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ABSTRACT: Inclined cables are important structural elements of cable-stayed bridges. When the bridge deck oscillates, large
amplitude cable vibrations can arise in various modes as a result of the low cable damping, parametric excitation or non-linear
modal coupling. The resulting vibrations are undesirable and potentially damaging to the long-term performance of the bridge.
The phenomena can be modelled considering internal resonances between in-plane and out-of-plane modes of vibration of the
cable. Here they have been studied using a four-mode model that represents the response of an inclined cable vertically excited at
the lower end (i.e. from the deck) with a frequency that is close to the natural frequency of the second cable mode in each plane and
twice the frequency of the first mode in each plane. The modal equations of the model are investigated using the software package
AUTO for the numerical continuation of solutions of a system of ODEs. This allows the identification of the important solution
branches in the cable model responsible for unwanted vibration behaviour. The result of our analysis is that we identify amplitudes
of excitation above which modes other than the directly excited mode (the second in-plane mode) start contributing to the response
of the cable. In addition, we show that the response amplitudes in these additional modes is of similar magnitude to the amplitudes
in the directly excited mode, which could be considered an issue in the design of cable-stayed bridges. In summary, by using a
numerical continuation technique we predict when the response of the cable will change from a single in-plane mode to coupled
responses in two or more modes, in-plane or in both planes, and the modal amplitudes involved in these coupled responses.

KEY WORDS: Cable vibration; Internal resonance; Sway motion; Modal interaction; Bifurcation analysis.

1 INTRODUCTION

The inclined cables of cable-stayed bridges are typically lightly
damped. When the bridge deck oscillates (typically from wind
or traffic excitation) it provides a support motion input to the
cable. This type of excitation can lead to large amplitude
vibrations of the cable [1]. A case of particular interest is
when the deck motion is at two times a natural frequency of
the cable, which can lead to large amplitude parametrically
excited vibrations. This phenomenon was studied in [2] by using
a nonlinear Mathieu-type equation to model the parametric
resonance [3]. However, since the cables are taut, the natural
frequencies are almost at pure harmonics of the fundamental
mode, so two times one natural frequency closely coincides
with another mode, which is directly excited by the same input
[4], [5]. Furthermore internal resonance occurs between the
in-plane and out-of-plane modes, so non-linear coupling leads
to out-of-plane responses for in-plane excitation. The deck
motions are generally larger at lower frequencies, so the most
significant responses often occur for deck motions around the
second natural frequency of the cable, where small deck inputs
can cause large responses in the first and second modes in both
planes.

In this paper the Warnitchai equations [6] (see also [7] for a
detailed derivation) are used to model the vibration of the cable.
It is assumed that the longitudinal vibrations of the cable can
be neglected, so that the planes of interest are vertical (in-plane)
and sway (out-of-plane).

δ

θ
l

Figure 1. Schematic representation of an inclined cable with
vertical input motion at the lower attachement point.

Four modes are included in the model, two in-plane and two out-
of-plane, which enables the important low frequency dynamic
behaviour to be modelled [8], [9]. The Warnitchai equations
are scaled and averaged using the same procedure as previously
presented in [4], [5]. Then a bifurcation study is carried out by
means of numerical continuation [10] with the software package
AUTO [11]. In this way, a series of bifurcation diagrams are
produced for different values of the detuning parameter of the
excitation frequency (with respect to the second in-plane natural
frequency) with the aim of studying the behaviour of modal
amplitudes of the response of the cable close to the resonance
frequency. The result is a general picture of the stable and
unstable branches and all interactions between the bifurcation
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loci curves in the space defined by the norm of the solutions
and both main parameters (input amplitude and frequency). In
addition, one of these solution branches is discussed in more
detail regarding the response amplitudes in all modes that our
model includes.

The remainder of this paper is structured as follows. In
Section 2 the equations of motion for the inclined cable
model are presented as derived via scaling and first-order
averaging. Section 3 describes the bifurcation study and
numerical continuation analysis. Conclusions are drawn in
Section 4.

2 MODAL AMPLITUDE EQUATIONS

In this paper we use a mathematical model of an inclined
cable, see Figure 1, which is excited vertically at the bottom
anchorage with amplitude∆ and angular frequencyΩ where its
upper anchorage stays in the rest position [4]. Our model is
based on the Warnitchai equations used in [4], [5], [6], [7]. In
the Warnitchai derivation, the out-of-plane and in-plane modal
response of the cable are given by

v(x, t) = ∑∞
n=1 φn(x)yn(t),

w(x, t) = ∑∞
n=1 ψn(x)zn(t),

respectively, wherex∈[0, `], ` is the support separation distance,
the spatial functionsφ(x) andψ(x) are the out-of-plane and in-
plane linear modes of a cable with fixed ends, andyn(t) andzn(t)
their corresponding time-dependent generalised coordinates.
The mode shapes for the out-of-plane and even in-plane modes

of the linearised system are assumed to be:

φn = sin
(

nπ
x
`

)
for n = 1,2,3, . . . ,

ψn = sin
(

nπ
x
`

)
for n = 2,4,6, . . . .

For the odd in-plane modes the mode shapes are more complex;
however, as is discussed in [7], for taut cables they may be
approximated by sine functions of the same form as the out-
of-plane modes. To derive the time-dependent generalised
coordinates we can use the non-autonomous system with
eight ODEs, see [5] where the original Warnitchai equations
of motion of the cable are scaled and averaged to became
Equations (1). Here,C1 = 3M1 +8M2, C2 = M1 +6M2, where
M1 = y2

1c + y2
1s + z2

1c + z2
1s and M2 = y2

2c + y2
2s + z2

2c + z2
2s.

Furthermore,κ = k1/2, Wnk = νnk/m, Nn = 2ηnsinθ/m, B =
ζ2cosθ/m andδ = ∆cos(Ωt); numerical values for the cable
parameters are given in Table 1 and Table 2 based on the scaled-
model cable tested in [5]. In the expressions forWnk,Nn andB:

Table 1. Dimensional cable parameters

N1 [Hz2/m] W12 [1/(s.m)2] ω1 [rad/s]
1.04×10−4 5.19×10−4 20.4852

Table 2. Nondimensional cable parameters.

B ξ κ
0.2939 0.002 0.0234

m= ρA`/2 is the modal mass of the cable (for all modes),θ is
the angle between the cable chord and the horizontal plane,σs is
the static stress,λ 2 is Irvine’s parameter,A is the cross sectional
area,ρ is the density,g is gravity andE is Young’s modulus;



ωn is the n-th natural frequency of the cable. The equivalent
modulus of the cableEq, the distributed weight perpendicular to
the cable chordγ, and the parametersνnk,ηn,ζn are given by:
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The out-of-plane and in-plane natural frequencies,ωyn andωzn

respectively, are given by
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The vibration response of the cable presented by Equations (1)
can be expressed by the amplitude contributions of two in-plane
and two out-of-plane modal amplitudes:

• Z2 =
√

z2
2c +z2

2s for the second in-plane modal amplitude;

• Z1 =
√

z2
1c +z2

1s for the first in-plane modal amplitude;

• Y2 =
√

y2
2c +y2

2s for the second out-of-plane modal amplitude;

• Y1 =
√

y2
1c +y2

1s for the first out-of-plane modal amplitude.
The amplitude of excitation∆ and the detuningµ = Ω/ω2−1
between the frequency of the actuator and the second natural
frequency of the cable are the main parameters of Equations
(1). The non-dimensional values that are used when we vary the
parameters of the system are∆/L andµ , whereL = 5.4m is the
untensioned cable length measured from the top of the cable to

its bottom, andL≈ `. The norm||N||=
√

Z2
2 +Z2

1 +Y2
2 +Y2

1 /L

of the solutions of Equations (1) is a function of∆/L and µ ,
which we use to measure the changes of the behaviour of the
cable response.

3 BIFURCATION STUDY

Our system in the form of ODEs (1) can be examined with
the continuation software AUTO [10], [11]. In our study we
follow the stable solutions of Equations (1) from zero forcing
amplitude, hence zero response amplitude, and different values
of forcing frequency close to the second natural frequency of
the cable. Therefore we fix the forcing frequency and vary
the excitation amplitude. This leads to increasing amplitude
of the response of the cable. Because the averaging technique
is based on modal decomposition, we are analysing how the
modal amplitudes of the response change as the excitation
amplitude increases from zero to positive values. In the resulting
bifurcation diagrams [12], [13], stable and unstable solution
branches can be identified. Since the stable solutions define the
possible modes of behaviour of the physical cable system we
can calculate each modal contribution to the overall vibration
response. By combining multiple continuations of this type,
each one for a different frequency close to 2:1 resonance, we
obtain a set of solution curves of Equations (1).

3.1 Stability boundaries in(∆/L,µ, ||N||)-space

Series of solution curves of Equations (1) of the following
types (Z2 6= 0,Z1 = Y2 = Y1 = 0) for (∆/L,µ) ∈ [0,6.2×
10−3]× [−0.03,0.07] give us a set of solution branchesΓ in
(∆/L,µ, ||N||)-space, see Figure 2. The solution curve for
µ = 0.01 is shown colourless to identify the intersection ofΓ
with the (∆/L,0.01, ||N||)-plane; it is the bold white curve that
is labelledl1. Later in this paper, the bifurcation curvel1 will
be explained in detail.Γ could be constructed if we derive the
equation of the surface that contains it by numerically solving
only the last couple of equations responsible for theZ2-mode
[5], the directly excited mode, while taking into account that all
other modes have no contribution.
In Figure 2 dark grey represents the stable parts of the solution
curves and light the unstable ones. The curvesBY1, BY2, BZ1

and FZ2, drawn black, are respectively the loci of the branch
points ofY1, Y2 andZ1-modal amplitudes and the fold points of
the Z2-modal amplitudes. When it forms a boundary between
dark and light parts then the respective bifurcation concerns
a stable solution. This is the case forBY1 on the left of the
crossing pointN, for BY2 between the crossing pointsN andM,
for FZ2 between the crossing pointsM and the crossing point
K, and forBZ1 between crossing pointK and the right end of
the region ofµ . Otherwise, the respective bifurcation concerns
an unstable solution. In Figure 2 we can see the interactions
of the bifurcation curves at crossing pointsN, M, K and the
cusp pointC [12], [13] therefore, we have a general picture
of how the dynamics of the cable changes when we varyµ or
∆/L by the already shown stability boundaries of the pureZ2-
modal amplitudes response region, the dark grey region ofΓ in
Figure 2.

The approximate coordinates of the pointsN, M, C andK in
(∆/L,µ, ||N||)-space, for the chosen cable parameters, are
(0.8×10−4,0.0036,2.4×10−3) for N,
(0.9×10−4,0.062,6.8×10−3) for M,
(0.2×10−4,0.0035,1.3×10−3) for C, and
(2.2×10−4,0.021,2.3×10−3) for K.
Hence if theBY1-curve is crossed forµ ∈ [−0.03,0.0036] as
∆/L is increased for a fixedµ , we would experience out-of-
plane motion due to the presence of stable branches that include
the Y1 mode. The partsBY1 and FZ2 which concern stable
solutions, approach each other, and they enclose a region that
corresponds to pureZ2-modal amplitude. This region is crossed
by theBZ1-curve. There are two crossings, one is betweenBY1

andBZ1 and another is betweenFZ2 andBZ1 but, because they
are close enough, we only indicate the pointM in between to
denote these crossings. Thus if theBY2-curve is crossed for
µ ∈ [0.0036,0.062], that is, between pointsN and M, as∆/L
is increased for a fixedµ, we would experience out-of-plane
motion due to presence of stable branches that includeY2 mode.
If the FZ2-curve is crossed forµ ∈ [0.0035,0.0062], that is,
between pointsC andM, as∆/L is decreased for a fixedµ, we
would experience a hysteresis jump down to another pureZ2-
modal amplitudes that correspond to solutions with lower norm
||N||. If the FZ2-curve is crossed forµ ∈ [0.0035,0.021], that
is, between pointsC andK, as∆/L is increased for a fixedµ,
we would experience out-of-plane motion due to a hysteresis



−0.03 0.01
0.07 0

3
60

4

8

∆/L

||N ||

µ

×10−3

×10−3

l1

Γ

N

C

K

M
BZ1

BZ1

BZ1

BY1

BY1

BY2

FZ2

`̀

Figure 2. The set of solution branchesΓ in (∆/L,µ , ||N||)-space, obtained by a series of continuations of Equation (1); its
intersection with the(∆/L, ||N||)-plane forµ = 0.01 is the bold white curve denotedl1. Solution branches including a pure
Z2-mode are gray; stable regions are shown dark and unstable region light. Bifurcation curvesBY1, BY2, BZ1 andFZ2, are black,
and the bifurcation pointsC, K, N andM are labeled.

jump to another stable solution branches that includeY1 andY2

modes. As an example of this case we will discuss in details
how the cable response changes when∆/L is increased for fixed
µ = 0.01. Finally if the BZ1-curve is crossed forµ ≥ 0.021
as ∆/L is increased for a fixedµ, whereBZ1 concerns stable
solution, we would experience vibration amplitudes that are not
only in a pureZ2-mode. In this case our theoretical study is
not complete yet, the possible presence of stable limit cycles
in this region makes the prediction of the dynamics beyond the
Z1 branch point curve hard to achieve. As can be seen in [5],
most of the stability boundaries ofZ2-amplitude that are shown
in Figure 2 are experimentally confirmed.

3.2 One-parameter bifurcation diagram

The setΓ of solutions in the(∆/L,µ, ||N||)-space shown in
Fig. 2 features four bifurcation curves. As we explained, these
curves may give rise to additional branches of stable solutions
or to some kind of hysteresis jump to other branches of stable
solutions. To become familiar with one of these situations we
pick the valueµ = 0.01 and perform a detailed continuation
analysis by variation of the amplitude of excitation∆/L∈ [0,7×

10−4]. Thus, Figure 3 presents the one-parameter bifurcation
diagram of Equations (1) for fixedµ = 0.01; it shows the
properties of the solution branchesl1∈Γ1, l2, l3 andl4, and how
their stable (denoted by black) and unstable (denoted by grey)
parts meet in bifurcation points. The bifurcation points that lie
on l1 also lie onΓ so they are the crossing points betweenl1
and the bifurcation curves shown in Figure 2. More precisely,
branch point bifurcationsB1,B3∈BY2 andB2∈BY1 are denoted
by ¥. Fold bifurcation pointsF1,F2∈FZ2 are denoted by•.

The continuation starts at zero amplitude and, as the
excitation increases, we followl1 on which only the Z2-
amplitudes exist. Then at∆/L approximately0.74×10−4 a fold
bifurcation pointF1 appears. The curvel1 loses stability atF1

and becomes unstable until it reaches a second bifurcation point
F2 at ∆/L ≈ 0.37×10−4. There it becomes stable again for a
very small interval, see Figure 4 (enlarged view of Figure 3),
until a branch pointB1 for ∆/L ≈ 0.4×10−4. Beyond the point
B1, l1 stays unstable to the end of the region of interest of∆/L.
According to the instability ofl1 beyondF1, if we increase∆/L
above0.74×10−4, a transition to another stable solution branch
l4 takes place. Onl4 the modal amplitudesZ2, Y1, andY2 are
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Figure 4. Scaled view of Figure 3, we look in the domain
(∆/L, ||N||) ∈ [0.3×10−4,1×10−4] × [2.3×10−3,5.3×
10−3] where we can distinguish howF2 and B1 are
separated by a stable part of thel1 solution branch, and
the connections between thel1− l4 branches.

non-zero, hence for∆/L above0.74×10−4, strong out-of-plane
amplitudes start contributing to the response of the cable. If we
further increase∆/L we will reach the branch pointB5 at∆/L≈
2.1×10−4 that connectsl4 to the stable part ofl2 on whichY1 and
Z2 amplitudes exist. Until the end of the region of continuation,
l2 remains stable andY1 is the only modal amplitude apart from
Z2 that contributes to the overall response of the cable. Here
we have to explain how we found the stable part ofl2 and
l4, which are significant to our study because they give us the
information on the dynamics of the cable past the pointF1 where
we find an out-of-plane response. From the branch pointB1, see
Figure 4, we start to compute solution curvel3, which represents
theY2 contributions to the cable response. In the beginning of

this curve betweenB1 andB4, there exists a region wherel3 is
stable. Beyond the bifurcation pointB4 at∆/L≈ 0.61×10−4, l3
becomes unstable. It joins againl1 at ∆/L ≈ 6.2×10−4. The
point B3 where l3 joins l1 again can be seen in Figure 2 as
the intersection between theBY2 branch point curve andl1. At
∆/L ≈ 0.61×10−4 there is a branch pointB4 on l3, this branch
point is the place wherel3 joins l4, which is the solution curve on
which the modal amplitudesZ2, Y1 andY2 exist. Until the fold
pointF3 at∆/L≈ 0.6×10−4 l4 is unstable; beyond this point the
stable part ofl4 begins and it becomes physically observable as
the solution branch that is responsible for the out-of-plane cable
response that arises when∆/L becomes larger than0.74×10−4,
beyond theF1 fold point. The onset of a contribution of the
Y1-amplitude to theZ2-amplitude, i.e. the solution curvel2
on which we remain for values of∆/L higher than2.1×10−4,
beyond branch pointB5 in Figure 3, goes back to the branch
point B2 on l1 at ∆/L ≈ 0.73×10−4, see Figure 4. BetweenB2

andB5, the branchl2 is unstable and does not effect the response
of the cable.
The stable parts of the solution branchesl1, l2, l3, and l4 are
shown in Figures 5(a), (b), and (c) in order to show how the
Z2, Y1, andY2-amplitudes contribute to the overall response of
the cable forµ = 0.01. Figure 5(a) shows that theZ2-amplitude
contributes to all the stable branchesl1 to l4. The only modal
amplitude that is involved inl1 is theZ2-amplitude; note that in
Figures 5(b) and (c)l1 is shown as zero response. Then, if∆/L
becomes larger than0.74×10−4, we jump from the pointF1 and
the cable response vibrates with out-of-plane contributions from
theY1-amplitude and from theY2-amplitude. As can be seen in
Figures 5(b) and (c),l4 appears as a non-zero curve. AtB5, l4
joins l2, which is the point where theY2-amplitude disappears
and the cable response shows(Z2,Y1)-amplitudes only, until the
end of the region of continuation of∆/L. The contribution
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Figure 5. Modal amplitude contributions to the stable branches
l1− l4 for µ = 0.01 from Figures 3 and 4, showing the
contributions of (a)Z2, (b)Y2, and (c)Y1 modes.

of the Z2-amplitude and of theY2-amplitude tol3, shown in
Figure 5(a),(b), begins at the branch pointB1 and ends at the
branch pointB4. The pointB1 lies on the small stable part of
l1, preceded by the unstable one beyond the fold pointF1, see
Figures 3 and 4. Hence due to the unstable part ofl1 between
F1 andF2, where∆/L decreases, in Figure 5(a),(b) and (c), the
pointsF2 andB1 come beforeF1. Also, because the stable parts
of both l1 and l3 appear as zero solutions in Figure 5(c), they
overlap each other. It is important to note that the amplitudes at
vibration modesY1 andY2 on solution branchl4, andY1 on l2 are
both compatible with the amplitude of the directly excited mode
Z2.

4 CONCLUSIONS

In this paper we presented a theoretical study of the nonlinear
vibration amplitudes of an inclined cable that is excited at
its lower attachment point. Our analysis of the response in
pure Z2-modal amplitudes produced a set of solution curves
that present theZ2 vibration amplitude and the bifurcation
curves as functions of the frequency and amplitude of the
end displacement. In this way, bifurcation curves were
presented without intersections, even though they may intersect
and overlap when shown in the(∆/L,µ) parameters plane.
A detailed bifurcation analysis forµ = 0.01, a value of
the detuning parameter close to the resonant frequency, was
performed. Stable branches were identified and the modal
amplitude contributions to those branches was shown. Overall,
the continuation analysis results in an informative representation
of the behaviour of the cable system in a region where the
dynamics are extremely sensitive to changes of its driving
parameters.
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