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ABSTRACT: Inclined cables are important structural elements of cable-stayed bridges. When the bridge deck oscillates, lar
amplitude cable vibrations can arise in various modes as a result of the low cable damping, parametric excitation or non-line
modal coupling. The resulting vibrations are undesirable and potentially damaging to the long-term performance of the bridg
The phenomena can be modelled considering internal resonances between in-plane and out-of-plane modes of vibration of
cable. Here they have been studied using a four-mode model that represents the response of an inclined cable vertically excite
the lower end (i.e. from the deck) with a frequency that is close to the natural frequency of the second cable mode in each plane
twice the frequency of the first mode in each plane. The modal equations of the model are investigated using the software pack
AUTO for the numerical continuation of solutions of a system of ODEs. This allows the identification of the important solution
branches in the cable model responsible for unwanted vibration behaviour. The result of our analysis is that we identify amplitud
of excitation above which modes other than the directly excited mode (the second in-plane mode) start contributing to the respo
of the cable. In addition, we show that the response amplitudes in these additional modes is of similar magnitude to the amplituc
in the directly excited mode, which could be considered an issue in the design of cable-stayed bridges. In summary, by usin
numerical continuation technique we predict when the response of the cable will change from a single in-plane mode to coupl
responses in two or more modes, in-plane or in both planes, and the modal amplitudes involved in these coupled responses.

KEY WORDS: Cable vibration; Internal resonance; Sway motion; Modal interaction; Bifurcation analysis.

1 INTRODUCTION

The inclined cables of cable-stayed bridges are typically lightly
damped. When the bridge deck oscillates (typically from wind
or traffic excitation) it provides a support motion input to the
cable. This type of excitation can lead to large amplitudey
vibrations of the cable [1]. A case of particular interest is
when the deck motion is at two times a natural frequency of < .
the cable, which can lead to large amplitude parametrically 30
excited vibrations. This phenomenon was studied in [2] by using
a nonlinear Mathieu-type equation to model the parametﬁqgure 1. Schematic representation of an inclined cable with
resonance [3]. However, since the cablgs are taut, the natural vertical input motion at the lower attachement point.
frequencies are almost at pure harmonics of the fundamental
mode, so two times one natural frequency closely coincides
with another mode, which is directly excited by the same input
[4], [5]. Furthermore internal resonance occurs between thgur modes are included in the model, two in-plane and two out-
in-plane and out-of-plane modes, so non-linear coupling leagsplane, which enables the important low frequency dynamic
to out-of-plane responses for in-plane excitation. The depkhaviour to be modelled [8], [9]. The Warnitchai equations
motions are generally larger at lower frequencies, so the m@agé scaled and averaged using the same procedure as previously
significant responses often occur for deck motions around t&sented in [4], [5]. Then a bifurcation study is carried out by
second natural frequency of the cable, where small deck inpmigans of numerical continuation [10] with the software package
can cause large responses in the first and second modes in pITO [11]. In this way, a series of bifurcation diagrams are
planes. produced for different values of the detuning parameter of the
In this paper the Warnitchai equations [6] (see also [7] forexcitation frequency (with respect to the second in-plane natural
detailed derivation) are used to model the vibration of the cabfeequency) with the aim of studying the behaviour of modal
It is assumed that the longitudinal vibrations of the cable camplitudes of the response of the cable close to the resonance
be neglected, so that the planes of interest are vertical (in-plafrefjuency. The result is a general picture of the stable and
and sway (out-of-plane). unstable branches and all interactions between the bifurcation
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loci curves in the space defined by the norm of the solution§the linearised system are assumed to be:
and both main parameters (input amplitude and frequency). In

. X
addition, one of these solution branches is discussed in more = Sln(nrrz) for n=123,...,
detail regarding the response amplitudes in all modes that our . X

model includes. P = sin (nrrz) for n=246,....

The remainder of this paper is structured as follows.

Se((:jtl(?n 2 the eqltjactjlons gf _mo(;uon_ for tlhe mch;ef(_j ;:ab (%erroxmated by sine functions of the same form as the out-
model are presented as derived via scaling and hrst-or plane modes. To derive the time-dependent generalised

averaging. ~ Section 3 describes the bifurcation study aggordmates we can use the non-autonomous system with

numerical continuation analysis. Conclusions are drawn é|ght ODEs, see [5] where the original Warnitchai equations

Section 4. of motion of the cable are scaled and averaged to became
Equations (1). HereZ; = 3M1 + 8My, C, = My + 6M3, where

2 MODAL AMPLITUDE EQUATIONS M1 = Y3, + Vi + Zc + Z and My = Y3 + Y3, + 2, + 2.
Furthermorek = ki/2, Whk = Vnk/M, Ny = 2npsin@/m, B =

In this paper we use a mathematical model of an inclinddcosf/m and d = AcogQt); numerical values for the cable

cable, see Figure 1, which is excited vertically at the bottoparameters are given in Table 1 and Table 2 based on the scaled-

anchorage with amplitud& and angular frequend® where its model cable tested in [5].  In the expressionsvigk, N, andB:

upper anchorage stays in the rest position [4]. Our model is

based on the Warnitchai equations used in [4], [5], [6], [7]. In

or the odd in-plane modes the mode shapes are more complex;
owever, as is discussed in [7], for taut cables they may be

Table 1. Dimensional cable parameters

the Warnitchai derivation, the out-of-plane and in-plane modal Ni [HZZ/m] Wio [L/G.mP]  wy [rad/s]
response of the cable are given by 1.04<10 2 519<10 % 504852
VXt) = Zni1 OOYn(t), Table 2. Nondimensional cable parameters.
W(X,t) = 3 nZg Yn(X)2n(t),
B é K

0.2939 0.002 0.0234

respectively, wheree [0, ¢], ¢ is the support separation distance,
the spatial functiong(x) and/(x) are the out-of-plane and in-m= pA¢/2 is the modal mass of the cable (for all mode®)s
plane linear modes of a cable with fixed ends, gt andz,(t) the angle between the cable chord and the horizontal ptane,
their corresponding time-dependent generalised coordinatie static stress\? is Irvine’s parameter is the cross sectional
The mode shapes for the out-of-plane and even in-plane modesa,p is the densityg is gravity andE is Young's modulus;



on is then-th natural frequency of the cable. The equivaler8.1 Stability boundaries i(A/L, u, ||N||)-space
modulus of the cablgy, the distributed weight perpendicular t

(0) i . . :
the cable chorg, and the parametetsy. . Zn are given by: Series of solution curves of Equations (1) of the following

types (Zo # 0,Z1 = Yo =Yy = 0) for (A/L,u) € [0,6.2 x

1 , E [y 2 1073] x [-0.03,0.07] give us a set of solution branch&sin
Eo=7—7375E A°=—| ), Y=pgcoso, (A/L, 1, ]|N||)-space, see Figure 2. The solution curve for
1+A2/12 Os \ Os . . . ) :
o ) u = 0.01is shown colourless to identify the intersectionlof
Vi = EATn?K Mo = EATCn Zn= 27m with the (A/L,0.01,||N||)-plane; it is the bold white curve that
8r 7’ 402 7 nm is labelledl;. Later in this paper, the bifurcation curlewill
The out-of-plane and in-plane natural frequencigg, and wsn be explained in detaill” could be constructed if we derive the
respectively, are given by equation of the surface that contains it by numerically solving
only the last couple of equations responsible for Znenode
Nt /0s ni /0s [5], the directly excited mode, while taking into account that all
= 5 = - 1+ ) ! L
Gn =" \/; ="\ (A+kn) other modes have no contribution.

In Figure 2 dark grey represents the stable parts of the solution

curves and light the unstable ones. The curBgs By,, Bz,

. (2)\2 ) (1 ( 1)n+1)2 and Fz,, drawn black, are respectively the loci of the branch
= +(— .

whereky, is due to the effect of sag and is given by

n? points ofY;, Yo andZ;-modal amplitudes and the fold points of
the Z,-modal amplitudes. When it forms a boundary between

The vibration response of the cable presented by Equations $8jk and light parts then the respective bifurcation concerns

can be expressed by the amplitude contributions of two in-plafie>t@Ple solution. This is the case By, on the left of the
and two out-of-plane modal amplitudes: crossing pointN, for By, between the crossing poirftsandM,

for Fz, between the crossing poinkd and the crossing point

K, and forBz, between crossing poik and the right end of

o 21 = /2. + 2, for the first in-plane modal amplitude; the region ofu. O'gheanse, Fhe respective b|furcat|oq concerns
an unstable solution. In Figure 2 we can see the interactions
« Y2 = /Y5, + Y5, for the second out-of-plane modal amplitudeyf the bifurcation curves at crossing poirits M, K and the
cusp pointC [12], [13] therefore, we have a general picture
of how the dynamics of the cable changes when we yaor

o Zp =/ 2.+ 2 for the second in-plane modal amplitude;

i

o Y1 = /Y3, + Y2, for the first out-of-plane modal amplitude.

The amplitude of excitatiod and the detuningt = Q/w, —1 A1 py the already shown stability boundaries of the paise

between the frequency of the actugtor and the second na't ddal amplitudes response region, the dark grey regidniof
frequency of the cable are the main parameters of Equathflaure 2

(2). The non-dimensional values that are used when we vary the
parameters of the system ax¢lL andu, whereL = 5.4mis the . ) , )
untensioned cable length measured from the top of the cable td N€ @PProximate coordinates of the poihksM, C andK in
) (A/L, u, |IN||)-space, for the chosen cable parameters, are
Its bottom, and. ~ /. The norm||N|| = \/Z% +ZJZ_+Y22—|—Y12/L (08>< 104700036 2 Ax 1073) for N,
of the solutions of Equations (1) is a function &fL and 4, (0.9x 104,0.062 6.8x 102) for M,
which we use to measure the changes of the behaviour of the2x 1074,0.00351.3x 10~3) for C, and
cable response. (2.2x1074,0.021,2.3x 10°3) for K.

Hence if theBy,-curve is crossed fou € [—0.03,0.003§ as
3 BIFURCATION STUDY A/L is increased for a fixeq:, we would experience out-of-
Our system in the form of ODEs (1) can be examined withlane motion due to the presence of stable branches that include
the continuation software AUTO [10], [11]. In our study wehe Y; mode. The part8y, and Fz, which concern stable
follow the stable solutions of Equations (1) from zero forcingolutions, approach each other, and they enclose a region that
amplitude, hence zero response amplitude, and different valeesresponds to pur&,-modal amplitude. This region is crossed
of forcing frequency close to the second natural frequency loy the Bz, -curve. There are two crossings, one is betwBgn
the cable. Therefore we fix the forcing frequency and vagndBz, and another is betwedfy, andBz, but, because they
the excitation amplitude. This leads to increasing amplitudee close enough, we only indicate the pdihtin between to
of the response of the cable. Because the averaging technidemote these crossings. Thus if tBeg-curve is crossed for
is based on modal decomposition, we are analysing how the [0.00360.062, that is, between pointsl and M, asA/L
modal amplitudes of the response change as the excitatiorincreased for a fixegt, we would experience out-of-plane
amplitude increases from zero to positive values. In the resultimgption due to presence of stable branches that inctpdeode.
bifurcation diagrams [12], [13], stable and unstable solutidf the Fz,-curve is crossed fou € [0.00350.0062, that is,
branches can be identified. Since the stable solutions defineltbénveen point€ andM, asA/L is decreased for a fixed, we
possible modes of behaviour of the physical cable system weuld experience a hysteresis jump down to another ghre
can calculate each modal contribution to the overall vibrationodal amplitudes that correspond to solutions with lower norm
response. By combining multiple continuations of this typé¢|N||. If the Fz,-curve is crossed fopt € [0.00350.021], that
each one for a different frequency close to 2:1 resonance, imgbetween point€ andK, asA/L is increased for a fixeg,
obtain a set of solution curves of Equations (1). we would experience out-of-plane motion due to a hysteresis
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Figure 2. The set of solution branchEsin (A/L, u,||N||)-space, obtained by a series of continuations of Equation (1); its
intersection with théA/L,||N||)-plane foru = 0.01is the bold white curve denotdg. Solution branches including a pure
Zr>-mode are gray; stable regions are shown dark and unstable region light. Bifurcation®yr&s, Bz, andF,, are black,
and the bifurcation point§, K, N andM are labeled.

jump to another stable solution branches that incidandY, 1074]. Thus, Figure 3 presents the one-parameter bifurcation
modes. As an example of this case we will discuss in detadiagram of Equations (1) for fixegh = 0.01; it shows the
how the cable response changes whgh is increased for fixed properties of the solution branchies "1, |5, I3 andl4, and how

pu = 0.01 Finally if the Bz,-curve is crossed fop > 0.021 their stable (denoted by black) and unstable (denoted by grey)
asA/L is increased for a fixeqi, whereBz, concerns stable parts meet in bifurcation points. The bifurcation points that lie
solution, we would experience vibration amplitudes that are non |1 also lie onl" so they are the crossing points betwéen
only in a pureZ;-mode. In this case our theoretical study iand the bifurcation curves shown in Figure 2. More precisely,
not complete yet, the possible presence of stable limit cyclesanch point bifurcationBs, Bz € By, andB; € By, are denoted

in this region makes the prediction of the dynamics beyond thg m. Fold bifurcation point$, > € Fz, are denoted by.

Z; branch point curve hard to achieve. As can be seen in [5],
most of the stability boundaries @b-amplitude that are shown
in Figure 2 are experimentally confirmed.

The continuation starts at zero amplitude and, as the
excitation increases, we folloy on which only the Z,-
amplitudes exist. Then &;/L approximately0.74x 104 a fold
bifurcation pointF; appears. The curvg loses stability afF;

and becomes unstable until it reaches a second bifurcation point
The setl" of solutions in the(A/L, i, ||N||)-space shown in F, atA/L ~ 0.37x10°*. There it becomes stable again for a
Fig. 2 features four bifurcation curves. As we explained, thesery small interval, see Figure 4 (enlarged view of Figure 3),
curves may give rise to additional branches of stable solutiomstil a branch poinB; for A/L ~ 0.4x 10~4. Beyond the point

or to some kind of hysteresis jump to other branches of stafidg, |1 stays unstable to the end of the region of intereds 4f.
solutions. To become familiar with one of these situations wccording to the instability of; beyondF, if we increase\/L

pick the valueu = 0.01 and perform a detailed continuationabove0.74x 1074, a transition to another stable solution branch
analysis by variation of the amplitude of excitatibfiLe[0,7x |4 takes place. Oty the modal amplitude&,, Y1, andY; are

3.2 One-parameter bifurcation diagram
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Figure 3. One-parameter bifurcation diagram of Equation (1ufer 0.01, showing solution branches represented by their norm

IIN|| = \/Z§+ZE+Y22+Y12/L for A/L € [0,7x104. The stable parts of the solution branched, (black curves) are

connected via their unstable parts (grey curves), which meet at bifurcation points. SpecBicallyBs are branch points
(denoted byll) andF; — F3 are fold points (denoted be).

X103 this curve betweeB; andB,, there exists a region whelgis
stable. Beyond the bifurcation poiBs atA/L ~ 0.61x1074, 13
l2 becomes unstable. It joins agdinat A/L ~ 6.2x1074. The
point Bg wherel3 joins I; again can be seen in Figure 2 as
ly the intersection between tliigy, branch point curve and. At
[|V]| ® A/L ~ 0.61x 104 there is a branch poi4 on I3, this branch
ls point is the place wheilg joinsl4, which is the solution curve on
35 which the modal amplitude®,, Y; andY, exist. Until the fold
I By . pointFs atA/L ~ 0.6x10~* 4 is unstable; beyond this point the
2 h stable part of4 begins and it becomes physically observable as
B, Is the solution branch that is responsible for the out-of-plane cable
response that arises whapL becomes larger thah74x 1074,
0.5 A/L 08 x107* beyond theF; fold point. The onset of a contribution of the
Figure 4. Scaled view of Figure 3, we look in the domairii-@mplitude to theZ,-amplitude, i.e. the solution curv?
(A/L,|IN|]) € [0.3% 1041 x 1074] x [2.3% 103,53 x on which we remain for_ val_ues d@f/L higher than2.1x 107,
103 where we can distinguish ho, and B; are beyond branch poinBs in Figure 3, goes back to the branch

] - 4 ;
separated by a stable part of thesolution branch, and PCINtBz only atA/L ~ 0.73x 107", see Figure 4. Betwees,
the connections between the- |4 branches. andBs, the branch; is unstable and does not effect the response

of the cable.

The stable parts of the solution branchesl,, 13, andl, are
non-zero, hence fak/L above0.74x 104, strong out-of-plane shown in Figures 5(a), (b), and (c) in order to show how the
amplitudes start contributing to the response of the cable. If e Y1, andYz-amplitudes contribute to the overall response of
further increasé /L we will reach the branch poitlis atA/L ~  the cable foru = 0.01. Figure 5(a) shows that tt&-amplitude
2.1x10* that connectk, to the stable part dp on whichY; and contributes to all the stable brancheggo I4. The only modal
Z, amplitudes exist. Until the end of the region of continuatio@mplitude that is involved ify is theZ,-amplitude; note that in
I, remains stable and is the only modal amplitude apart fromFigures 5(b) and (d) is shown as zero response. TheniL
Z, that contributes to the overall response of the cable. Hdiecomes larger thah74x 104, we jump from the poinE; and
we have to explain how we found the stable partlpfand the cable response vibrates with out-of-plane contributions from
l4, which are significant to our study because they give us tHte Yi-amplitude and from th¥;-amplitude. As can be seen in
information on the dynamics of the cable past the pBjiwhere Figures 5(b) and (c)4 appears as a non-zero curve. By l4
we find an out-of-plane response. From the branch @insee joins l2, which is the point where th¥-amplitude disappears
Figure 4, we start to compute solution cutyewhich represents and the cable response shofis, Y1 )-amplitudes only, until the
the Y, contributions to the cable response. In the beginning ®hd of the region of continuation @/L. The contribution

4.5
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4 CONCLUSIONS

In this paper we presented a theoretical study of the nonlinear
vibration amplitudes of an inclined cable that is excited at
its lower attachment point. Our analysis of the response in
pure Z,-modal amplitudes produced a set of solution curves
that present theZ, vibration amplitude and the bifurcation
curves as functions of the frequency and amplitude of the
end displacement. In this way, bifurcation curves were
presented without intersections, even though they may intersect
and overlap when shown in th@\/L,u) parameters plane.

A detailed bifurcation analysis fou = 0.01, a value of

the detuning parameter close to the resonant frequency, was
performed. Stable branches were identified and the modal
amplitude contributions to those branches was shown. Overall,
the continuation analysis results in an informative representation
of the behaviour of the cable system in a region where the
dynamics are extremely sensitive to changes of its driving
parameters.



