the response is the highest at CF for input below 60 dB, it is nearly linear below CF

and the nonlinearity does not vanish with higher forcing frequencies; only the amplitude

diminishes. The nature of the nonlinear compression is also interesting. Previously, based on

early experimental data5, it has been argued that the active process provides a compressive

nonlinearity with a universal 1/3-power law (see Ref. 1 and references therein). That is, the

growth of amplitude at the CF should be uniformly 1/3 for a wide range of input amplitudes

(although linear for very small and very large sound inputs). However, more recent data2

indicates that the compression can be much flatter than 1/3. The data are even consistent

with the possibility of saturation (a zero rate of growth) for certain input levels, that is,

where the BM amplitude would not vary with small variations of the stimulation level.

Figure 3 presents data from Kennedy et al.3 on the nonlinear response of individual

OHC hair bundles of rats. These data were obtained by direct mechanical stimulation of

the hair bundles, from organ of Corti preparations with the tectorial membrane surgically

removed. Again, several interesting aspects emerge from these data. Note, for example

from panel (d), how the bundle exhibits a negative stiffness for moderate sized displacement

provided the stimulation has been applied for more than about 3ms. For both small or large
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FIG. 2. (a) Basilar membrane vibration amplitude against sound pressure level (plot on a

log-log scale) for the chinchilla cochlea at a location corresponding to characteristic frequency

(CF) of 6.6 kHz. Each curve corresponds to a different input frequency, as indicated. (b), (c)

Similar data obtained from different locations with CF’s of 6.1 kHz and 9.1 kHz respectively

with stimulation only at the CF frequency in each case. The straight lines have slope 1

and represent linear behavior. (d) Similar result for a location with CF 6.8 kHz for which

a treatment has been made which (progressively, over the course of an hour) prevents the

function of the active process. Reproduced from Ref. 2 with permission)
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permitting influx of Kþ and Ca2þ to evoke a depolarizing receptor
potential8–11. The MET channels open rapidly but then adapt with a
submillisecond time constant10 similar to that reported in non-
mammalian vertebrates12. In the turtle, fast adaptation reflects
calcium-dependent re-closure of the MET channels, which can in
turn elicit a mechanical reaction that moves the hair bundle13.
However, there is little evidence for a mechanical correlate of
adaptation in mammals.

The mechanical properties of OHC hair bundles in isolated
cochleas of neonatal rats were assayed by applying force stimuli
with a calibrated flexible glass fibre (Fig. 1) and measuring the
ensuing displacement of its image on a photodiode pair14,15.
Excitatory stimuli elicited an MET current with fast onset and
adaptation, the peak amplitude of the current showing sigmoidal
dependence on bundle displacement. Surprisingly, the force–
displacement relationship of the hair bundle did not behave like
that of a simple spring, but was very nonlinear and became
increasingly compliant over the range where the MET channels
were gated (Fig. 2). Furthermore, the nonlinearity developed with a
time course similar to fast adaptation of the MET current. The slow
offsets for the three largest steps (Fig. 2a) had an electrical correlate
in the slow rebound of the MET current, reflecting recovery from
adaptation. In contrast, the displacement of the flexible fibre
when not attached to the bundle was fast, and its amplitude was
proportional to the applied force for movements less than 0.8mm
(Fig. 1). Nonlinear hair bundle mechanics were observed in 12 out
of 15 cells studied. This type of behaviour was first reported in non-
mammalian vertebrates where it was attributed to the ‘gating
compliance’, a decrease in stiffness associated with opening of
the MET channels15,16. Nonlinearities in hair bundle mechanics,
probably of similar origin, have also been seen in the mammalian
cochlea but were not linked to adaptation17.

The results were analysed in terms of the gating-spring model15,
which predicts a relationship between the applied force (FB) and
bundle displacement (X) given by:

FB ¼ XKs 2ApoðXÞþ Fo ð1Þ
where K s is the passive linear stiffness, po is the probability of
opening of the MET channels, and A and Fo are constants. The
negative term in equation (1) signifies an active component in
which channel gating generates a force in the same direction as the

imposed displacement, causing hair bundle stiffness to decrease
with channel opening to reach aminimumwhen po is,0.5 (ref. 15).
Fits of equation (1) to the results deviated from the gating-spring
model in that the constant A increased as adaptation progressed, a
discrepancy evident in the displacement dependence of bundle
stiffness (Fig. 2d). A further difference is that A was much bigger
than predicted by the gating-spring model. In that model, A is the
product of the number of MET channels and the single-channel
gating force, which is less than 30 pN for OHCs (ref. 18), whereas
values 20- to 100-fold larger were needed for the fits in Fig. 2c.
Nevertheless, our results are still consistent with force production
being linked to the probability of opening of the MET channels.
In some OHCs, the force–displacement relationship possessed a

negative slope region (Fig. 2d) similar to that seen in frog hair cells19.
However, in the frog the nonlinearity was associated with channel
activation and was effectively instantaneous; here the nonlinearity
was time dependent and developed with adaptation. In five cells,
more extreme behaviour was observed: for a range of stimuli the
displacement of the end of the flexible fibre attached to the hair
bundle was larger than that of the end cemented to the piezoelectric
device (Fig. 3). Thus the force–displacement relationship became
negative as adaptation progressed, indicating that the hair bundle
was doing work on the fibre. Maximum force generation, estimated
as the difference between steady state and instantaneous force–
displacement plots at fixed displacement, was 517 ^ 96 pN in five
cells.
According to the analysis, force generation by the bundle reflects

events at the level of the MET channel. Consistent with this notion,
experimental manipulations affecting channel gating altered the
force–displacement relationship. One manipulation is lowering
extracellular Ca2þ, which is known to slow and reduce adaptation
in auditory hair cells of both turtle20 and rat10. Similarly, lowering
Ca2þ reversibly reduced the hair bundle mechanical nonlinearity
and slowed its onset (Fig. 4). Altering the external Ca2þ concen-
tration from 1.5 to 0.02mM shifted the po(X) relationship in the

Figure 1 Method of hair bundle stimulation. a, Relationship between the Sylgard bead
and the 5 mm OHC bundle, viewed from the side and from the top of the cell. b, Time
course of stimulus onset: top, the driving voltage to the piezoelectric stack, shaped with an

eight-pole Bessel filter at 1.5 kHz; bottom, the resulting motion of the fibre tip when not

attached to the bundle. The fibre motion had a 10–90% rise time of 0.2ms, and was not

slowed by viscous drag. c, Linearity of fibre motion with the amplitude of the piezoelectric
drive. Slope of fitted line, 1.06 ^ 0.02 (1 s.d.).

Figure 2Mechanical properties of the OHC hair bundle. a, Top; MET currents in a P11 rat
for stimulation with flexible fibre. Also shown are the movements of the fibre end attached

to the piezo (middle) and of the hair bundle (bottom). b, Peak MET current (I ) versus
displacement (X) (data points) fitted with a Boltzmann relation: I/I max ¼ 1/(1 þ exp(2(X–

X o)/X e)), where I max ¼ 0.37 nA, X o ¼ 300 nm and X e ¼ 100 nm. c, Force–
displacement plots at successive times (t ) after peak current: t ¼ 0 (filled circles), 0.07,

0.27, 0.47, 0.67, 3.9, 8 ms (filled triangles). Theoretical fits with equation (1) using

p o(X) ¼ the Boltzmann relation from b and K s ¼ 3mNm21. d, Slope stiffness of the
bundle from differentiating fits in c.

letters to nature
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FIG. 3. Mechanical properties of the OHC hair bundle. (a) MET currents in a P11 rat for

stimulation with flexible fiber (top); also shown are the movements of the fiber end attached

to the piezo (middle) and of the hair bundle (bottom). (b) Peak MET current (f) versus

displacement (data points) fitted with a Boltzmann relation. (c) Force-displacement plots at

successive times (t) after peak current: t = 0 (filled circles), 0.07, 0.27, 0.47, 0.67, 3.9, 8ms

(filled triangles); theoretical fits using the Boltzmann relation from (b). (d) Slope stiffness

of the bundle from differentiating fits in (c). Reproduced from Ref. 3 with permission.

displacements, the force-displacement curve (shown in panel(c)) is approximately linear.

Note also from panel (b) how the nonlinear hair bundle behavior correlates with the current

flowing into the hair cell body. For all but the largest two stimulations the current flow only

occurs as, or shortly after, the bundle moves. During the constantly displaced phase, the

current rapidly resets to approximately zero. Careful consideration of the forces involved

in the stimulation procedure3 leads one to the conclusion that the two largest stimulations
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in Fig. 3(a) are beyond those that would occur in normal hearing. These observations thus

suggest that except for extremely (possibly unphysiologically) large stimulations of the hair

bundle, current flow is more a function of hair bundle velocity than of hair bundle position.

Finally, the observations do not indicate any intrinsically oscillatory response of the hair

bundle to non-oscillatory input.

III. THE HOPF OSCILLATOR MODEL

The two-variable ordinary differential equation (ODE) system which is the normal form

of a Hopf bifurcation was first suggested by Eguiluz et al.6 as a suitable phenomenological

model for the active dynamics of the organ of Corti. Appealing to the theory of centre

manifolds and normal forms (see, e.g., Ref. 7), such an unforced model is guaranteed to

capture the low-amplitude dynamics of any smooth system that is on the verge of the onset

of self-sustained limit cycle oscillation. The novel feature in the so-called Hopf oscillator

model is that this equation is embellished with a forcing term, which represents the input

to the OHC from the surrounding BM and fluid. Such a model equation is usually written

in the complex form

ẋ = (α + iω0)x− σx|x|2 + Feiωt, x ∈ C, (1)

where α, ω, and ω0 are real parameters, while F and σ are in general complex. Without

loss of generality (by the transformation x 7→ x/
√
|Re(σ)|) we can assume that |Re(σ)| = 1.

The imaginary part of σ affects the frequency but not the amplitude of oscillations, since in

polar coordinates (x = r cos θ, y = r sin θ) Eq. 1 becomes ṙ = αr+Re(σ)r3 +Re(F ) cos(ωt−

θ) − Im(F ) sin(ωt − θ) and rθ̇ = ω0r + Im(σ)r3 + Im(F ) cos(ωt − θ) + Re(F ) sin(ωt − θ).

Furthermore, in the limit F → 0 it is further possible to argue7 that σ = ±1 without loss of

generality. Hence we shall assume σ = ±1 in our numerical investigations for simplicity.

The variable x has been equated with the Fourier component of the basilar membrane

displacement at the forcing frequency8, such that the magnitude of x is the amplitude of the

basilar membrane motion. The real parameters F and ω then represent the amplitude and
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frequency of an incoming wave of pressure difference between the two sides of the organ of

Corti. The Hopf oscillator itself is assumed to have natural frequency ω0, damping α and a

nonlinearity coefficient σ. The so-called supercritical case Re(σ) > 0 is usually assumed as

this leads to small-amplitude limit cycles as α is increased through zero. The sub-critical

case Re(σ) < 0 leads to growth without bound for large enough initial conditions when α is

negative, due to the presence of an unstable limit cycle.

The huge advantages of the Hopf oscillator model are its simplicity, and the fact that it

exhibits each of the four features mentioned at the start of this paper; amplification, sharp

tuning, compressive nonlinearity and a possible explanation for otoacoustic emissions as a

self-excited limit cycle for α > 0. In particular, it is easy to show6 that if α = 0 and ω = ω0

then the compressive nonlinearity obeys precisely the 1/3-power law that has been argued

to be a universal feature. We note that there is evidence9 that coupled sub-critical Hopf

oscillators can produce stronger compression than a single oscillator. On the other hand, a

clear weakness of the model is that this result requires precise tuning of two parameters at

each location along the cochlear partition. It has been suggested10 that there is an excitable

feedback process that might adjust each organ to this codimension-two point in parameter

space, with any mild over-adjustment so that α > 0 causing limit cycle oscillations that

emerge as otoacoustic emissions. However, such a mechanism has not yet been identified

experimentally.

To test the efficacy of the model (1), we have run a series of direct numerical simula-

tions. The results are shown in Fig. 4. The four panels show results for different damping

parameters α. Panels (a) and (b) refer to the case α < 0 in which the unforced model has

a stable equilibrium. Panel (c) is at the stability boundary α = 0 (although the nonlinear

terms lead to a weakly stable equilibrium), and panel (d) is for the case when the unforced

equilibrium is unstable and is surrounded by a small-amplitude limit cycle.

It can be seen from the figure that in most cases the response increases linearly for small

F , then reaches a transition point, beyond which the amplitude varies as the 1/3-power of

F . Only for precisely ω = 1, α = 0 (the thickest line in panel (c)) does the 1/3-power law

9



FIG. 4. The response of the Hopf oscillator (1) with σ = 1 and ω0 = 1. Panels (a)—(d) show

response curves (on a log-log scale) of maximum of |x| (after ignoring transients) against

sound input amplitude F for a range of different forcing frequencies ω. The values of α

used are (a) −0.1, (b) −0.01, (c) 0 and (d) 0.01. The dotted lines have unit slope while the

dash-dotted lines have slope 1/3. We used the ode15s solver of MATLAB with relative and

absolute tolerances of 10−12.

extend right down to zero input amplitudes. For α > 0, the unforced response is already

an oscillation, hence the amplification at F = 0 is infinite (as the response has a non-zero

amplitude when the stimulus amplitude is zero). This self-sustained oscillation can interact

nonlinearly with the forcing to produce complex vibrations, which can be either phase locked

to a high-period limit cycle or genuinely quasi-periodic. These dynamics are reflected in

‘beating’ or ‘mode locking’ effects that lead to the dips in the graphs in Fig. 4(d) of output

amplitude against sound input level F , for small F . One extra positive feature of the Hopf

oscillator model inherent in the above simulations is that the compressive nonlinearity for

sufficiently high input levels does not rely on precise tuning to the codimension-two point
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(α, ω) = (0, ω0).

It is understood that the unforced Hopf oscillator is a normal form for a local bifurcation,

hence it is thought to be valid for a small range of forcing amplitudes around the equilibrium.

So we do not expect such a small amplitude model to show the correct compression over

the full amplitude range of 120dBs that humans can observe. Indeed, the model gives the

1/3-power law up to arbitrary large forcing amplitudes, whereas the data in Fig. 2 shows

an eventual linear response. Also, the explanation of otoacoustic emissions as spontaneous

oscillations on the unstable side of a Hopf is convenient, but it is not the only possible

explanation. Indeed, the source of the instability need not necessarily be local, but could

also be caused by longitudinal coupling11 (which results in a Hopf bifurcation as an emergent

feature). For example, it has been proposed that spatial inhomogeneities along the basilar

membrane in a linear model can cause spontaneous otoacoustic emissions12–14.

IV. CUSP BIFURCATION MODEL

In the same spirit as the Hopf bifurcation model we can suggest a simpler equation that

exhibits 1/3-power compressive nonlinearity for large amplitude. Moreover, this model aims

to capture the negative stiffness of the hair bundle that is inherent in Fig. 3(d) without

introducing frequency selective hair bundle, as mammalian hair bundles do not appear to

be tuned. In essence, the 1/3-power compression comes from the presence of a cubic nonlin-

earity. So as a simplification, we can model the hair bundle as a cubic spring. Moreover, in

line with the temporal relaxation inherent in Fig. 3(a), we suppose that the spring is driven

principally by viscous damping rather than inertia.

A simple model equation for the displacement x of such a single spring then reads

ẋ = α + βx− σx3 + F sinωt, x ∈ R, (2)

where α is a static bias, β is the ratio of linear stiffness to damping, σ is a nonlinear stiffness

ratio, and, as in (1), F and ω represent the amplitude and frequency of a pure tone sound

input. Note that the unforced (F = 0) version of equation (2) with α and β thought of
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as independent parameters is the normal form for the so-called cusp bifurcation, see e.g.

Ref. 7. Such a normal form is a universal two-parameter unfolding of any system in the

neighborhood of a point of the onset of bistability. By scaling x, the nonlinear parameter σ

can be reduced to ±1, and by changing the sign of x, β and α, without loss of generality we

can assume σ = 1. The bifurcation diagram of the unforced system is depicted in Fig. 5(a).

The numerical response diagram can be seen in Fig. 5(b)-(d) which confirm this approx-

imate scaling result. Dashed curves represent unstable vibrations that are not observable by

direct numerical simulation. Note that in Figs. 5(c),(d) there are multiple curves indicating

coexisting stable vibrations for smaller forcing amplitudes.

The dependence of the response curves on the forcing frequency can be seen in Fig. 6.

The result for the model (2) in Fig. 6(a) does not show much sensitivity to ω, because of

the lack of tuning in the model. Now tuning could emerge from the passive resonance of

the basilar membrane. Thus, in order to account for tuning in the local model, we couple

equation (2) to a single degree of freedom oscillator, as described by the system

z̈ = −2ζω0ż − ω2
0z + F sinωt, (3)

ẋ = α + βx− σx3 + ż.

Here, z represents the internal variable of the passive tuning mechanism, with CF ω0 and

damping ratio ζ, while x represents the active BM response.

The results from numerical investigaton of Eq. (3) can be seen in Fig. 6(b). Note that

they show a more varied response for different frequencies similar to that of the Hopf oscil-

lator (1) in the previous section. We also note that in order to achieve the 1/3 compressive

nonlinearity one does not need to be exactly at the cusp bifurcation point (α = 0, β = 0);

the model works well for broad ranges of parameter values. In a sense this is a similar situ-

ation with the Hopf bifurcation normal form that requires ω = ω0 and α = 0 to be precisely

at the bifurcation point for the given input frequency. In essence, though, both models are

equally good as they show the 1/3-power law for sufficiently large amplitudes. This is not

due to the local bifurcation, but to the fact that both models have a cubic nonlinearity.
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FIG. 5. (a) Two-parameter plot of the bifurcation diagram of the cusp normal form (2) with

F = 0 and σ = 1. Note that the cusp point occurs for α = β = 0. (b)—(d) The vibration

amplitude of the cusp normal form model (ignoring the DC component a0) as a function of

the input amplitude F for a variety of input frequencies ω. Thick shaded lines correspond to

numerical data (computed using PDDE-CONT15), and black lines represent the harmonic

balance approximation (A1), (A2) or equivalent formulae for α = 0 (see Appendix A). The

dashed curves indicate unstable vibrations that are ‘invisible’ in direct simulations. The

parameters are: (b) α = 0, β = −1 (c) α = 0, β = 1 and (d) α = 0.1, β = 1.

Interestingly, for the experimentally fitted parameter set in Fig. 1 of Ref. 16, the unforced

problem is as close to a cusp bifurcation point as it is to a Hopf bifurcation.

We note here that both the Hopf and cusp models share the disadvantage that they are

phenomenological; that is, they are motivated more by (some) features of experimental data
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FIG. 6. The response of the cusp bifurcation model for equation (2) in panel (a) and for

(3) in panel (b), with α = 0.1, β = −1 and σ = 1. The additional parameters for (3) are

ζ = 0.1 and ω0 = 6.6× 2π with time measured in milliseconds.

than by the underlying biophysics of the cochlea. We now proceed to discuss models that

are physiologically inspired, and robust to this criticism.

V. PHYSIOLOGICAL MODEL WITH BOTH ACTIVE HAIR BUNDLE

MOTILITY AND SOMATIC MOTILITY

We first consider a model of active cochlear mechanics which includes both somatic

motility and active hair bundle motility. This description illustrates the interplay between

these two processes as a result of the current flowing through the outer hair cell, and also

due to mechanical coupling to other structures in the cochlear partition. Moreover, this

depiction shows how somatic motility results in feedback to the hair bundle and to the

basilar membrane.

Ó Maoiléidigh & Jülicher4 use a model for active hair bundle motility illustrated in

Fig. 7. The figure shows two stereocilia (the cilia of the hair bundles) which are connected

to each other by a tip-link, modeled as a linear spring with stiffness kgs. The coordinate xhb

is the position of the hair bundle and xa is the position of the adaptation motor inside the

hair bundle. The tip-link is attached to a mechanically sensitive ion channel that changes its
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FIG. 7. Schematic description of hair bundle mechanics. (a) The transverse geometry of an

OHC showing rows of cilia displaced by an angle xhb connected by elastic tip links of stiffness

kgs. The links are pinned to the end of the shorter hair, and are free to move a distance xa

up and down the longer hair through the action of myosin motors. The stretching of the

tip link controls the open probabilities of an ion channels that cause depolarizing current I

to flow into the hair cell body. The open probability follows the Boltzmann-like function

depicted in panel (b), see equation (5). Panel (c) shows more details of the mechanics of

two adjacent cilia.

configuration as the channel opens and closes, thereby changing the total length of the tip

link by an amount D. The ion channel has a sigmoidal-shaped open probability function (of

displacement). The tip-link is also attached to a myosin-based adaptation motor that tenses

the tip-link and is controlled by the local calcium concentration, which in turn depends on

the state of the ion channel. The adaptation motor can exert a maximal force fmax, and has

a sensitivity S to calcium through the open probability of the ion channel. In the model the

mass of the hair is neglected because the dynamics is over-damped, with time scales λ for

the hair bundle and λa for the adaptation motor.

Somatic motility is described to linear order using the piezoelectric relationships between

(i) the charge inside the outer hair cell and the force exerted by the cell, and (ii) the

extension of the cell and the change in transmembrane electric potential. The linearity of
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these relationships holds for small physiological displacements. The complete description

of cochlear mechanics includes terms representing the mechanical force on the hair bundle

due to charge movement through the outer hair cell resulting from somatic motility, as well

as changes in the current through the outer hair cell due to the displacement of the hair

bundle.

In what follows we shall consider a simplification of the Ó Maoiléidigh and Jülicher

model. The main nonlinear parts of their model can thus be written:

λẋhb = −kgs [xhb − xa −DPO(∆(xhb − xa − δ))]− kxhb − γ1pq + µhbF cosωt,

λaẋa = kgs [xhb − xa −DPO(∆(xhb − xa − δ))]− γfmax [1− SPO(∆(xhb − xa − δ))] ,

q̇ = IhbPO(∆(xhb − xa − δ))−
g

Ceff

Q− gpγ1xhb − gpα1F cosωt,

(4)

where

PO(y) =
(
1 + e−y

)−1
(5)

is the open probability function of the ion channels. The simplifiction of a larger model

eliminated variables including the BM position that can be recovered by the simple equation

xbm(t) = 11.72
[nm

Pa

]
F cosωt+ 135.52

[
nm

pC

]
q(t) + 1.276 [−]xhb(t). (6)

The parameters in the charge equation are the maximum current Ihb that flows through

the ion channels, the piezoelectric constant p, the leakage resistance g and the capacitance

Ceff of the OHC. The stiffness parameter k contains both the hair bundle stiffness ksp and

structural stiffness of the organ of Corti; γ is a geometric factor. The pressure difference

through the cochlea cross-section is transformed to a force on the hair bundle by µhb. The

parameters γ1 and α1 are constants determined by the geometry of the organ of Corti.

Considerable effort4,17 has been expended in finding physiologically plausible values for

each of the parameter values in the model. Specifically, in what follows we shall follow Ó

Maoiléidigh and Jülicher4, and take parameter values as given in Table I. Note that we

allow fmax, S and D to make variations from the values in Ref. 4, in order to explore the

behaviour of the model under variation of parameters.
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FIG. 8. (a),(b) Bifurcation diagrams of equation (4) at parameter values given in Tab. I,

with F = 0 as the two parameters fmax and S are allowed to vary for D = 60 nm and

D = 36 nm, respectively. Continuous lines represent fold bifurcations. The dash-dotted

lines show equilibria with PO = 1/2. (c) The response of the forced model for D = 60 nm

near a Hopf bifurcation; and (d) far from a bifurcation curve D = 36. (e),(f) The locations of

the hysteresis of response in frequency and SPL for D = 60 nm and D = 36 nm, respectively.

A. Bifurcation analysis: Hopf and cusp bifurcations

The unforced dynamics of the model can be characterized by its bifurcation diagram,

which we have computed using numerical continuation methods15. The results are presented

in Fig. 8(a)–(b). It can be seen from the figures that for both values of D there are two
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fold bifurcations that connect at a cusp point. Inside the wedge-shaped parameter region

between the two fold bifurcations there are two stable equilibria, outside it there is just

one. In addition, for D sufficiently large, a loop shaped curve of Hopf bifurcations occurs,

such that the equilibrium becomes unstable inside the loop. Depending on the criticality

of the Hopf bifurcation a stable limit cycle exists inside the loop or also in its small outer

neighborhood in the subcritical case. The Hopf bifurcation curve on both sides of the cusp

point meets the fold curve at a fold-Hopf bifurcation, an unfolding of which is likely to signal

the presence of further bifurcation curves7.

The Hopf loop disappears from the bifurcation diagram at a so-called codimension-three

Hopf-cusp bifurcation that occurs as we vary D. We shall show below that decreasing

D below this critical value, and hence eliminating the Hopf bifurcation, still results in a

compressively nonlinear response.

First, to find the codimesion-three point, note that the cusp bifurcation always occurs

on the line where equation (4) has a symmetry, that is, where there is an equilibrium with

PO = 1/2. In fact, the two-parameter bifurcation diagram in Fig. 8(a) is symmetric about

this dash-dotted line, independently of D. So in order to find the critical codimension-

three point, we need to find a condition where the two fold-Hopf points meet and occur

for an equilibrium at PO = 1/2. This can be done by restricting the system to PO = 1/2

and then stipulating that the characteristic polynomial of the Jacobian of (4) must have

vanishing constant and second-order terms. This condition is equivalent to requiring for a

pair of purely imaginary and a single zero root of the system at the equilibrium. A routine

calculation allows us to find the unique set of parameters and coordinate values for the

codimesion-three Hopf-cusp bifurcation, that is,

xhb = −66.6283 nm, xa = −101.823 nm, q = 0.794324 pC,

fmax = 1.09309 nN, S = 1.07164 and D = 38.6783 nm.

Therefore, values of D < 38.6783 nm will result in no Hopf bifurcations outside the bistable

region. A bifurcation diagram without the Hopf loop can be seen in Fig. 8(b) for D = 36 nm.
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B. Forced dynamics

In order to study the forced dynamics we rescale the forcing frequency in equation (4),

so that it is most sensitive at 6.6 kHz, the CF for the data in Fig. 2. The most sensitive

frequency ωsens can be computed approximately from the complex eigenvalues of the Jacobian

of (4), and is the imaginary part of this eigenvalue. Then we rescale the frequency so that

when we assume 6.6 kHz forcing we are in fact forcing at ωsens ≈ 4 × 2π ms−1. The forced

response curves are shown in panels (c)—(d) of Fig. 8 for the Ó Maoiléidigh & Jülicher

model (4).

In figures 8(c) and 8(d) the system is tuned such that the equilibrium occurs for PO =

1/2. It can be argued from an evolutionary point of view that PO = 1/2 is preferable as this

leads to maximum sensitivity of the hair bundles. In figure 8(c) we used the same parameters

that were used to test the nonlinear behaviour in Ref. 4. The result is directly comparable to

Fig. 2(a) since it uses the same quantities and units. The qualitative behaviour is strikingly

similar to that of the experimental data. However, one extra feature apparent. For the 5

kHzfrequency, the response displays a hysteresis or a jump in amplitude, which is not seen

in the experiment. This jump is present but less apparent in Fig. 5 of Ref. 4.

To demonstrate that being near the Hopf bifurcation is not necessary for compressive

nonlinearity we used a parameter set (D = 36 nm, fmax = 1.15 nN and S = 1.04305) where

the Hopf bifurcation is removed from the monostable parameter region of the system. The

result of the computation (Fig. 8(e)) is rather similar to Fig. 8(d) with the difference that

the amplifiction is significantly lower. However, there is still 40dB between the 6.6kHz and

10kHz response at low SPLs. This is an indication that the Hopf bifurcation is not the

ultimate feature of the system that produces the compressive nonlinearity.

In figure 8(e)—(f) we mapped out the region where the hysteresis takes place in the

parameter region of forcing frequency and amplitude for our two cases. Notice that lower

than CF frequencies are affected and that the hysteresis occurs at higher amplitude as the

forcing frequency decreases. While removing the Hopf bifurcation from the monostable
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region reduces the region of hysteresis we found that the phenomena could not be removed

without compromising the overall behaviour of the model.

Given that equation (4) produces results that give plausible agreement with experimental

data under variation of parameters (e.g. D) which qualitatively change the structure of the

underlying dynamics (e.g. the presence or not of Hopf bifurcations), we are interested to

investigate which are the key features of the mathematical model. In what follows, therefore,

we shall try to capture the essence of the model with the aim of providing further insight

into which physiological features might be the most important, and which parameter values

should be the most critical to measure accurately.

C. A simplified model

When analyzing the forced response of (4), it would appear that it is possible to neglect

all the nonlinearity of the hair bundle mechanics. We suggest that the term IhbPO, occurring

in equation (4) for q̇ is sufficient to produce realistic compressive nonlinearity. Linearizing

the open probability function at the equilibrium PO = 1/2 in the equations for x and xa

lead to a forced damped oscillator which is coupled to a capacitor with charge q. To ensure

PO = 1/2 we fix the sensitivity

S =
Dkgs + 2kgsδ

fmaxγ
+ 2.

Using the transformation

xhb = y +
2λaẏ

fmaxγ∆ + kgs(δ∆ + 2)
, xa = y

we write down the simplified model

ÿ = −2ζω0ẏ − ω2
0y −

pγ1

k
ω2

0q +
ω2

0µhb

k
F cosωt,

q̇ = −gpγ1y − c2ẏ −
g

Ceff

q + IhbPO(∆ẏ)− gpα1F cosωt.

(7)

Within the model ω0 is the CF for the cross-section of the cochlea in question and ζ is

the relative damping factor. Note that PO depends on ẏ = ẋa. This is the result of the
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transformation and matches the observation inherent in the data in Fig. 3 that the current

flow depends chiefly on hair bundle velocity, rather than displacement.

The rest of the parameters are transformed as

ω2
0 =

k(fmaxγ∆ + kgs(δ∆ + 2))

2λaλ
,

2ζω0 =
kgsλa(4−D∆) + 2λ(fmaxγ∆ + kgs(δ∆ + 2)) + 4kλa

4λaλ
,

c2 =
λa(Ihb∆− 4gγ1p)

2(fmaxγ∆ + kgs(δ∆ + 2))
.

Figure 9 shows the forced response curves for the simplified model (7) using the parameter
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FIG. 9. Response of the simplified model (7). Parameters are the same as in Fig 8(e).

values in Tab. I with the exception ofD = 36 nm and fmax = 1.15 nN, again with CF scaled to

6.6 kHz. It can be seen from the figure that the model behaves in essentially the same way as

equation (4), it even capure the bistable behaviour of Fig. 8(e) even though most nonlinearity

is removed. We note that the damping coefficient ζ is negative for fmax < 1.209 nN.

The system (7) loses its stability for fmax < 1.04 nN with a characteristic root passing

through 0. We note that this stability loss is not a generic bifurcation, because no extra

solution is created before or after this parameter value. The already unstable system also

undergoes supercritical Hopf bifurcation at fmax ≈ 0.9574 nN, which has no effect on the

overall dynamics.
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VI. MODEL WITH NONLINEAR TRANSDUCTION CURRENT AND

ELECTROMOTILITY

It should be remembered that the measured data in Fig. 2 are the vibration amplitude

of the BM, not the charge in the OHC, nor the deflection of hair bundles. The precise

mechanism of feedback of somatic motility to the BM is likely to be through the Deiters’

cells. With this in mind, we shall propose here another model that aims to capture only

these features.

Since it is possible to capture the nonlinear compression in a model without active

hair bundle motility we propose a modified version of the full description of organ of Corti

mechanics given in Ref. 4. The model is described conceptually in Fig. 10, illustrating how

the motion of the hair bundle xhb(t) is coupled to that of the BM deflection xbm(t) through

the excess charge q(t) in the OHC.

In our model the hair bundle is coupled to the basilar membrane through a simple

mechanism that neglects the inertia of the HB and assumes a passive HB mechanics. Hence,

we only need to model the transduction current that causes the hair cell to expand and

contract. As can be seen in Fig. 3, the transduction current peaks at the onset of the

displacement stimulation and it settles back to almost zero assymptotically. This current is

accurately modeled by Tinevez et al.17. However, we aim for a passive hair bundle, therefore

our model can be simpler. We assume an exponential decay with time constant κ and an

almost complete adaptation. We also suppose that there is an adaptation variable xa that

is linearly adapting to the hair bundle displacement xhb. The transduction current flowing

through the ion channels is then a function (PO) of both the speed and the position of the

adaptation variable (αxa + βẋa), where β > α in order to capture the observation that the

current is more a function of bundle velocity than displacement. Hence we reach a simple

transduction current model

ẋa = −κ(xa − xhb), (8)

I = −PO(∆(αxa + βẋa)), (9)
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FIG. 10. Schematic description of a somatic motility model with feedback to the basilar

membrane. The basilar membrane (BM) is coupled to the bone structure of the cochlea

and to the OHC through the Deiters’ cells. The pressure difference wave νbmF sinωt causes

the BM to vibrate with amplitude xbm(t) A combination of the fluid pressure difference and

the BM motion forces the hair bundle, which cause ion channels to open that conduct ion

currents I into the OHC. The outer hair cell changes its length in proportion to its excess

charge q. The Deiters’ cells then feedback to the BM the force exerted by the OHC.

where PO( · ) is as defined in (5). The response of such a simple adaptation function to step

displacements of different magnitude is shown in Fig. 11. Note the qualitative agreement of

such a function to the data in Fig. 3(a).

In this model, the BM is modeled as a linear oscillator with natural frequency ω0, the

CF of the longitudinal position in question, and damping ratio ζ. The BM is also coupled

to the OHC through the Deiters’ cells that are again represented by a spring and a damper.

This force is represented by the term ω2
0fqq. The detailed derivation of the mechanics can

be found in Appendix B.

We suppose that the excess charge q in the hair cell leaks at rate γ and that the hair cell

expands and contracts from its equilibrium length in direct proportion to the excess charge.
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FIG. 11. Adaptation of the transduction current in the hair bundle. (a) The applied

displacement steps xhb(t) applied to the hair bundle. (b) (b) The corresponding transduction

current I(t) given by (9). The parameters used are κ = 1ms, α = 0.03, β = 1 and ∆ = 7.

The force of the OHC is calculated as Fohc = −kohcxohc − dohcẋohc − pq, where p is the

piezoelectric constant of the OHC. The hair cell is charged by the transduction current I.

The hair bundle excitation is driven by the basilar membrane motion xbm(t) and indirectly

by the assumed sinusoidal pressure difference νhbF sinωt. This indirect forcing term arises

from the derivation in Appendix B, where we assume that the coupled passive BM and hair

bundle has a general two degree of freedom mechanics. Even though the indirect forcing by

the pressure is small, its effect can be rather large due to the sensitivity of the hair bundle.

Under the above assumptions, the governing set of equations is

ẍbm = −2ζω0ẋbm − ω2
0 (xbm − fqq) + νbmF sinωt,

ẋa = −κ (xa − (γbmxbm + γbmfvẋbm + νhbF sinωt)) ,

q̇ = −γq + IhbPO(∆ẋa)− PO(0),

(10)

where PO is defined as before. The parameters of the model can be seen in Table II.

The unforced model (10) (with F = 0) has a unique equilibrium. The stability of

this equilibrium can be computed by linearization. The stability chart in terms of the two

parameters fq, fv is shown in Fig. 12(a). The stable region is bounded a Hopf bifurcation

curve (thick solid line). The stable system has two resonances in the grey regions and we

assume that the higher resonance frequency is the CF. These two frequencies are close to

each other around the point (e).
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FIG. 12. Panel (a) shows the stability chart of model (10) in terms of the two feedback

parameters fq and fv. Amplitude response of the model (10) is shown in panel (b) for

fq = 0.2 V/N, f1 = 0.539 ms−1 (c) for fq = 0.2V/N fv = 0.5 ms−1, (d) for fq = 0.5V/N fv =

0.2 ms−1, (e) for fq = 0.87V/N, fv = 0.163 ms−1 and (f) for fq = 0.87V/N and f1 = 0.12.

Other parameters can be found in Table II.

The amplitude response of Eq. (10) is depicted in Fig. 12(b)–(f). Like the models intro-

duced in the previous section, it can be seen in Fig. 12(b) that the amplitude response has

a linear region for small forcing amplitudes, a plateau for medium range forcing amplitudes

and it tends to be linear again for the highest forcing amplitudes, consistent with the data

in Fig. 2. The parameters of Figs. 12(b),(e) are tuned near a Hopf bifurcation, therefore

their frequency tuning is better than at other parameters. It is also interesting to note that

the two nearby resonances in Fig. 12(e) make the system very compressive and that the 5

kHz curve represents a higher amplitude response than the 6.6 kHz curve. Also, tuning is

not evident in Fig. 12(e),(f), because of nearby resonances in the system. As one moves

away from the Hopf bifurcation in Fig. 12(c),(d),(f) the linear tuning diminishes however

the compression remains. Another difference from the previous models is that hysteresis
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occurs for frequencies higher than CF.

Many physiological features are omitted from this model. In particular, the active force

of the hair bundle is excluded, in favour of the transduction current that drives the BM

through the somatic motility of the OHC. This shows that active hair bundle motility is

not necessary for compressively nonlinear amplification if the hair bundle is forced by the

pressure difference across the cochlear partition due to a passive organ of Corti mechanism.

VII. DISCUSSION

In this paper we have used mathematical modeling and numerical continuation tech-

niques to study the compressive nonlinearity present in the mammalian cochlea. We have

assessed various models, including the popular Hopf oscillator model, another phenomeno-

logical model inspired by observed hair bundle characteristics, followed by a model based on

detailed physiological understanding, with two simplified models that aim to capture some

of its key features. One key conclusion from our analysis of these models is that the presence

of a Hopf bifurcation is not necessary for a local model to produce results in agreement with

experimental data.

We first considered the Hopf oscillator model, Eq. (1), and highlighted several shortcom-

ings. The Hopf oscillator model does not exhibit compression of greater than 1/3-power,

nor an ultimately linear region, and so does not compare well with the data shown in Fig. 2.

In addition the original motivation for the Hopf model, in which the 1/3-power law is felt

right down to zero input, requires delicate two-parameter tuning. Nevertheless, the 1/3-law

can still be seen for large input amplitudes without this tuning, although α > 0 must be

avoided to prevent self-oscillation (although such oscillations may have a role in explaining

otoacoustic emissions). However, we should note that there is recent evidence18 that the

presence of noise in the normal form for a Hopf oscillator can give compression levels that

are flatter than 1/3.

Next we compared the Hopf oscillator with another phenomenological model, that of a
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cusp oscillator, Eq. (2). The output of the cusp oscillator also shows linear response for small

input, and 1/3-power compression for larger forcing. Furthermore, it is robust to parameter

changes. However, the key feature shared by both the cusp and the Hopf oscillator models,

which gives rise to a 1/3-power nonlinearity, is actually cubic nonlinearity.

We then described the physiologically-based model of Ó Maoiléidigh & Jülicher4, Eq. (4),

in which the authors have taken significant care to include physically measurable parameter

values. The results are better than either the Hopf or cusp oscillator models, in that there

is smaller rate of growth than 1/3 and an eventual linear region for large input.

In order to understand better the key features of the Ó Maoiléidigh & Jülicher model,

we pose two simplifications. The first, Eq. (7), consists only of a forced damped oscillator

coupled to a capacitor through the open probability function. The results are strikingly sim-

ilar to those obtained from the full physiologically-based model. Perhaps most interestingly,

this model contains neither a Hopf bifurcation nor a cusp, and still produces results that

are in reasonably good agreement with the data in Fig. 2.

Finally, we proposed a second simplification of the Ó Maoiléidigh & Jülicher model,

Eq. (10), omitting active hair bundle dynamics but including BM motion and OHC charge

coupling. We found similar qualitative behavior, which confirms that under our assumptions

hair bundle motility is not important to produce compressive nonlinear behaviour. The

stability analysis revealed that there is a large parameter region where the model does not

require precise tuning of parameters.

The chief shortcoming of all the models we consider here is that they are purely local.

In particular, they all ignore the process by which sound waves travel longitudinally along

the BM. It is widely accepted that each longitudinal position codes for a particular input

frequency, the so-called characteristic frequency (CF) of that location. The simplification

inherent in all these models is that the nonlinear active process applies only to frequencies

close to the particular CF frequency at the longitudinal position under consideration.

However, there is evidence to suggest that longitudinal coupling may indeed be present

in the cochlea, and contribute significantly to the dynamics. The CF for a particular location
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may be amplitude dependent, with the peak of the traveling wave shifting towards the base

as input intensity is increased2,5. The fluid motion in and around the organ of Corti is not

likely to be entirely planar, and may affect OHCs at nearby longitudinal positions19. The

tectorial membrane is also capable of supporting longitudinal travelling waves20. In addition,

it has been argued that a slight tilting of the OHC, so that the hair bundles are closer to

the stapes than the base, can lead to a feed-forward amplification process21. It is perhaps

unrealistic that the results of a local model could ever be closely matched to whole-organ

experimental data; all such data will contain the influence of longitudinal coupling, and so

a local model should not be expected to provide accurate quantitative comparison.

Several avenues of future work suggest themselves based on the results presented here.

First, a more extensive investigation of the parameter space of the new model (10) would

be useful, as would fitting its parameters to various physiological measurements, such as the

properties of the Deiters’ cells. Second, a more detailed understanding of the behavior of

the ion channels is required in order to avoid the phenomenological choice of the form and

argument of an open probability function22. Such a treatment might shed more light on the

rate of compression, which in our models is close to saturation due to the Boltzmann open

probability function PO. It seems that the form of this nonlinearity rather than a cubic

nonlinearity as is present in the normal-form models, or the presence of a local bifurcation

is the key feature that gives a compressive nonlinear response that is observed in the BM

motion as in Fig. 2. Finally, and most importantly, each of the models needs to be coupled to

the longitudinal pressure-wave dynamics, in which a form of active mechanism is applied at

each location along the basilar membrane. Until such a study is undertaken, the conclusions

of this paper must be interpreted somewhat tentatively.
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APPENDIX A: COMPRESSION RATE OF THE CUSP MODEL

A simple calculation can show that indeed equation (2) exhibits a 1/3-power law in its

large amplitude dynamic response. For example, using a harmonic balance method one can

seek a solution as a truncated Fourier series x(t) = a0 + a1 cosωt + b1 sinωt. Avoiding the

symmetric case α = 0 one can parametrize both the input amplitude and the vibration

amplitude response z =
√
a2

1 + b2
1, by a0, the DC part of the response; note that for α = 0

such a parameterization is impossible. Specifically, we find

z2(a0) =
2(α + a0β − a3

0σ)

3a0

=
2α

3σa0

+O(1) (A1)

and

F 2(a0) =
(βa0 − a3

0σ + α)
(

(α− a0β + 5a3
0σ)

2
+ 4a2

0ω
2
)

6a3
0σ

=
α3

6σa3
0

+O(a−2
0 ) (A2)

From these two asymptotic scalings, we see immediately a 1/3-power law nonlinearity in the

limit of large sound input, F → ∞. In particular, note that F → ∞ as a0 → 0. Hence

a0 → 0 represents the limit of large sound input, and we have

lim
a0→0

∂

∂a0

log z(a0)

∂

∂a0

logF (a0)

=
1

3
. (A3)

APPENDIX B: DERIVATION OF THE OHC-DC-BM MODEL

We assume that the BM and HB are coupled through a simple mechanical system, where

the HB has negligible mass. This coupling is described by the mechanical systemmbmẍbm

0

+

 dbm d12

d12 dhb


 ẋbm

ẋhb

+

 kbm k12

k12 khb


 xbm

xhb

 =

 f1 sinωt− Fdc

f2 sinωt

 .

(B1)
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The right hand side of the equation corresponds to the forcing of the BM and HB from

the Deiters’ cell (DC) and the external forcing of the pressure difference between the two

compartments of the cochlea. Note that k12 and d12 can be negative, but need to have the

same sign. The OHC has its own stiffness and damping and can generate a force proportional

to its charge

Fohc = −kohcxohc − dohcẋohc − pq.

The DC is represented by a simple spring and damper. Assuming the reticular lamina does

not move the DC length can be calculated from the constraints xdc = −xbm − xohc. Thus,

the force excerted by the DC is

Fd = kdc(xbm + xohc) + ddc(ẋbm + ẋohc).

We assume that the OHC and DC damping and stiffnesses are proportional, that is,

dohc/kohc = ddc/kdc. Solving Fdc = Fohc with this assumption we get

Fdc =
kohc

kdc + kohc

(kdcxbm + ddcẋbm)− p
(

1− kohc

kdc + kohc

)
q.

From the equation of motion of the HB, we find that

dhbẋhb + khbxhb = f2 sinωt− d12ẋbm − k12xbm.

We want to replace ẋhb in the first line of (B1), therefore we use

d12ẋhb + k12xhb =
d12

dhb

(
dhbẋhb + khbxhb +

(
dhb

d12

k12 − khb

)
xhb

)
=
d12

dhb

(
f2 sinωt− d12ẋbm − k12xbm +

(
dhb
d12

k12 − khb

)
xhb

)
.

to get

ẍbm + 2ζω0ẋbm + ω2
0 (xbm + fhbxhb − fqq) = νbmF sinωt,
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where

2ζω0 =
1

mbm

(
dbm −

d2
12

dhb

+
ddckohc

kdc + kohc

)
,

ω2
0 =

1

mbm

(
kbm −

d12k12

dhb

+
kdckohc

kdc + kohc

)
,

fq =
p

mbmω2
0

(
1− kohc

kdc + kohc

)
,

fhb =
(
mbmω

2
0

)−1
(
k12 −

d12

dhb

khb

)
,

νbmF =
1

mbm

(
f1 −

d12

dhb

f2

)
.

The hair bundle dynamics is described by

ẋhb = −khb

dhb

xhb −
d12

dhb

ẋbm −
k12

dhb

xbm +
f2

dhb

sinωt.

If we assume that the hair bundle dynamics is fast, i.e., khb
dhb
� 1 then

xhb =
1

khb

(f2 sinωt− k12xbm − d12ẋbm) .

Putting this into the BM equation we get

ẍbm + 2ζω0ẋbm + ω2
0 (xbm − fqq) = νbmF sinωt, (B2)

where

2ζω0 =
1

mbm

(
dbm +

ddckohc

kdc + kohc

− k12d12

khb

)
,

ω2
0 =

1

mbm

(
kbm +

kdckohc

kdc + kohc

− k2
12

khb

)
,

fq =
p

mbmω2
0

(
1− kohc

kdc + kohc

)
,

νbmF =
1

mbm

(
f1 −

k12

khb

f2

)
.

Further, to account for the BM and HB sensitivity we define

νhbF =
f2

khb

, γbm = −k12

khb

, fv =
d12

k12

.

The current adaptation is governed by the equation ẋa = −κ(xa − xhb) which becomes

ẋa = −κ {xa − (γbmxbm + γbmfvẋbm + νhbF sinωt)} . (B3)
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In case one wants to include the hair bundle dynamics, its equation with the new parameters

becomes

τhbẋhb = −xhb + γbmxbm + γbmfvẋbm + νhbF sinωt, (B4)

where τhb = dhb/khb.
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10 S. Camalet, T. Duke, F. Jülicher, and J. Prost, “Auditory sensitivity provided by self-

tuned critical oscillations of hair cells”, Proc. Natl. Acad. Sci. USA 97, 3183–3188 (2000).

32



11 R. Szalai, B. Epp, A. R. Champneys, and M. Homer, “On time-delayed and feed-forward

transmission line models of the cochlea”, J. Mech. Mat. Struct. 6, 557–568 (2011), URL

http://msp.berkeley.edu/jomms/2011/6-1/p34.xhtml.

12 S. Elliot, E. Ku, and B. Linton, “Time domain model of a nonlinear inhomogeneous

cochlear”, in Concepts and Challenges in the Biophysics of Hearing, edited by N. Cooper

and D. Kemp, 74–81 (World Scientific, 10th International Workshop on the Mechanics

of Hearing, Keele 2008) (2009).

13 E. Ku, S. Elliot, and B. Linton, “Periodicity of the spectrum of modelled spontaneous

otoacoustic emmisions”, in Concepts and Challenges in the Biophysics of Hearing, edited

by N. Cooper and D. Kemp, 82–84 (World Scientific, 10th International Workshop on

the Mechanics of Hearing, Keele 2008) (2009).

14 G. Zweig and C. A. Shera, “The origin of periodicity in the spectrum of evoked otoacoustic

emissions”, J. Acoust. Soc. Am. 98, 2018–2047 (1995).

15 R. Szalai, PDDE-CONT: A continuation and bifurcation software for delay-differential

equations, Department of Applied Mechanics, Budapest University of Technolgy and

Economics (2005), available at http://seis.bris.ac.uk/~rs1909/pdde/.
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TABLE I. Parameter values used in simulations of the Ó Maoiléidigh & Jülicher model (4).

Parameter Value

D 60 nm

∆ 1.9305 nm−1

δ 35.1951 nm

g 4× 10−5 nA/µV

kgs 8× 10−3 N/m

γ 0.25

p 16 µV/nm

Cohc 2× 10−5 µF

λ 2× 10−2 mNs/m

λa 2× 10−2 mNs/m

µhb 1.05× 10−3 mm2

k 0.103 N/m

α1 −6.91 nm/Pa

β1 −8.12 mN

γ1 0.530

Ihb 3nA

Ceff (C−1
ohc + β1p

2)−1

F 20 µPa at 0 dB SPL

TABLE II. Parameter values used in simulations of the model (10).

Parameter Value

ω0 6.6× 2π 1/ms

ζ 0.1

∆ 1.9305 nm−1
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νbm 3.1623× 104 (mm)3/N(ms)2

νhb 9.4868 nm/Pa

κ 4.4 1/ms

γ 1.8 1/ms

γbm 10−3

Ihb 3nA

fq 0 — 1000 mV/N

fv 0 — 2 1/ms

F 20 µPa at 0 dB SPL
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FIG. 1 (color online) Schematic diagram of a cross-section through the organ of Corti
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FIG. 2 (a) Basilar membrane vibration amplitude against sound pressure level (plot
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characteristic frequency (CF) of 6.6 kHz. Each curve corresponds to a dif-

ferent input frequency, as indicated. (b), (c) Similar data obtained from

different locations with CF’s of 6.1 kHz and 9.1 kHz respectively with stim-

ulation only at the CF frequency in each case. The straight lines have slope

1 and represent linear behavior. (d) Similar result for a location with CF

6.8 kHz for which a treatment has been made which (progressively, over the

course of an hour) prevents the function of the active process. Reproduced

from Ref. 2 with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

FIG. 3 Mechanical properties of the OHC hair bundle. (a) MET currents in a P11

rat for stimulation with flexible fiber (top); also shown are the movements of

the fiber end attached to the piezo (middle) and of the hair bundle (bottom).

(b) Peak MET current (f) versus displacement (data points) fitted with

a Boltzmann relation. (c) Force-displacement plots at successive times (t)

after peak current: t = 0 (filled circles), 0.07, 0.27, 0.47, 0.67, 3.9, 8ms (filled

triangles); theoretical fits using the Boltzmann relation from (b). (d) Slope

stiffness of the bundle from differentiating fits in (c). Reproduced from Ref. 3

with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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FIG. 4 The response of the Hopf oscillator (1) with σ = 1 and ω0 = 1. Panels

(a)—(d) show response curves (on a log-log scale) of maximum of |x| (after

ignoring transients) against sound input amplitude F for a range of different

forcing frequencies ω. The values of α used are (a) −0.1, (b) −0.01, (c) 0

and (d) 0.01. The dotted lines have unit slope while the dash-dotted lines

have slope 1/3. We used the ode15s solver of MATLAB with relative and

absolute tolerances of 10−12. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

FIG. 5 (a) Two-parameter plot of the bifurcation diagram of the cusp normal form

(2) with F = 0 and σ = 1. Note that the cusp point occurs for α = β = 0.

(b)—(d) The vibration amplitude of the cusp normal form model (ignoring

the DC component a0) as a function of the input amplitude F for a variety of

input frequencies ω. Thick shaded lines correspond to numerical data (com-

puted using PDDE-CONT15), and black lines represent the harmonic balance

approximation (A1), (A2) or equivalent formulae for α = 0 (see Appendix

A). The dashed curves indicate unstable vibrations that are ‘invisible’ in

direct simulations. The parameters are: (b) α = 0, β = −1 (c) α = 0, β = 1

and (d) α = 0.1, β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

FIG. 6 The response of the cusp bifurcation model for equation (2) in panel (a) and

for (3) in panel (b), with α = 0.1, β = −1 and σ = 1. The additional

parameters for (3) are ζ = 0.1 and ω0 = 6.6 × 2π with time measured in

milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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FIG. 7 Schematic description of hair bundle mechanics. (a) The transverse geometry

of an OHC showing rows of cilia displaced by an angle xhb connected by elastic

tip links of stiffness kgs. The links are pinned to the end of the shorter hair,

and are free to move a distance xa up and down the longer hair through the

action of myosin motors. The stretching of the tip link controls the open

probabilities of an ion channels that cause depolarizing current I to flow into

the hair cell body. The open probability follows the Boltzmann-like function

depicted in panel (b), see equation (5). Panel (c) shows more details of the

mechanics of two adjacent cilia. . . . . . . . . . . . . . . . . . . . . . . . . 15

FIG. 8 (a),(b) Bifurcation diagrams of equation (4) at parameter values given in

Tab. I, with F = 0 as the two parameters fmax and S are allowed to vary

for D = 60 nm and D = 36 nm, respectively. Continuous lines represent fold

bifurcations. The dash-dotted lines show equilibria with PO = 1/2. (c) The

response of the forced model for D = 60 nm near a Hopf bifurcation; and (d)

far from a bifurcation curve D = 36. (e),(f) The locations of the hysteresis

of response in frequency and SPL for D = 60 nm and D = 36 nm, respectively. 17

FIG. 9 Response of the simplified model (7). Parameters are the same as in Fig 8(e). 21

FIG. 10 Schematic description of a somatic motility model with feedback to the basilar

membrane. The basilar membrane (BM) is coupled to the bone structure

of the cochlea and to the OHC through the Deiters’ cells. The pressure

difference wave νbmF sinωt causes the BM to vibrate with amplitude xbm(t)

A combination of the fluid pressure difference and the BM motion forces the

hair bundle, which cause ion channels to open that conduct ion currents I

into the OHC. The outer hair cell changes its length in proportion to its

excess charge q. The Deiters’ cells then feedback to the BM the force exerted

by the OHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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FIG. 11 Adaptation of the transduction current in the hair bundle. (a) The applied

displacement steps xhb(t) applied to the hair bundle. (b) (b) The correspond-

ing transduction current I(t) given by (9). The parameters used are κ = 1ms,

α = 0.03, β = 1 and ∆ = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

FIG. 12 Panel (a) shows the stability chart of model (10) in terms of the two feedback

parameters fq and fv. Amplitude response of the model (10) is shown in panel

(b) for fq = 0.2 V/N, f1 = 0.539 ms−1 (c) for fq = 0.2V/N fv = 0.5 ms−1,

(d) for fq = 0.5V/N fv = 0.2 ms−1, (e) for fq = 0.87V/N, fv = 0.163 ms−1

and (f) for fq = 0.87V/N and f1 = 0.12. Other parameters can be found in

Table II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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