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Abstract
Various simple mathematical models of the dynamics of the organ of
Corti in the mammalian cochlea are analysed. The models are assessed
against their ability to explain the compressive nonlinear response of
the basilar membrane. The specific models considered are: phenomeno-
logical Hopf and cusp normal forms, a recently-proposed description
combining active hair-bundle motility and somatic motility, a reduc-
tion thereof, and finally a new model highlighting the importance of
the coupling between the nonlinear transduction current and somatic
motility. The overall conclusion is that neither a Hopf bifurcation nor
cusp bifurcation are necessary for realistic compressive nonlinearity.
Moreover, two physiological models are discussed showing compressive
nonlinearities similar to experimental observations without the need

for tuning near any bifurcation.

PACS numbers: 43.64.Bt, 43.64.Kc



I. INTRODUCTION

In this paper we will examine different simple local nonlinear mathematical models of the
organ of Corti in the mammalian inner ear (illustrated schematically in Fig. 1), comparing
and contrasting their strengths and weaknesses. The main test we shall apply to the models
is their ability to capture experimentally observed features of the dynamics in response
to a pure tone input of varying intensity. In particular, we are interested in the four key
aspects of the active hearing process proposed by Hudspeth!: significant amplification at low
sound pressure levels (SPL) (down to 0 dB), sharp tuning through a place theory of hearing
where different positions along the cochlea respond to different frequencies, compressive
nonlinearity to reduce 6 magnitudes of SPL variation into 3 magnitudes of basilar membrane

vibration; and spontaneous otoacoustic emissions whereby most ears continuously output
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FIG. 1. (color online) Schematic diagram of a cross-section through the organ of Corti of the

mammalian cochlea, showing the locations of the basilar membrane (BM), Deiters’ cells (D),
outer hair cells (OHC), the reticular lamina (RL), hair bundles (HB), tectorial membrane

(TM), inner hair cells (IHC) and one auditory nerve (AN) fiber.

a)Electronic address: r.szalai@bristol.ac.uk

b)Electronic address: martin.homer@bristol.ac.uk



low levels of sound at one or more frequencies.

It is widely held that the active process originates in the outer hair cells (OHC), via
transduction channels in their hair bundles that allow a current to pass, which changes the
somatic membrane potential. This modulation of membrane potential leads, through the
OHC’s somatic motility, to significant changes in the configuration of the organ of Corti. The
motion of the OHC may lead to mechanical amplification of the organ of Corti’s motion.
On the other hand, the active motility of the hair bundles has also been proposed as a
mechanism for mechanical amplification. There is currently debate about which type of
motility is the primary mechanism for amplification. There is some hope that local models
might be able to resolve this debate, and this leads to our interest to examine such models

using the tools of nonlinear dynamical systems.

The rest of this paper is outlined as follows. We begin, in Sec. II by describing in
detail experimental evidence on the function of mammalian OHCs. This includes direct
BM displacement measurement obtained by Rhode?, who examined the chinchilla cochlea
in detail, and the results of Kennedy et al.?> who measured the response of OHC hair bun-
dles to mechanical stimulation. The following four sections then discuss a range of models
that aim to explain this observed behavior. Sections III and IV discuss and analyse two
phenomenological models: one the normal form of a Hopf oscillator, the other the (simpler)
normal form of a cusp bifurcation. In particular, we show that the cusp model obeys the
same 1/3-power compressive nonlinearity as the Hopf oscillator, at least for sufficiently high
input amplitude. Furthermore, we show that the cusp model can show tuning, as the Hopf

model does if it is coupled to a simple linear equation for the BM.

The next three sections consider two physiologically-inspired models. Sec. V examines a
model introduced by o) Maoiléidigh and Jiilicher* that includes the effects of myosin motor
adaptation of hair bundles in addition to somatic motility. This model is shown to produce
a flatter than 1/3-power response curve at the CF, as seen in Rhode’s data. A bifurcation
analysis reveals that while the unforced version of this model can produce Hopf bifurcations

(and indeed cusps) neither is key to the observed forced response. Section VI introduces
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a modification of the O Maoiléidigh and Jiilicher model, which only includes transduction
current nonlinearity, but not active hair bundle motility and a novel hypothesis for the
coupling through somatic motility back to the BM position and velocity. This model is also
able to provide a qualitative match to the experimental data, while having a minimal number
of tunable parameters which are physiologically measurable. We also note that this model
can accomodate a Hopf bifurcation, even though it does not include hair bundle motility.

Finally, Sec. VII draws conclusions and suggests avenues for future research.

II. REVIEW OF EXPERIMENTAL EVIDENCE

A typical basilar membrane response, taken from the work of Rhode?, is shown in Fig. 2.
There are several important features to notice from the data. From Fig. 2(a) we see that
the response is the highest at CF for input below 60 dB, it is nearly linear below CF
and the nonlinearity does not vanish with higher forcing frequencies; only the amplitude
diminishes. The nature of the nonlinear compression is also interesting. Previously, based on
early experimental data®, it has been argued that the active process provides a compressive
nonlinearity with a universal 1/3-power law (see Ref. 1 and references therein). That is, the
growth of amplitude at the CF should be uniformly 1/3 for a wide range of input amplitudes
(although linear for very small and very large sound inputs). However, more recent data?
indicates that the compression can be much flatter than 1/3. The data are even consistent
with the possibility of saturation (a zero rate of growth) for certain input levels, that is,

where the BM amplitude would not vary with small variations of the stimulation level.

Figure 3 presents data from Kennedy et al.® on the nonlinear response of individual
OHC hair bundles of rats. These data were obtained by direct mechanical stimulation of
the hair bundles, from organ of Corti preparations with the tectorial membrane surgically
removed. Again, several interesting aspects emerge from these data. Note, for example
from panel (d), how the bundle exhibits a negative stiffness for moderate sized displacement

provided the stimulation has been applied for more than about 3ms. For both small or large
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FIG. 2. (a) Basilar membrane vibration amplitude against sound pressure level (plot on a
log-log scale) for the chinchilla cochlea at a location corresponding to characteristic frequency
(CF) of 6.6 kHz. Each curve corresponds to a different input frequency, as indicated. (b), (c)
Similar data obtained from different locations with CF’s of 6.1 kHz and 9.1 kHz respectively
with stimulation only at the CF frequency in each case. The straight lines have slope 1
and represent linear behavior. (d) Similar result for a location with CF 6.8 kHz for which
a treatment has been made which (progressively, over the course of an hour) prevents the

function of the active process. Reproduced from Ref. 2 with permission)
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FIG. 3. Mechanical properties of the OHC hair bundle. (a) MET currents in a P11 rat for
stimulation with flexible fiber (top); also shown are the movements of the fiber end attached
to the piezo (middle) and of the hair bundle (bottom). (b) Peak MET current (f) versus
displacement (data points) fitted with a Boltzmann relation. (c¢) Force-displacement plots at
successive times (t) after peak current: ¢ = 0 (filled circles), 0.07, 0.27, 0.47, 0.67, 3.9, 8ms
(filled triangles); theoretical fits using the Boltzmann relation from (b). (d) Slope stiffness

of the bundle from differentiating fits in (¢). Reproduced from Ref. 3 with permission.

displacements, the force-displacement curve (shown in panel(c)) is approximately linear.
Note also from panel (b) how the nonlinear hair bundle behavior correlates with the current
flowing into the hair cell body. For all but the largest two stimulations the current flow only
occurs as, or shortly after, the bundle moves. During the constantly displaced phase, the
current rapidly resets to approximately zero. Careful consideration of the forces involved

in the stimulation procedure® leads one to the conclusion that the two largest stimulations
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in Fig. 3(a) are beyond those that would occur in normal hearing. These observations thus
suggest that except for extremely (possibly unphysiologically) large stimulations of the hair
bundle, current flow is more a function of hair bundle velocity than of hair bundle position.
Finally, the observations do not indicate any intrinsically oscillatory response of the hair

bundle to non-oscillatory input.

IIT. THE HOPF OSCILLATOR MODEL

The two-variable ordinary differential equation (ODE) system which is the normal form
of a Hopf bifurcation was first suggested by Eguiluz et al.% as a suitable phenomenological
model for the active dynamics of the organ of Corti. Appealing to the theory of centre
manifolds and normal forms (see, e.g., Ref. 7), such an unforced model is guaranteed to
capture the low-amplitude dynamics of any smooth system that is on the verge of the onset
of self-sustained limit cycle oscillation. The novel feature in the so-called Hopf oscillator
model is that this equation is embellished with a forcing term, which represents the input
to the OHC from the surrounding BM and fluid. Such a model equation is usually written

in the complex form
i = (a+iwy)x — ox|x|* + Fe™, z € C, (1)

where o, w, and wy are real parameters, while F' and o are in general complex. Without
loss of generality (by the transformation = + x/1/|Re(o)|) we can assume that |[Re(c)| = 1.
The imaginary part of o affects the frequency but not the amplitude of oscillations, since in
polar coordinates (z = rcosf, y = rsinf) Eq. 1 becomes 7 = ar+Re(c)r* 4+ Re(F) cos(wt —
0) — Im(F) sin(wt — ) and r8 = wer 4+ Im(o)r® 4+ Im(F) cos(wt — ) + Re(F) sin(wt — 6).
Furthermore, in the limit £ — 0 it is further possible to argue’ that o = 41 without loss of
generality. Hence we shall assume ¢ = 41 in our numerical investigations for simplicity.
The variable x has been equated with the Fourier component of the basilar membrane
displacement at the forcing frequency®, such that the magnitude of z is the amplitude of the

basilar membrane motion. The real parameters F' and w then represent the amplitude and
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frequency of an incoming wave of pressure difference between the two sides of the organ of
Corti. The Hopf oscillator itself is assumed to have natural frequency wy, damping « and a
nonlinearity coefficient o. The so-called supercritical case Re(c) > 0 is usually assumed as
this leads to small-amplitude limit cycles as « is increased through zero. The sub-critical
case Re(o) < 0 leads to growth without bound for large enough initial conditions when « is

negative, due to the presence of an unstable limit cycle.

The huge advantages of the Hopf oscillator model are its simplicity, and the fact that it
exhibits each of the four features mentioned at the start of this paper; amplification, sharp
tuning, compressive nonlinearity and a possible explanation for otoacoustic emissions as a
self-excited limit cycle for o > 0. In particular, it is easy to show® that if & = 0 and w = wy
then the compressive nonlinearity obeys precisely the 1/3-power law that has been argued
to be a universal feature. We note that there is evidence® that coupled sub-critical Hopf
oscillators can produce stronger compression than a single oscillator. On the other hand, a
clear weakness of the model is that this result requires precise tuning of two parameters at
each location along the cochlear partition. It has been suggested!® that there is an excitable
feedback process that might adjust each organ to this codimension-two point in parameter
space, with any mild over-adjustment so that a > 0 causing limit cycle oscillations that
emerge as otoacoustic emissions. However, such a mechanism has not yet been identified

experimentally.

To test the efficacy of the model (1), we have run a series of direct numerical simula-
tions. The results are shown in Fig. 4. The four panels show results for different damping
parameters «. Panels (a) and (b) refer to the case @ < 0 in which the unforced model has
a stable equilibrium. Panel (c) is at the stability boundary o = 0 (although the nonlinear
terms lead to a weakly stable equilibrium), and panel (d) is for the case when the unforced

equilibrium is unstable and is surrounded by a small-amplitude limit cycle.

It can be seen from the figure that in most cases the response increases linearly for small
F', then reaches a transition point, beyond which the amplitude varies as the 1/3-power of

F. Only for precisely w = 1, a = 0 (the thickest line in panel (c)) does the 1/3-power law
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FIG. 4. The response of the Hopf oscillator (1) with 0 = 1 and wy = 1. Panels (a)—(d) show
response curves (on a log-log scale) of maximum of |z| (after ignoring transients) against
sound input amplitude F' for a range of different forcing frequencies w. The values of «
used are (a) —0.1, (b) —0.01, (c¢) 0 and (d) 0.01. The dotted lines have unit slope while the
dash-dotted lines have slope 1/3. We used the ode15s solver of MATLAB with relative and

absolute tolerances of 10712.

extend right down to zero input amplitudes. For a > 0, the unforced response is already
an oscillation, hence the amplification at F' = 0 is infinite (as the response has a non-zero
amplitude when the stimulus amplitude is zero). This self-sustained oscillation can interact
nonlinearly with the forcing to produce complex vibrations, which can be either phase locked
to a high-period limit cycle or genuinely quasi-periodic. These dynamics are reflected in
‘beating’ or ‘mode locking’ effects that lead to the dips in the graphs in Fig. 4(d) of output
amplitude against sound input level F', for small F'. One extra positive feature of the Hopf
oscillator model inherent in the above simulations is that the compressive nonlinearity for

sufficiently high input levels does not rely on precise tuning to the codimension-two point
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(a,w) = (0,wp).

It is understood that the unforced Hopf oscillator is a normal form for a local bifurcation,
hence it is thought to be valid for a small range of forcing amplitudes around the equilibrium.
So we do not expect such a small amplitude model to show the correct compression over
the full amplitude range of 120dBs that humans can observe. Indeed, the model gives the
1/3-power law up to arbitrary large forcing amplitudes, whereas the data in Fig. 2 shows
an eventual linear response. Also, the explanation of otoacoustic emissions as spontaneous
oscillations on the unstable side of a Hopf is convenient, but it is not the only possible
explanation. Indeed, the source of the instability need not necessarily be local, but could
also be caused by longitudinal coupling!! (which results in a Hopf bifurcation as an emergent
feature). For example, it has been proposed that spatial inhomogeneities along the basilar

membrane in a linear model can cause spontaneous otoacoustic emissions!? 4.

IV. CUSP BIFURCATION MODEL

In the same spirit as the Hopf bifurcation model we can suggest a simpler equation that
exhibits 1/3-power compressive nonlinearity for large amplitude. Moreover, this model aims
to capture the negative stiffness of the hair bundle that is inherent in Fig. 3(d) without
introducing frequency selective hair bundle, as mammalian hair bundles do not appear to
be tuned. In essence, the 1/3-power compression comes from the presence of a cubic nonlin-
earity. So as a simplification, we can model the hair bundle as a cubic spring. Moreover, in
line with the temporal relaxation inherent in Fig. 3(a), we suppose that the spring is driven
principally by viscous damping rather than inertia.

A simple model equation for the displacement x of such a single spring then reads
i =a+ Br —ox® + Fsinuwt, z € R, (2)

where « is a static bias, f is the ratio of linear stiffness to damping, o is a nonlinear stiffness
ratio, and, as in (1), F' and w represent the amplitude and frequency of a pure tone sound

input. Note that the unforced (F' = 0) version of equation (2) with a and / thought of
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as independent parameters is the normal form for the so-called cusp bifurcation, see e.g.
Ref. 7. Such a normal form is a universal two-parameter unfolding of any system in the
neighborhood of a point of the onset of bistability. By scaling z, the nonlinear parameter o
can be reduced to 1, and by changing the sign of z, § and «, without loss of generality we
can assume o = 1. The bifurcation diagram of the unforced system is depicted in Fig. 5(a).

The numerical response diagram can be seen in Fig. 5(b)-(d) which confirm this approx-
imate scaling result. Dashed curves represent unstable vibrations that are not observable by
direct numerical simulation. Note that in Figs. 5(c),(d) there are multiple curves indicating
coexisting stable vibrations for smaller forcing amplitudes.

The dependence of the response curves on the forcing frequency can be seen in Fig. 6.
The result for the model (2) in Fig. 6(a) does not show much sensitivity to w, because of
the lack of tuning in the model. Now tuning could emerge from the passive resonance of
the basilar membrane. Thus, in order to account for tuning in the local model, we couple

equation (2) to a single degree of freedom oscillator, as described by the system

5= —2(wp? — wiz + Fsinwt, (3)

& =oa+ fxr—ox®+ 3.

Here, z represents the internal variable of the passive tuning mechanism, with CF wqy and
damping ratio ¢, while x represents the active BM response.

The results from numerical investigaton of Eq. (3) can be seen in Fig. 6(b). Note that
they show a more varied response for different frequencies similar to that of the Hopf oscil-
lator (1) in the previous section. We also note that in order to achieve the 1/3 compressive
nonlinearity one does not need to be exactly at the cusp bifurcation point (aw = 0, 8 = 0);
the model works well for broad ranges of parameter values. In a sense this is a similar situ-
ation with the Hopf bifurcation normal form that requires w = wy and a = 0 to be precisely
at the bifurcation point for the given input frequency. In essence, though, both models are
equally good as they show the 1/3-power law for sufficiently large amplitudes. This is not

due to the local bifurcation, but to the fact that both models have a cubic nonlinearity.

12



1
0.8} o 100 ¢
0.6} bistable =
0.4} =
0.21 g 100 ¢
3 0f cuspYpoint |
S
—0.2+ % .
041 monostable £ 107
—0.6}
—0.87 (b) Fig. 6 1 107
_1 L L L N N L L L L L L L
—-04-03-02-0.1 0 0.1 02 03 0.4 10-2 10! 10° 10' 102 10® 10%
6 F
(c) (d)
10t ] 10t |
[\ o
~ ~
w w
2100 | 2100 |
| |
v ¥
-1 —1
cas 10 g 10
1072 102
102 10t 10° 10' 10> 10® 10% 102 10-% 10° 10* 10> 10°® 10%
F F

FIG. 5. (a) Two-parameter plot of the bifurcation diagram of the cusp normal form (2) with
F =0 and ¢ = 1. Note that the cusp point occurs for « = § = 0. (b)—(d) The vibration
amplitude of the cusp normal form model (ignoring the DC component ag) as a function of
the input amplitude F for a variety of input frequencies w. Thick shaded lines correspond to
numerical data (computed using PDDE-CONT'), and black lines represent the harmonic
balance approximation (A1), (A2) or equivalent formulae for o = 0 (see Appendix A). The
dashed curves indicate unstable vibrations that are ‘invisible’ in direct simulations. The

parameters are: (b) a =0,8=—-1(c)a=0,f=1and (d) a=0.1,8=1.

Interestingly, for the experimentally fitted parameter set in Fig. 1 of Ref. 16, the unforced

problem is as close to a cusp bifurcation point as it is to a Hopf bifurcation.

We note here that both the Hopf and cusp models share the disadvantage that they are

phenomenological; that is, they are motivated more by (some) features of experimental data
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FIG. 6. The response of the cusp bifurcation model for equation (2) in panel (a) and for
(3) in panel (b), with a = 0.1, 8 = —1 and o = 1. The additional parameters for (3) are

¢ = 0.1 and wy = 6.6 x 27 with time measured in milliseconds.

than by the underlying biophysics of the cochlea. We now proceed to discuss models that

are physiologically inspired, and robust to this criticism.

V. PHYSIOLOGICAL MODEL WITH BOTH ACTIVE HAIR BUNDLE
MOTILITY AND SOMATIC MOTILITY

We first consider a model of active cochlear mechanics which includes both somatic
motility and active hair bundle motility. This description illustrates the interplay between
these two processes as a result of the current flowing through the outer hair cell, and also
due to mechanical coupling to other structures in the cochlear partition. Moreover, this
depiction shows how somatic motility results in feedback to the hair bundle and to the
basilar membrane.

O Maoiléidigh & Jiilicher* use a model for active hair bundle motility illustrated in
Fig. 7. The figure shows two stereocilia (the cilia of the hair bundles) which are connected
to each other by a tip-link, modeled as a linear spring with stiffness ky. The coordinate xpy
is the position of the hair bundle and x, is the position of the adaptation motor inside the

hair bundle. The tip-link is attached to a mechanically sensitive ion channel that changes its
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FIG. 7. Schematic description of hair bundle mechanics. (a) The transverse geometry of an
OHC showing rows of cilia displaced by an angle zy;, connected by elastic tip links of stiffness
kgs. The links are pinned to the end of the shorter hair, and are free to move a distance z,
up and down the longer hair through the action of myosin motors. The stretching of the
tip link controls the open probabilities of an ion channels that cause depolarizing current [
to flow into the hair cell body. The open probability follows the Boltzmann-like function
depicted in panel (b), see equation (5). Panel (c¢) shows more details of the mechanics of

two adjacent cilia.

configuration as the channel opens and closes, thereby changing the total length of the tip
link by an amount D. The ion channel has a sigmoidal-shaped open probability function (of
displacement). The tip-link is also attached to a myosin-based adaptation motor that tenses
the tip-link and is controlled by the local calcium concentration, which in turn depends on
the state of the ion channel. The adaptation motor can exert a maximal force f.x, and has
a sensitivity S to calcium through the open probability of the ion channel. In the model the
mass of the hair is neglected because the dynamics is over-damped, with time scales A\ for

the hair bundle and A, for the adaptation motor.

Somatic motility is described to linear order using the piezoelectric relationships between
(i) the charge inside the outer hair cell and the force exerted by the cell, and (ii) the

extension of the cell and the change in transmembrane electric potential. The linearity of
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these relationships holds for small physiological displacements. The complete description
of cochlear mechanics includes terms representing the mechanical force on the hair bundle
due to charge movement through the outer hair cell resulting from somatic motility, as well
as changes in the current through the outer hair cell due to the displacement of the hair
bundle.

In what follows we shall consider a simplification of the O Maoiléidigh and Jiilicher

model. The main nonlinear parts of their model can thus be written:

Ainy = —kgs [Tny — Ta — DPo(A(2n, — 22 — 0))] — kany — Y1pg + finp F cos wi,

)\afta = kgs [xhb — Ty — DPo(A(Ihb — Ty — 5))] — f)/fmax [1 — SP()(A(LChb — Ty — (S))] s (4)

qg= [thO(A(l‘hb — Xy — 5)) - Cg Q — gpy1xny — gpoq F cos wt,
eff

where

-1

Po(y) = (1+e7) (5)

is the open probability function of the ion channels. The simplifiction of a larger model

eliminated variables including the BM position that can be recovered by the simple equation

nim

Tom(t) = 11.72 [%] F coswt + 135.52 [pC

The parameters in the charge equation are the maximum current I, that flows through
the ion channels, the piezoelectric constant p, the leakage resistance g and the capacitance
Cet of the OHC. The stiffness parameter k contains both the hair bundle stiffness kg, and
structural stiffness of the organ of Corti; v is a geometric factor. The pressure difference
through the cochlea cross-section is transformed to a force on the hair bundle by pp,. The
parameters v; and a; are constants determined by the geometry of the organ of Corti.

Considerable effort®17 has been expended in finding physiologically plausible values for
each of the parameter values in the model. Specifically, in what follows we shall follow o)
Maoiléidigh and Jiilicher*, and take parameter values as given in Table I. Note that we
allow funax, S and D to make variations from the values in Ref. 4, in order to explore the

behaviour of the model under variation of parameters.
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FIG. 8. (a),(b) Bifurcation diagrams of equation (4) at parameter values given in Tab. I,
with F© = 0 as the two parameters f,.x and S are allowed to vary for D = 60nm and
D = 36nm, respectively. Continuous lines represent fold bifurcations. The dash-dotted
lines show equilibria with Po = 1/2. (c¢) The response of the forced model for D = 60 nm
near a Hopf bifurcation; and (d) far from a bifurcation curve D = 36. (e),(f) The locations of

the hysteresis of response in frequency and SPL for D = 60 nm and D = 36 nm, respectively.

A. Bifurcation analysis: Hopf and cusp bifurcations

The unforced dynamics of the model can be characterized by its bifurcation diagram,
which we have computed using numerical continuation methods!®. The results are presented

in Fig. 8(a)—(b). It can be seen from the figures that for both values of D there are two
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fold bifurcations that connect at a cusp point. Inside the wedge-shaped parameter region
between the two fold bifurcations there are two stable equilibria, outside it there is just
one. In addition, for D sufficiently large, a loop shaped curve of Hopf bifurcations occurs,
such that the equilibrium becomes unstable inside the loop. Depending on the criticality
of the Hopf bifurcation a stable limit cycle exists inside the loop or also in its small outer
neighborhood in the subcritical case. The Hopf bifurcation curve on both sides of the cusp
point meets the fold curve at a fold-Hopf bifurcation, an unfolding of which is likely to signal
the presence of further bifurcation curves’.

The Hopf loop disappears from the bifurcation diagram at a so-called codimension-three
Hopf-cusp bifurcation that occurs as we vary D. We shall show below that decreasing
D below this critical value, and hence eliminating the Hopf bifurcation, still results in a
compressively nonlinear response.

First, to find the codimesion-three point, note that the cusp bifurcation always occurs
on the line where equation (4) has a symmetry, that is, where there is an equilibrium with
Py = 1/2. In fact, the two-parameter bifurcation diagram in Fig. 8(a) is symmetric about
this dash-dotted line, independently of D. So in order to find the critical codimension-
three point, we need to find a condition where the two fold-Hopf points meet and occur
for an equilibrium at Py = 1/2. This can be done by restricting the system to Po = 1/2
and then stipulating that the characteristic polynomial of the Jacobian of (4) must have
vanishing constant and second-order terms. This condition is equivalent to requiring for a
pair of purely imaginary and a single zero root of the system at the equilibrium. A routine
calculation allows us to find the unique set of parameters and coordinate values for the

codimesion-three Hopf-cusp bifurcation, that is,

2y = —66.6283nm, 7, = —101.823nm, ¢ = 0.794324 pC,

Ffnax = 1.093090N, S = 1.07164 and D = 38.6783 nm.

Therefore, values of D < 38.6783 nm will result in no Hopf bifurcations outside the bistable

region. A bifurcation diagram without the Hopf loop can be seen in Fig. 8(b) for D = 36 nm.
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B. Forced dynamics

In order to study the forced dynamics we rescale the forcing frequency in equation (4),
so that it is most sensitive at 6.6 kHz, the CF for the data in Fig. 2. The most sensitive
frequency wgens can be computed approximately from the complex eigenvalues of the Jacobian
of (4), and is the imaginary part of this eigenvalue. Then we rescale the frequency so that
when we assume 6.6 kHz forcing we are in fact forcing at weens ~ 4 x 27 ms~!. The forced
response curves are shown in panels (¢)—(d) of Fig. 8 for the O Maoiléidigh & Jiilicher
model (4).

In figures 8(c) and 8(d) the system is tuned such that the equilibrium occurs for Py =
1/2. It can be argued from an evolutionary point of view that Po = 1/2 is preferable as this
leads to maximum sensitivity of the hair bundles. In figure 8(c) we used the same parameters
that were used to test the nonlinear behaviour in Ref. 4. The result is directly comparable to
Fig. 2(a) since it uses the same quantities and units. The qualitative behaviour is strikingly
similar to that of the experimental data. However, one extra feature apparent. For the 5
kHzfrequency, the response displays a hysteresis or a jump in amplitude, which is not seen

in the experiment. This jump is present but less apparent in Fig. 5 of Ref. 4.

To demonstrate that being near the Hopf bifurcation is not necessary for compressive
nonlinearity we used a parameter set (D = 36 nm, fi.x = 1.15nN and S = 1.04305) where
the Hopf bifurcation is removed from the monostable parameter region of the system. The
result of the computation (Fig. 8(e)) is rather similar to Fig. 8(d) with the difference that
the amplifiction is significantly lower. However, there is still 40dB between the 6.6kHz and
10kHz response at low SPLs. This is an indication that the Hopf bifurcation is not the

ultimate feature of the system that produces the compressive nonlinearity.

In figure 8(e)—(f) we mapped out the region where the hysteresis takes place in the
parameter region of forcing frequency and amplitude for our two cases. Notice that lower
than CF frequencies are affected and that the hysteresis occurs at higher amplitude as the

forcing frequency decreases. While removing the Hopf bifurcation from the monostable
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region reduces the region of hysteresis we found that the phenomena could not be removed
without compromising the overall behaviour of the model.

Given that equation (4) produces results that give plausible agreement with experimental
data under variation of parameters (e.g. D) which qualitatively change the structure of the
underlying dynamics (e.g. the presence or not of Hopf bifurcations), we are interested to
investigate which are the key features of the mathematical model. In what follows, therefore,
we shall try to capture the essence of the model with the aim of providing further insight
into which physiological features might be the most important, and which parameter values

should be the most critical to measure accurately.

C. A simplified model

When analyzing the forced response of (4), it would appear that it is possible to neglect
all the nonlinearity of the hair bundle mechanics. We suggest that the term Iy, Po, occurring
in equation (4) for ¢ is sufficient to produce realistic compressive nonlinearity. Linearizing
the open probability function at the equilibrium Py = 1/2 in the equations for = and =z,
lead to a forced damped oscillator which is coupled to a capacitor with charge ¢q. To ensure

Po = 1/2 we fix the sensitivity

 Dkgs + 2kgd

° [
Using the transformation
2X9
Y N T ke(0A 12 Y

we write down the simplified model

i = —2Cwoy — wiy — %w%q + wgﬂthcoswt,

7
q=—gpny — 2y — J q + I Po(Ay) — gpaq F cos wt. g

Ceff
Within the model wy is the CF for the cross-section of the cochlea in question and ( is

the relative damping factor. Note that Py depends on y = &,. This is the result of the
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transformation and matches the observation inherent in the data in Fig. 3 that the current
flow depends chiefly on hair bundle velocity, rather than displacement.

The rest of the parameters are transformed as

W2 — E(fmax YA + kgs(0A + 2))
0 2D\ ’
kgsAa(4 — DA) 4 2X(finax VA + kgs(0A + 2)) + 4kA,
2wo = AN ’

o Aa(InpA — 4g71p)
27 2(frnax YA + kgs (A +2))

Figure 9 shows the forced response curves for the simplified model (7) using the parameter
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FIG. 9. Response of the simplified model (7). Parameters are the same as in Fig 8(e).

values in Tab. I with the exception of D = 36 nm and f,,,x = 1.15nN, again with CF scaled to
6.6 kHz. It can be seen from the figure that the model behaves in essentially the same way as
equation (4), it even capure the bistable behaviour of Fig. 8(e) even though most nonlinearity
is removed. We note that the damping coefficient ( is negative for fu.x < 1.209nN.

The system (7) loses its stability for fi.x < 1.04nN with a characteristic root passing
through 0. We note that this stability loss is not a generic bifurcation, because no extra
solution is created before or after this parameter value. The already unstable system also

undergoes supercritical Hopf bifurcation at fu.x ~ 0.9574nN, which has no effect on the

overall dynamics.
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VI. MODEL WITH NONLINEAR TRANSDUCTION CURRENT AND
ELECTROMOTILITY

It should be remembered that the measured data in Fig. 2 are the vibration amplitude
of the BM, not the charge in the OHC, nor the deflection of hair bundles. The precise
mechanism of feedback of somatic motility to the BM is likely to be through the Deiters’
cells. With this in mind, we shall propose here another model that aims to capture only
these features.

Since it is possible to capture the nonlinear compression in a model without active
hair bundle motility we propose a modified version of the full description of organ of Corti
mechanics given in Ref. 4. The model is described conceptually in Fig. 10, illustrating how
the motion of the hair bundle zy;,(¢) is coupled to that of the BM deflection xy,,(t) through
the excess charge ¢(t) in the OHC.

In our model the hair bundle is coupled to the basilar membrane through a simple
mechanism that neglects the inertia of the HB and assumes a passive HB mechanics. Hence,
we only need to model the transduction current that causes the hair cell to expand and
contract. As can be seen in Fig. 3, the transduction current peaks at the onset of the
displacement stimulation and it settles back to almost zero assymptotically. This current is
accurately modeled by Tinevez et al.'”. However, we aim for a passive hair bundle, therefore
our model can be simpler. We assume an exponential decay with time constant x and an
almost complete adaptation. We also suppose that there is an adaptation variable x, that
is linearly adapting to the hair bundle displacement xy;,. The transduction current flowing
through the ion channels is then a function (Py) of both the speed and the position of the
adaptation variable (ax, + (,), where 8 > « in order to capture the observation that the
current is more a function of bundle velocity than displacement. Hence we reach a simple

transduction current model

B0 = —K(Ta — Thp), (8)

I = —Po(A(Oél’a + ﬁj;a))v (9>
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FIG. 10. Schematic description of a somatic motility model with feedback to the basilar
membrane. The basilar membrane (BM) is coupled to the bone structure of the cochlea
and to the OHC through the Deiters’ cells. The pressure difference wave v, F' sin wt causes
the BM to vibrate with amplitude 2y, () A combination of the fluid pressure difference and
the BM motion forces the hair bundle, which cause ion channels to open that conduct ion
currents [ into the OHC. The outer hair cell changes its length in proportion to its excess

charge q. The Deiters’ cells then feedback to the BM the force exerted by the OHC.

where Po(-) is as defined in (5). The response of such a simple adaptation function to step
displacements of different magnitude is shown in Fig. 11. Note the qualitative agreement of

such a function to the data in Fig. 3(a).

In this model, the BM is modeled as a linear oscillator with natural frequency wg, the
CF of the longitudinal position in question, and damping ratio (. The BM is also coupled
to the OHC through the Deiters’ cells that are again represented by a spring and a damper.
This force is represented by the term wff,q. The detailed derivation of the mechanics can

be found in Appendix B.

We suppose that the excess charge ¢ in the hair cell leaks at rate v and that the hair cell

expands and contracts from its equilibrium length in direct proportion to the excess charge.
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FIG. 11. Adaptation of the transduction current in the hair bundle. (a) The applied
displacement steps xyp,(t) applied to the hair bundle. (b) (b) The corresponding transduction

current /(t) given by (9). The parameters used are k = lms, & = 0.03, =1 and A = 7.

The force of the OHC is calculated as Fone = —koneTone — doncTone — pg, where p is the
piezoelectric constant of the OHC. The hair cell is charged by the transduction current I.
The hair bundle excitation is driven by the basilar membrane motion xpy,(¢) and indirectly
by the assumed sinusoidal pressure difference vy, F'sinwt. This indirect forcing term arises
from the derivation in Appendix B, where we assume that the coupled passive BM and hair
bundle has a general two degree of freedom mechanics. Even though the indirect forcing by
the pressure is small, its effect can be rather large due to the sensitivity of the hair bundle.

Under the above assumptions, the governing set of equations is

Tpm = —2CWoThm — wg (Tbm — f49) + Vom F sinwt,
Ta = —F (o = (YomTom + Yom folbm + Vi F'sinwt)) , (10)
4= —vq+ InPo(Ai,) — Po(0),
where Pg is defined as before. The parameters of the model can be seen in Table II.

The unforced model (10) (with F' = 0) has a unique equilibrium. The stability of
this equilibrium can be computed by linearization. The stability chart in terms of the two
parameters f,, f, is shown in Fig. 12(a). The stable region is bounded a Hopf bifurcation
curve (thick solid line). The stable system has two resonances in the grey regions and we
assume that the higher resonance frequency is the CF. These two frequencies are close to

each other around the point (e).
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FIG. 12. Panel (a) shows the stability chart of model (10) in terms of the two feedback
parameters f, and f,. Amplitude response of the model (10) is shown in panel (b) for
f,=02V/N, f; =0.539ms™! (c) for f, = 0.2V/N f, = 0.5ms™ !, (d) for f, =0.5V/N f, =
0.2ms™, (e) for f, = 0.87V/N, f, = 0.163ms ! and (f) for f, = 0.87V/N and f; = 0.12.

Other parameters can be found in Table II.

The amplitude response of Eq. (10) is depicted in Fig. 12(b)—(f). Like the models intro-
duced in the previous section, it can be seen in Fig. 12(b) that the amplitude response has
a linear region for small forcing amplitudes, a plateau for medium range forcing amplitudes
and it tends to be linear again for the highest forcing amplitudes, consistent with the data
in Fig. 2. The parameters of Figs. 12(b),(e) are tuned near a Hopf bifurcation, therefore
their frequency tuning is better than at other parameters. It is also interesting to note that
the two nearby resonances in Fig. 12(e) make the system very compressive and that the 5
kHz curve represents a higher amplitude response than the 6.6 kHz curve. Also, tuning is
not evident in Fig. 12(e),(f), because of nearby resonances in the system. As one moves
away from the Hopf bifurcation in Fig. 12(c),(d),(f) the linear tuning diminishes however

the compression remains. Another difference from the previous models is that hysteresis
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occurs for frequencies higher than CF.

Many physiological features are omitted from this model. In particular, the active force
of the hair bundle is excluded, in favour of the transduction current that drives the BM
through the somatic motility of the OHC. This shows that active hair bundle motility is
not necessary for compressively nonlinear amplification if the hair bundle is forced by the

pressure difference across the cochlear partition due to a passive organ of Corti mechanism.

VII. DISCUSSION

In this paper we have used mathematical modeling and numerical continuation tech-
niques to study the compressive nonlinearity present in the mammalian cochlea. We have
assessed various models, including the popular Hopf oscillator model, another phenomeno-
logical model inspired by observed hair bundle characteristics, followed by a model based on
detailed physiological understanding, with two simplified models that aim to capture some
of its key features. One key conclusion from our analysis of these models is that the presence
of a Hopf bifurcation is not necessary for a local model to produce results in agreement with

experimental data.

We first considered the Hopf oscillator model, Eq. (1), and highlighted several shortcom-
ings. The Hopf oscillator model does not exhibit compression of greater than 1/3-power,
nor an ultimately linear region, and so does not compare well with the data shown in Fig. 2.
In addition the original motivation for the Hopf model, in which the 1/3-power law is felt
right down to zero input, requires delicate two-parameter tuning. Nevertheless, the 1/3-law
can still be seen for large input amplitudes without this tuning, although o > 0 must be
avoided to prevent self-oscillation (although such oscillations may have a role in explaining
otoacoustic emissions). However, we should note that there is recent evidence'® that the
presence of noise in the normal form for a Hopf oscillator can give compression levels that

are flatter than 1/3.

Next we compared the Hopf oscillator with another phenomenological model, that of a
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cusp oscillator, Eq. (2). The output of the cusp oscillator also shows linear response for small
input, and 1/3-power compression for larger forcing. Furthermore, it is robust to parameter
changes. However, the key feature shared by both the cusp and the Hopf oscillator models,
which gives rise to a 1/3-power nonlinearity, is actually cubic nonlinearity.

We then described the physiologically-based model of O Maoiléidigh & Jiilicher?, Eq. (4),
in which the authors have taken significant care to include physically measurable parameter
values. The results are better than either the Hopf or cusp oscillator models, in that there
is smaller rate of growth than 1/3 and an eventual linear region for large input.

In order to understand better the key features of the o) Maoiléidigh & Jiilicher model,
we pose two simplifications. The first, Eq. (7), consists only of a forced damped oscillator
coupled to a capacitor through the open probability function. The results are strikingly sim-
ilar to those obtained from the full physiologically-based model. Perhaps most interestingly,
this model contains neither a Hopf bifurcation nor a cusp, and still produces results that
are in reasonably good agreement with the data in Fig. 2.

Finally, we proposed a second simplification of the o) Maoiléidigh & Jiilicher model,
Eq. (10), omitting active hair bundle dynamics but including BM motion and OHC charge
coupling. We found similar qualitative behavior, which confirms that under our assumptions
hair bundle motility is not important to produce compressive nonlinear behaviour. The
stability analysis revealed that there is a large parameter region where the model does not
require precise tuning of parameters.

The chief shortcoming of all the models we consider here is that they are purely local.
In particular, they all ignore the process by which sound waves travel longitudinally along
the BM. It is widely accepted that each longitudinal position codes for a particular input
frequency, the so-called characteristic frequency (CF) of that location. The simplification
inherent in all these models is that the nonlinear active process applies only to frequencies
close to the particular CF frequency at the longitudinal position under consideration.

However, there is evidence to suggest that longitudinal coupling may indeed be present

in the cochlea, and contribute significantly to the dynamics. The CF for a particular location
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may be amplitude dependent, with the peak of the traveling wave shifting towards the base
as input intensity is increased?®. The fluid motion in and around the organ of Corti is not
likely to be entirely planar, and may affect OHCs at nearby longitudinal positions!?. The
tectorial membrane is also capable of supporting longitudinal travelling waves?’. In addition,
it has been argued that a slight tilting of the OHC, so that the hair bundles are closer to
the stapes than the base, can lead to a feed-forward amplification process?'. It is perhaps
unrealistic that the results of a local model could ever be closely matched to whole-organ
experimental data; all such data will contain the influence of longitudinal coupling, and so

a local model should not be expected to provide accurate quantitative comparison.

Several avenues of future work suggest themselves based on the results presented here.
First, a more extensive investigation of the parameter space of the new model (10) would
be useful, as would fitting its parameters to various physiological measurements, such as the
properties of the Deiters’ cells. Second, a more detailed understanding of the behavior of
the ion channels is required in order to avoid the phenomenological choice of the form and
argument of an open probability function??. Such a treatment might shed more light on the
rate of compression, which in our models is close to saturation due to the Boltzmann open
probability function Pp. It seems that the form of this nonlinearity rather than a cubic
nonlinearity as is present in the normal-form models, or the presence of a local bifurcation
is the key feature that gives a compressive nonlinear response that is observed in the BM
motion as in Fig. 2. Finally, and most importantly, each of the models needs to be coupled to
the longitudinal pressure-wave dynamics, in which a form of active mechanism is applied at
each location along the basilar membrane. Until such a study is undertaken, the conclusions

of this paper must be interpreted somewhat tentatively.

Acknowledgements

The authors would also like to acknowledge helpful conversations with Dr. K. Tsanava-

Atanasova and Prof. L. Mahadevan. This work has been funded through generous support

28



from the UK BBSRC (Grant Reference BBF0093561) and the Wellcome Trust.

APPENDIX A: COMPRESSION RATE OF THE CUSP MODEL

A simple calculation can show that indeed equation (2) exhibits a 1/3-power law in its
large amplitude dynamic response. For example, using a harmonic balance method one can
seek a solution as a truncated Fourier series z(t) = ag + ay coswt + by sinwt. Avoiding the
symmetric case &« = 0 one can parametrize both the input amplitude and the vibration
amplitude response z = \/m, by ag, the DC part of the response; note that for a« =0

such a parameterization is impossible. Specifically, we find

2(a+ agf — ado) 2
?(ag) = 0 = 1 Al
(ay) . 24 00) (A1)

and

(Bag — ago + ) ((a —apf + 5a80)2 + 4a(2)w2> ob

F?(ag) = _
(o) 6ago 6oad

+ O(ay?) (A2)

From these two asymptotic scalings, we see immediately a 1/3-power law nonlinearity in the
limit of large sound input, F' — oco. In particular, note that F' — oo as ag — 0. Hence

ag — 0 represents the limit of large sound input, and we have

lim ————— = -. (A3)

APPENDIX B: DERIVATION OF THE OHC-DC-BM MODEL

We assume that the BM and HB are coupled through a simple mechanical system, where
the HB has negligible mass. This coupling is described by the mechanical system
MbmZLbm dim di2 Thm Kbm K12 Tbm Jisinwt — Fyc

_I_ —=
0 dy2 dyp T k12 knb Thb fosinwt

(B1)
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The right hand side of the equation corresponds to the forcing of the BM and HB from
the Deiters’ cell (DC) and the external forcing of the pressure difference between the two
compartments of the cochlea. Note that k15 and di5 can be negative, but need to have the
same sign. The OHC has its own stiffness and damping and can generate a force proportional

to its charge

Fohc = _kohcxohc - dohciohc — Pq.

The DC is represented by a simple spring and damper. Assuming the reticular lamina does
not move the DC length can be calculated from the constraints xq. = —Zpm — ZTone. Thus,

the force excerted by the DC is
Fy = Kae(Tpm + Tone) + dae(Tom + Tohe)-

We assume that the OHC and DC damping and stiffnesses are proportional, that is,

done/kone = dac/kgc. Solving Fy. = Fype with this assumption we get

kohc . kohc
Foe = ——— (kaeTom + dacom) —p | 1 — ——— ) ¢.
d kdc+kohc( deh * deh ) p( kdc_l'kohc)q

From the equation of motion of the HB, we find that
dubZnb + ki Ty = fasinwt — digfym — k122bm-
We want to replace iy, in the first line of (B1), therefore we use

. d . d
dyoTnb + k12xnn, = d_12 <dhb$hb + knbZhp + (d—hbkm — k‘hb) xhb)
hb

12
_dp

. ) d
= d_hb (f2 sinwt — diaTpm — k12Tom + (ﬁk‘m — khb) $hb> .

di2

to get

jbm + 2CW0j7bm + wg (CL’bm + fhbafhb — qu> = meF sin wt,
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where

1
ST

d%Q + M)
mMpm

dwy ke + Kone
1 diok kdckone
w% _ o — 12F12 dcFoh
Mpm dhb kdc + kohc

kohc
— 1— o
fq mbmw(z) ( kdc + k:ohc) ’

d
Jub = (mbmwg) (lﬁz - d_wk?hb>
hb

d
Vo F' = (fl - Efz)
Mpm du,
The hair bundle dynamics is described by
Thp = —@xhb — @m'b — Mz —Tpm + — 2 sinwt
dhb dop 0 dpy T dwp '

If we assume that the hair bundle dynamics is fast, i.e., ];“TE > 1 then

Thp = (fasinwt — kyaxpy — diafpm) -

b

Putting this into the BM equation we get

Tpm + 2Cwodpm + wg (Tbm — f4q) = Vom F sinwt, (B2)
where
ddckohc k12d12)
20wy = — | dpm + - ,
G bm ( b kac + kohe b

1 kack k?
2 _ L . dcvohe M2
“o ( bm kdc + kohc khb ’

p kohc
— 1— o
fq mbmw(z) ( kdc + k:ohc) ’

Further, to account for the BM and HB sensitivity we define
/2 k12 d12

U = 7=, Yom = —7—, fu=—.
by, ka7 ko
The current adaptation is governed by the equation &, = —k(z, — xp) which becomes

j:a =k {xa - (mexbm + ’mefvx.'bm =+ Vth sin Wt)} : (B?))
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In case one wants to include the hair bundle dynamics, its equation with the new parameters

becomes

ThbThb = —Thb + YbmTbm + Yom foLbm + VhpF sin wt, (B4)

where Thh — dhb/khb-
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TABLE I. Parameter values used in simulations of the O Maoiléidigh & Jiilicher model (4).

Parameter Value

D 60 nm

A 1.9305 nm !

o 35.1951 nm

g 4 x 1075 nA/pV
Figs 8 x 103 N/m

vy 0.25

P 16 uV/nm

Cone 2 % 1075 uF

A 2 x 1072 mNs/m
Aa 2 x 1072 mNs/m
3RS 1.05 x 1073 mm?
k 0.103 N/m

o —6.91 nm/Pa

b1 —8.12 mN

" 0.530

Iy 3nA

Ceft (Cohe + Bip®) !
F 20 uPa at 0 dB SPL

TABLE II. Parameter values used in simulations of the model (10).

Parameter Value

wo 6.6 X 27 1/ms
¢ 0.1
A 1.9305 nm~!
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Vbm

Vhb

Ybm
Ty,
fq
Jo

3.1623 x 10* (mm)?/N(ms)?
9.4868 nm/Pa

4.4 1/ms

1.8 1/ms

1073

3nA

0 — 1000 mV /N
0—21/ms

20 pPa at 0 dB SPL
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FIG. 3

(color online) Schematic diagram of a cross-section through the organ of Corti
of the mammalian cochlea, showing the locations of the basilar membrane
(BM), Deiters’ cells (D), outer hair cells (OHC), the reticular lamina (RL),
hair bundles (HB), tectorial membrane (TM), inner hair cells (IHC) and one

auditory nerve (AN) fiber. . . . . . ...

(a) Basilar membrane vibration amplitude against sound pressure level (plot
on a log-log scale) for the chinchilla cochlea at a location corresponding to
characteristic frequency (CF) of 6.6 kHz. Each curve corresponds to a dif-
ferent input frequency, as indicated. (b), (c¢) Similar data obtained from
different locations with CF’s of 6.1 kHz and 9.1 kHz respectively with stim-
ulation only at the CF frequency in each case. The straight lines have slope
1 and represent linear behavior. (d) Similar result for a location with CF
6.8 kHz for which a treatment has been made which (progressively, over the
course of an hour) prevents the function of the active process. Reproduced

from Ref. 2 with permission) . . . . . .. ... ... o Lo

Mechanical properties of the OHC hair bundle. (a) MET currents in a P11
rat for stimulation with flexible fiber (top); also shown are the movements of
the fiber end attached to the piezo (middle) and of the hair bundle (bottom).
(b) Peak MET current (f) versus displacement (data points) fitted with
a Boltzmann relation. (c) Force-displacement plots at successive times (t)
after peak current: ¢ = 0 (filled circles), 0.07, 0.27, 0.47, 0.67, 3.9, 8ms (filled
triangles); theoretical fits using the Boltzmann relation from (b). (d) Slope
stiffness of the bundle from differentiating fits in (c¢). Reproduced from Ref. 3

with permission. . . . . . . . ...



FIG. 4

FIG. 5

FIG. 6

The response of the Hopf oscillator (1) with ¢ = 1 and wy = 1. Panels
(a)—(d) show response curves (on a log-log scale) of maximum of |z| (after
ignoring transients) against sound input amplitude F' for a range of different
forcing frequencies w. The values of a used are (a) —0.1, (b) —0.01, (c¢) 0
and (d) 0.01. The dotted lines have unit slope while the dash-dotted lines
have slope 1/3. We used the ode15s solver of MATLAB with relative and

absolute tolerances of 10712, . . . . . . . . .. .. ...

(a) Two-parameter plot of the bifurcation diagram of the cusp normal form
(2) with ' = 0 and ¢ = 1. Note that the cusp point occurs for « = = 0.
(b)—(d) The vibration amplitude of the cusp normal form model (ignoring
the DC component ag) as a function of the input amplitude F for a variety of
input frequencies w. Thick shaded lines correspond to numerical data (com-
puted using PDDE-CONT?'), and black lines represent the harmonic balance
approximation (Al), (A2) or equivalent formulae for & = 0 (see Appendix
A). The dashed curves indicate unstable vibrations that are ‘invisible’ in
direct simulations. The parameters are: (b) a =0, f=—1(c)a=0,=1

and (d) a=0.1, 8=1. . . . .

The response of the cusp bifurcation model for equation (2) in panel (a) and
for (3) in panel (b), with @ = 0.1, 8 = —1 and ¢ = 1. The additional
parameters for (3) are ¢ = 0.1 and wy = 6.6 X 27 with time measured in

milliseconds. . . . ..



FIG. 7

FIG. 8

FIG. 9

FIG. 10

Schematic description of hair bundle mechanics. (a) The transverse geometry
of an OHC showing rows of cilia displaced by an angle xy,;, connected by elastic
tip links of stiffness kg. The links are pinned to the end of the shorter hair,
and are free to move a distance x, up and down the longer hair through the
action of myosin motors. The stretching of the tip link controls the open
probabilities of an ion channels that cause depolarizing current I to flow into
the hair cell body. The open probability follows the Boltzmann-like function
depicted in panel (b), see equation (5). Panel (c) shows more details of the

mechanics of two adjacent cilia. . . . . . . .. ...

(a),(b) Bifurcation diagrams of equation (4) at parameter values given in
Tab. I, with F' = 0 as the two parameters f,.. and S are allowed to vary
for D = 60nm and D = 36 nm, respectively. Continuous lines represent fold
bifurcations. The dash-dotted lines show equilibria with Pp = 1/2. (c¢) The
response of the forced model for D = 60 nm near a Hopf bifurcation; and (d)

far from a bifurcation curve D = 36. (e),(f) The locations of the hysteresis

of response in frequency and SPL for D = 60nm and D = 36 nm, respectively. 17

Response of the simplified model (7). Parameters are the same as in Fig 8(e). 21

Schematic description of a somatic motility model with feedback to the basilar
membrane. The basilar membrane (BM) is coupled to the bone structure
of the cochlea and to the OHC through the Deiters’ cells. The pressure
difference wave v, F'sinwt causes the BM to vibrate with amplitude zpy,(t)
A combination of the fluid pressure difference and the BM motion forces the
hair bundle, which cause ion channels to open that conduct ion currents [
into the OHC. The outer hair cell changes its length in proportion to its
excess charge ¢q. The Deiters’ cells then feedback to the BM the force exerted

by the OHC. . . . . . . . . .



FIG. 11

FIG. 12

Adaptation of the transduction current in the hair bundle. (a) The applied
displacement steps xpp(t) applied to the hair bundle. (b) (b) The correspond-
ing transduction current /(t) given by (9). The parameters used are k = lms,
a=003,=1land A=7. . . . ...
Panel (a) shows the stability chart of model (10) in terms of the two feedback
parameters f, and f,. Amplitude response of the model (10) is shown in panel
(b) for f, = 0.2V/N, f; = 0.539ms™' (¢) for f, = 0.2V/N f, = 0.5ms™ !,
(d) for f, = 0.5V/N f, = 0.2ms™!, (e) for f, = 0.87V/N, f, = 0.163ms™*
and (f) for f, = 0.87V/N and f; = 0.12. Other parameters can be found in
Table II. . . . . . o o
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