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1 Introduction

Semiconductor lasers are a very efficient type of laser that has found numer-
ous applications in recent years — most prominently in optical data storage
and in optical telecommunication. Indeed, fiber-optic communication has be-
come the method of choice for transmitting large amounts of information, and
semiconductor laser devices are the optical light sources behind today’s tele-
communication networks. There are many reasons for the popularity of this
type of laser as a light source: semiconductor lasers are very efficient in con-
verting electrical energy into coherent light, very small (with cavity lengths of
about 1 mm), and cheap and easy to manufacture. From a more fundamental
perspective, a semiconductor laser is a damped nonlinear oscillator. It is now
well known that, apart from stable emission, semiconductor laser systems may
show a wealth of other dynamics, including different types of periodic output, as
well as quasiperiodic and chaotic dynamics. This type of dynamics are brought
about by external influences, such as modulation of the electrical pump current,
external optical input or optical feedback. See, for example, Refs. [1, 2] as entry
points to the extensive literature on nonlinear laser dynamics.

The focus of this study is a semiconductor laser with saturable absorber
(SLSA), which has been shown experimentally [3] and theoretically [4, 5] to be
capable of producing self-pulsations. The underlying physical process is called
passive Q-switching, and it can be explained as follows; see also [6, 7]. The
absorber in (or adjacent to) the laser cavity acts as a store of energy that is
supplied to the semiconductor laser by an electrical pump current. Filling this
energy store is a relatively slow process (with respect to the internal time scale
of the laser dynamics). When the absorber is saturated then the laser is able to
overcome its losses and all the stored energy is released in a very short period of
time, leading to a pulse of emitted light. The intensity drops back to zero and
the process repeats. The result is a pulse train with a typical pulse-repetition
frequency on the order of several GHz.

It is this property of the SLSA that makes it interesting for use in pulse
generation for telecommunication and for optical clocks. However, there is one
drawback: the self-sustained oscillations may be quite sensitive to the influence
of external or internal noise [8]. More specifically, when the absorber is close to
being saturated the next pulse can be triggered by even quite small amounts of
noise. The result of noise is so-called timing jitter of the pulses, meaning that
the time in between successive pulses is subject to considerable fluctuations.
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Figure 1: Sketch of an SLSA (illustrated by a (white) gain medium surrounded
by a (grey) absorber medium) that is fed back a part of its output via an external
optical feedback loop with fixed delay time, as determined by a length of fiber
optical cable; the feedback loop also includes a beam splitter (BS), an optical
isolator (ISO) and an attenuator.

The system actually displays what is known as coherence resonance: there is
a noise level that minimises the timing jitter of the pulse train of the SLSA;
see Ref. [9]. Clearly any considerable jitter due to noise is detrimental in the
mentioned applications, because they require precise timing of pulses.

It has been shown that the timing jitter of the SLSA is due to the fact that
self-sustained pulsations occur close to a region of excitability [5, 9]. Excitab-
ility is a well-known concept that comes originally from biology and chemistry
[10]. Examples are excitation waves in reaction-diffusion systems, such as car-
diac muscle tissue and the Belousov-Zhabotinsky reaction [11]; excitability is
also an important concept in neuron and cell modelling, and it is one of the
mechnisms that may lead to the spiking of nerve cells [10, 12]. More recently
there has been a surge of interest in excitable laser systems. Indeed, lasers with
saturable absorber are not the only class of lasers in which excitability has been
found. Other laser systems demonstrating excitability include lasers with op-
tical injection [13, 14] or optical feedback [15, 16], multisection DFB lasers [17],
and lasers with integrated dispersive reflectors [18]; see also Ref. [19]. Potential
applications of excitable lasers include clock recovery, where the laser acts as
an optical switch that reacts only to sufficiently large optical input, and pulse
reshaping, where a dispersed input pulse can generate a clean large-amplitude
output pulse.

In this chapter we consider the dynamics of the SLSA when part of its
output light is fed back after a given delay time τ . This laser system can be
realized as is sketched in Figure 1. A beam splitter (BS) diverts a part of the
laser’s output into a feedback loop. The feedback strength κ can be varied by
an attenuator, and the delay time τ is determined by a chosen length of fiber
optical cable; an optical isolator (ISO) prevents unwanted back-reflections. One
motivation for studying this setup is to understand how to operate the SLSA
with delayed optical feedback in such a way that it produces a pulse train with
desired properties. The naive underlying idea is the following. Suppose that
the SLSA is in the excitable regime (in the absence of feedback). When a first
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pulse is triggered then a part of it will travel back to the SLSA via the feedback
loop to trigger the next pulse. If this process continues stably, then a train
of pulses will be generated. Importantly, the frequency of the pulse train is
determined by the delay time τ of the external feedback loop (and not just by
the material properties of the SLSA). Hence, the SLSA with delayed optical
feedback features two additional control parameters, the delay time τ and the
feedback strength κ. The main question is how these two external parameters
influence the dynamics of the overall system, given the properties of the SLSA
as determined by its internal parameters.

To answer this question we perform a bifurcation study of the SLSA with
delayed optical feedback as modeled by the established Yamada rate equations
[20] for the gain G, the absorption Q and the intensity I, to which a delay term
has been added. When written in dimensionless form one obtains the system

Ġ = γ (A−G−GI) , (1)
Q̇ = γ (B −Q− aQI) , (2)
İ = (G−Q− 1) I + κI (t− τ) , (3)

where the dot denotes derivation with respect to time. The delay term κI (t− τ),
with feedback strength κ ≥ 0 and delay time τ ≥ 0, models the feedback
via the external optical loop. Physically, the length l of the feedback loop,
which is mainly due to the fiber optical cable, determines the single fixed delay
τ = l/c > 0 where c is the speed of light.

For κ = 0 one recovers the Yamada equations — a system of three first-order
ordinary differential equations (ODEs) that describe a single-mode laser with
saturable absorber — in the form that was considered for the bifurcation study in
Ref. [5]. There are four dimensionless parameters: the pump parameter A of the
gain, the pump parameter B of the absorption, the cross-saturation coefficient
a, and the time-scale ratio γ between the relaxation rates (or decay times) of
gain and absorber. For physical reasons the parameter space of Eqs. (1)–(3) for
κ = 0 is confined to A ≥ 0, B ≥ 0, a ≥ 1, and γ ≥ 0. Furthermore, γ is a
small parameter (of the order of 10−3 − 10−4), which means that gain G and
absorption Q evolve on a much slower time scale than the intensity I. Hence,
the SLSA is an example of a slow-fast system with an explicit splitting of time
scales; see, for example, Ref. [21]. A complete bifurcation analysis of Eqs. (1)–
(3) for κ = 0 can be found in Ref. [5]. In particular, just before the onset of
naturally occurring self-pulsations the dynamics of the SLSA is excitable [5, 9];
these results are summarized in Section 2, and they form the basis of what is
presented here.

To address the question of how the dynamics of the SLSA is influenced by
the external feedback loop, we present a bifurcation study of Eqs. (1)–(3) for
κ ≥ 0. Note that this means that we are dealing with a system of delay differen-
tial equations (DDEs) with a single fixed delay. As such it has as its phase space
the space C[−τ, 0] of continuous functions over the delay interval [−τ, 0] with
values in (G,Q, I)-space; see, for example, Refs. [22, 23, 24]. It is this element of
infinite-dimensionality that allows Eqs. (1)–(3) to show much richer dynamics

3



than the SLSA alone (when κ = 0). Up until only a few years ago, practical
methods for analyzing DDEs were limited to linearization around equilibria
of the system and numerical integration of the governing equations. Today,
however, numerical tools for the detection and continuation in parameters of
equilibria, periodic solutions and their bifurcations are also available for DDEs
in the form of the packages DDE-BIFTOOL [25] and PDDE-CONT [26]; see
also the recent surveys Refs. [27, 28]. We use here the package DDE-BIFTOOL
to carry out a bifurcation study of the full DDE given by Eqs. (1)–(3). More
specifically, we fix B = 5.8, a = 1.8, γ = 0.04 throughout and consider bi-
furcation diagrams in the (τ, κ)-plane, where we consider two main cases for
the gain pump rate A: one where the SLSA is off and excitable, and the other
where it is is off and not excitable. The transition between these two cases as
A is changed is explained in terms of the passage through codimension-three
bifurcation points.

In light of the explicit split into slow and fast variables of the system, what is
presented here is a case study of a slow-fast system subject to delayed feedback.
This more general aspect provides a second motivation, because it may also
be of interest for other areas of application. For example, the issue of delayed
feedback or coupling also arizes in the context of interacting (populations of)
neuron cells, which themselves may display dynamics on separate time scales.

The chapter is organized as follows. In Section 2 we summarize the results
from Ref. [5] for κ = 0. The next four sections are devoted to the study of
the full DDE for κ ≥ 0. Section 3 presents analytic results on basic bifurca-
tions of equilibria. Sections 4 and 5 are devoted to bifurcation diagrams in the
(τ, κ)-plane for two representative values of the gain pump parameter A, and
Section 6 discusses the transition between them via different codimension-three
bifurcations. Finally, we summarize in Section 7.

2 Bifurcation analysis of the SLSA

The Yamada model in the form of Eqs. (1)–(3) for κ = 0 describes a semicon-
ductor laser with saturable absorber in two different geometric configurations:
(i) in a sectional configuration where there are gain and absorber sections in-
side the laser cavity but with the same carrier life-time, and (ii) in a stripe
confguration where unpumped side regions act as the absorber (as in Figure 1).

Figure 2 summarizes the main results of a bifurcation analysis of the Ya-
mada model in Ref. [5]. The main object is the two-parameter bifurcation
diagram in the (A, γ)-plane of pump paramter A of the gain and time-scale
separation parameter γ, where the pump parameter B of the absorption and
the cross-saturation coefficicent a have fixed values. We are concerned with the
bifurcation diagram of type III (in the notation of Ref. [5]), because it features
all possible dynamics of the SLSA. This bifurcation diagram is sketched dia-
gramatically in Figure 2(a), and it is shown in panel (b) as computed with the
continuation package AUTO [31] for (B, a) = (5.8, 1.8). The bifurcation dia-
gram of type III is physically relevant because it can be found for any sufficiently
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Figure 2: Bifurcation diagram from Ref. [5] of the Yamada model, Eqs. (1)–(3)
for κ = 0. Panel (a) is a sketch of the bifurcation diagram of type III in the
(A, γ)-plane of gain pump parameter A and time-scale separation parameter
γ; panel (b) shows this bifurcation diagram in the (A, γ)-plane as computed
for (B, a) = (5.8, 1.8); see Figure 3 for the corresponding phase portraits in
regions 1–9. Panel (c) shows the division of the (B, a)-plane of absorption
pump parameter B and cross-saturation coefficicent a into regions of bifurcation
diagrams of types I–III.

large values of B and a. This is illustrated in Figure 2(c), which shows how the
(B, a)-plane is divided (by two curves DT and DBT of two different types of
degenerate Bogdanov-Takens bifurcations) into three regions corresponding to
bifurcation diagrams of types I–III. The bifurcation diagrams of types I and II
(which are not considered here) can be found in Ref. [5].

We now discuss the bifurcation diagram of type III in Figure 2(a) and (b) in
more detail; see, for example, Refs. [29, 30] as general references to bifurcation
theory. Several bifurcation curves divide the (A, γ)-plane into nine regions of
topologically different phase portraits, which can be found in panels 1–9 of Fig-
ure 3. The phase portraits are represented as two-dimensional sketches because,
after possible transients, the dynamics takes place in a globally attracting two-
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Figure 3: Phase portraits corresponding to the numbered regions 1–9 in Figure 2
and regions 1–12 in Figures 6 and 9. Shown are two-dimensional sketches in
projection onto the (G, I)-plane, where the invariant set {I = 0} is at the
bottom; the third direction that is not shown is attracting. Black dots are
attracting equilibria; open dots are saddle equilibria, and they have stable and
unstable manifolds; black closed curves are attracting periodic orbits, and grey
closed curves are saddle periodic orbits.

dimensional surface that is close to {G−Q− 1 = 0}; the third direction that is
not shown in Figure 3 is consequently attracting. Along each bifurcation curve
in the (A, γ)-plane one finds a particular bifurcation (qualitative change of the
dynamics), which is said to be of codimension one; specifically, we encounter:

• a saddle-node bifurcation curve S, where two equilibria are created (or
disappear); an example is the transition between phase portraits 1 and 2;

• a transcritical bifurcation curve T, where an equilibrium for I = 0 changes
stability by an equilibrium moving out of (or into) the region for I > 0;
an example is the transition between phase portraits 4 and 9;

• a Hopf bifurcation curve H, where a periodic orbit (corresponding to
self-oscillations) is created (or disappears); an example is the transition
between phase portraits 2 and 3;

• a curve L along which one finds a homoclinic loop to a saddle equilibrium;
a periodic orbit bifurcates from this homoclinic loop; an example is the
transition between phase portraits 3 and 4;

• a curve SL of saddle-node bifurcation of limit cycles, where two periodic
orbits (one attracting and one of saddle type) are created (or disappear);
an example is the transition between phase portraits 4 and 5.
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Figure 4: The excitable phase portrait 2 (left) gives rise to a pulse for a suffi-
ciently large perturbation from the off-state (right).

The bifurcation diagram in Figure 2(a) and (b) is organized by a number of
special points — known as codimension-two bifurcations — where several bi-
furcation curves come together. The main organizing center is a Bogdanov-
Takens point BT on the curve S (characterized by a double zero eigenvalue of
the Jacobian at the equilibrium), from which the curves H and L emerge. The
homoclinic loop curve L changes type in a codimension-two point N (where the
saddle quantity of the equilibrium in the homoclinic loop becomes zero and
changes sign); here the bifurcating periodic orbit changes from repelling (in re-
gion 3) to attracting (in region 5). From N the curve SL emerges and it ends
on the Hopf curve H at a point DH of degenerate Hopf bifurcation; note from
Figure 2(b) that the curve SL is very close to the Hopf curve H. The homoclinic
loop curve L ends at the bottom point of the transcritical curve T (where γ = 0);
notice that the curve L follows the curve T extremely closely for γ < 0.05; see
Figure 2(b).

One conclusion from Figures 2 and 3 is that, for realistically small values of
the time-scale separation parameter γ, one finds a unique sequence of bifurc-
ations as the gain pump parameter A is increased. Note in this context that
A is the only parameter that can be changed during an experiment. Initially,
the laser is off, which is represented in region 1 by an attractor with intensity
I = 0. When the curve S is crossed, the laser is still off in region 2, but there
are now two additional equilibria; both are saddle points in (G,Q, I)-space with
I > 0. (Recall that the missing direction in Figures 3 is attracting.) When A
is increased further, the homoclinic loop curve L and the transcritical curve T
are practically crossed at the same time; this marks the onset of self-pulsations,
which are represented in region 7 by an attracting periodic orbit. We remark
that region 6, where one finds coexistence of the stable equilibrium and a stable
periodic orbit, is so small that it was not found in studies that changed A for
fixed small γ. Yet, region 6 must exist for topological reasons, and it was indeed
found only as part of the bifurcation diagram of type III by allowing γ to take
larger values. Finally, when A is increased even further, the Hopf bifurcation
curve H is crossed. The self-pulsations disappear and the laser produces light
with constant intensity I; in region 9 this is represented by a globally attracting
equilibrium.
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It is an important realization that the SLSA is excitable in region 2, that
is, for a considerable range of the gain pump parameter A. Figure 4 shows the
underlying mechanism in more detail. The laser is in its off-state and this is
represented by the globally attracting equilibrium with I = 0. In response to
any sufficiently small perturbation in the intensity I, the SLSA relaxes back to
the off-state. On the other hand, any perturbation above a certain threshold
results in a large pulse before the SLSA relaxes back to the off-state; one speaks
of the excitability threshold, and it is given in this case by the stable manifold
of the saddle point that lies close to the stable equilibrium. Physically, the
perturbation in I is sufficient in this case to overcome the losses and release the
energy stored in the absorber. The SLSA requires what is known as a refractory
period (to recharge the absorber) before the next pulse can be triggered. Note
that the saddle point moves closer to the attractor as the transcritical curve T
is approached, which implies that the excitablility threshold decreases. Hence,
in region 2 the SLSA becomes more and more likely to produce noise-induced
pulses as A is increased.

3 Equilibria of the DDE and their stability

If we now consider k ≥ 0 then Eqs. (1)–(3) are a system of DDEs and, as such,
difficult to study by analytical means. Nevertheless, it is possible to find explicit
formulas for some of their bifurcations. This information provides the basis of
the numerical bifurcation analysis in the next sections.

There are three equilibra, E1, E2 and E3, given by

E1 : (G,Q, I) = (A,B, 0) , (4)

E2, E3 : (G,Q, I) =
(

A

1 + I±
,

B

1 + aI±
, I±

)
, (5)

where

I± =
−aA+ b+ a+ 1− aκ− κ

2a (κ− 1)
(6)

±

√
(aA−B − a− 1 + aκ+ κ)2 − 4a (κ− 1) (A−B − 1 + κ)

2a (κ− 1)
.

The equilibrium E1 lies on the invariant plane {I = 0}; it exists for all values of
the parameters and corresponds to the non-lasing solution. The two equilibria
E2 and E3 have non-zero intensity and, since 2a (κ− 1) ≤ 0 for all κ ∈ [0, 1],
we find that I− > I+. That is, the intensity value at E2 is less than that at
E3. Note that for κ = 0 the intensity equation for I± reduces to that for the
Yamada model [5].

To check the stability and bifurcations of the equilibria we make use of the
fact that Eqs. (1)–(3) are a DDE with a single fixed delay τ > 0, which has the
general form

ẋ = f (x (t) ,x (t− τ) , ψ) =: f (u, v, ψ) .
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Here x (t) ∈ R3 represents a point in the physical (G,Q, I)-space and f is a
smooth function that depends on the parameter vector ψ. The stability of an
equilibrium x0 is determined by the roots λ of the characteristic equation

det
(
λ(δij)−A1 −A2e

−λτ
)

= 0

where

A1 =
∂f (x0)
∂u

, A2 =
∂f (x0)
∂v

and (δij) is the identity matrix. The transcendental characteristic equation eval-
uated at an equilibrium has countably infinitely many roots λi, but only finitely
many of them have a positive real part. Hence, an equilibrium is either an at-
tractor with infinitely many attracting directions, or a saddle point with a finite
number of repelling directions and an infinite number of attracting directions;
see Refs. [22, 23, 24].

For Eqs. (1)–(3) we have

A1 =



−γ (1 + I) 0 −γG

0 −γ (1 + aI) −γaQ
I −I G−Q− 1


 , A2 =




0 0 0
0 0 0
0 0 κ


 ,

and the characteristic equation is

0 = λ3 + [1−G+Q+ γ(2 + aI + I)− κe−λτ ]λ2

+[γ2(1 + I + aI + aI2) + γ(2− 2G+ 2Q+ I

+aI − aGI +QI)− γ(2 + I + aI)κe−λτ ]λ
+γ2(1−G+Q+ I + aI + aI2 − aGI

+QI − (1 + I + aI + aI2)κe−λτ ). (7)

Note that for κ = 0 this characteristic equation reduces to the eigenvalue equa-
tion of the Yamada system [5].

While the analysis of (7) is generally quite difficult, we can make the follow-
ing observations.

Proposition 1. In the (τ, κ)-plane one finds the following two local bifurca-
tions along horizontal lines:

(i) the locus T of transcritical bifurcations, given by

κT (A,B) = 1−A+B, (8)

where the equilibria E1 and E2 meet on the invariant line {I = 0}. For
κ < κT both E1 and E2 exist (in the region where I ≥ 0), and E1 is
attracting. For κ > κT only E1 exists (in the region where I ≥ 0), and it
is a saddle point.

(ii) the locus S of saddle-node bifurcations, given by

κS (A,B, a) =
−aA+ a−B − 1 + 2

√
aAB

a− 1
, (9)

9



where the equilibria E2 and E3 bifurcate. For κ < κS the system possesses
just the equilibrium E1; for κ > κS also the equilibria E2 and E3 exist, of
which E2 is always a saddle point (in the region where I ≥ 0).

Proof. For statement (i) we consider the equilibrium E1, where (G,Q, I) =
(A,B, 0), so that (7) reduces to

0 = λ3 +
[
1−A+B + 2γ − κe−λτ

]
λ2

+
[
γ2 + 2γ − 2γA+ 2γB − 2γκe−λτ

]
λ

+γ2
(
1−A+B − κe−λτ

)
.

The condition that λ = 0 is a root immediately gives (8). The existence of E2

with I ≥ 0 for κ < κT follows from (6), and the stability of E1 was checked
numerically with DDE-BIFTOOL by inspecting the change of roots of the char-
acteristic equation across S.

For statement (ii) one needs to consider a root λ = 0 of the full characteristic
equation, that is, a root of the last term of (7). A simpler alternative is to realize
that a saddle-node bifurcation corresponds to the square root in (6) being zero,
that is,

0 = (aA−B − a− 1 + aκ+ κ)2 − 4a (κ− 1) (A−B − 1 + κ) ,

and (9) follows. The stability of the bifurcating equilibria E2 and E3 was again
checked numerically with DDE-BIFTOOL. ¤

It follows from (8) that the transcritical locus T only lies in the physically
relevant part of the (τ, κ)-plane, meaning that κT ≥ 0, provided that

A ≤ B + 1.

Note that equality above gives exactly the condition that there is a transcritical
bifurcation in the Yamada model; see Ref. [5, Appendix A]. In other words, the
transcritical locus T only occurs for κ ≥ 0 provided that A is chosen to lie to the
left of the curve T in Figure 2(b). Similarly, (9) implies that the saddle-node
locus S is such that κS ≥ 0 provided that

A ≤ (−1 + a+ 2
√

(a− 1)B +B)
a

.

Equality above gives exactly the condition that there is a saddle-node bifurcation
in the Yamada model; see Ref. [5, Appendix A]. Hence, the saddle-node locus
S only occurs for κS ≥ 0 provided that A is chosen from region 1, to the left
of the saddle node locus S in Figure 2(b). We remark that κS ≤ 1 is always
satisfied, which means that (6) does actually not become singular at either E2

or E3.
The equilibrium E3 may lose its stability in a Hopf bifurcation. The ansatz

that there is a purely imaginary root λ = iω of the characteristic equation (7)
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Figure 5: Computed bifurcation diagram in the (τ, κ)-plane for A = 6.5 (a);
panels (b) and (c) are two successive enlargements. Shown are the transcritical
curve T, a Hopf curve H, and a homoclinic loop curve L.

leads to a complicated transcendental equation for the locus of Hopf bifurcation.
As the bifurcation diagrams in the next sections will show, there is not a simple
formula for this locus, which may consist of infinitely many disjoint curves of
Hopf bifurcation in the (τ, κ)-plane. Rather than computing them numerically
from (7), we compute the curves of Hopf bifurcation with the continuation
package DDE-BIFTOOL; this is equivalent, because DDE-BIFTOOL also solves
the characteristic equation numerically, albeit in implicit form [25, 28].

4 Bifurcation study for excitable SLSA

We now study the influence of the feedback loop on phase portrait 2 of the
Yamada model, where the off-state of the laser is a global attractor and the
system is excitable; see Figure 4. To this end, we fix the gain pump parameter
at A = 6.5, to the left of the transcritical curve in Figure 2(b). (Recall that
B = 5.8, a = 1.8 and γ = 0.04 are fixed.) For this value of A the transcritical
locus T, but not the saddle-node locus S, can be found in the physically relevant
region where κ ≥ 0; see Proposition 1.

Figure 5 shows the computed bifurcation diagram of Eqs. (1)–(3) in the
(τ, κ)-plane. Apart from the horizontal curve T at κT = 1 − A + B = 0.3, the
figure shows a single, connected Hopf curve H and a homoclinic loop curve L.
The curve H has more and more self-intersections for larger values of τ ; each
such intersection is a Hopf-Hopf bifurcation point where the system possesses
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Figure 6: Sketches of the bifurcation diagram in the (τ, κ)-plane for A = 6.5;
panel (a) is up to small and panel (b) up to an intermediate value of τ . The grey
curves SL are loci of saddle-node of limit cycle bifurcations; numbered regions
correspond to phase portaits in Figure 3.

two pairs of purely complex conjugate eigenvalues. The homoclinic loop curve
L crosses the Hopf curve H twice; see the enlargements in Figure 5(b) and (c).
The curve L then appears to approach the line κ = 0 as τ →∞.

Figure 6 shows two qualitative sketches of this bifurcation diagram in the
(τ, κ)-plane. Panel (a) is for quite small values of τ up to about 1; compare
with Figure 5(c). Figure 6(b) is for intermediate values of τ up to about 60;
compare with Figure 5(a). This range of the (τ, κ)-plane is most relevant from
the applications point of view, because we are interested in self-pulsations of
high frequency (hence, τ should not be too large). The new features in Figure 6
are (grey) curves SL of sadddle-node bifurcation of limit cycles: one emanates
from a codimension-two point N on the curve L where the saddle is neutral,
and the other curves SL emanate from degenerate Hopf points DH on the Hopf
curve H. At each such point the Hopf bifurcation changes criticality, meaning
that the bifurcating periodic orbit changes form being attracting to being of
saddle type. Because it is quite difficult to follow a sadddle-node bifurcation of
limit cycles in a DDE, we verified the positions of the curves SL with careful
numerical simulations of Eqs. (1)–(3). We also found that the Hopf bifurcation
curve H and the homoclinic loop curve L both change criticality very close to
where they cross for lower values of κ; in fact, this happens practically at their
intersection point within the accuracy of our investigation, and no additional
curve SL could be found.

The sketched bifurcation curves in Figure 6 constitute a conjectured partial
bifurcation diagram in the shown part of the (τ, κ)-plane; it is complete enough
to allows us to identify the numbered regions with different phase portraits
that can be found in Figure 3. Notice that region 2 of excitable dynamics is
immediately adjacent to the line {κ = 0}; this is expected for our choice of A
because the DDE for κ > 0 is a regular perturbation of the ODE for κ = 0.
What is more, for small τ we find a bifurcation structure that is very much
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like that in the (A, γ)-plane of type III; compare Figure 6(a) with Figure 2(a).
In particular, phase portraits 2–9 (that is, all phase portraits of the Yamada
system with the exception of that in region 1) can be found in the corresponding
regions. In other words, near the limit τ = 0 the delay time τ and the feedback
strength κ unfold the dynamics in a similar way as gain pump paramter A and
time-scale separation parameter γ when τ = κ = 0. Already for intermediate
values of τ as in Figure 6(b), on the other hand, we find a bifurcation structure
that is more complicated, with additional dynamics in regions 10–12. Note from
Figure 3 that these new phase portraits can still be drawn in a two-dimensional
plane. All these phase portraits have stable oscillations; their new feature is the
existence of additional nested periodic orbits.

For intermediate values of the feedback strength around κ = 0.2 one finds
a characteristic transition as the delay time τ is increased; see Figure 3 for the
phase portraits that are encountered. For small τ in regions 2 the laser is ex-
citable. When the curve H is crossed into region 3 as τ is increased, a periodic
orbit of saddle type is created around the bifurcating equilibrium, which is now
stable. Hence, the laser is bistable: it is still excitable when it is in the off-state
with I = 0, but for suitable initial conditions it may also emit light at the con-
stant intensity value of the stable equilibrium with I > 0. When the curve L is
crossed and region 4 is entered, the unstable periodic orbit disappears; the sys-
tem is still bistable but no longer excitable: any sufficiently large perturbation
of the off-state now brings the laser into the basin of attraction of the stable
equilibrium with I > 0. When τ is increased further, the curve H is crossed a
second time. Now a stable periodic orbit is born along H so that in region 6 we
now find bistability between the off-state and self-sustained oscillations. As τ
is increased even further, the Hopf bifurcation curve H is crossed several more
times; this leads to the creation of more periodic orbits, which are alternatingly
attracting and of saddle type. As Figure 5(a) clearly shows, the bifurcation dia-
gram becomes increasingly complicated for even larger values of τ — so much
so that it becomes impractical to map out all regions of different dynamics.

An important new aspect of the bifurcation diagram in Figure 6(b) is the
fact that region 6, where one finds bistability between the off-state and self-
pulsations, is now so large that it becomes experimentally accessible. It can
be reached, for example, from region 2 by increasing κ for a fixed intermediate
value of the delay time τ , or from region 4 by increasing τ for suitable fixed κ.
The relevant region in the (τ, κ)-plane is shown enlarged in Figure 7(a). Panel
(b) shows the period of the attracting periodic orbit Γ as it is continued in the
direction of decreasing κ from the point p on the Hopf curve H. As is to be
expected, the period of Γ increases and diverges to infinity as the homoclinic
loop curve L is approached. Panels (c1)–(c3) of Figure 7 show the response of
the system to a sufficiently large perturbation (above the stable manifold of the
saddle point in region 6). After an initial large pulse, the system settles down to
the attracting periodic orbit and, hence, produces regular oscillations. As the
curve L is approached, these oscillations take the form of self-pulsations with
clearly defined pulses. Indeed, the interspike time (which is the period of the
periodic orbit) increases as κ is decreased towards the curve L.
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Figure 7: Panel (a) shows a region of the (τ, κ)-plane with transition to region
6. Panel (b) shows the period of the periodic orbit Γ in region 6 as continued
from the point p of the Hopf curve H towards the homoclinic loop curve L.
Panels (c1), (c2) and (c3) show associated time series after a sufficiently large
perturbation from the stable off-state.

5 Bifurcation study for non-excitable SLSA

We now consider the influence of the feedback loop on phase portrait 1 of the
Yamada model, where the off-state of the laser is a global attractor but the
system is not excitable; see Figure 3. Figure 8(a) shows the relevant computed
bifurcation diagram of Eqs. (1)–(3) in the (τ, κ)-plane for A = 5.9, a value
somewhat to the left of the saddle-node curve S in Figure 2(b). (Again, B = 5.8,
a = 1.8 and γ = 0.04 are fixed.) Hence, according to Proposition 1 we find the
saddle-node locus S as the horizontal line at κS ≈ 0.09578. The line S bounds
a horizontal strip near κ = 0 where one finds phase portrait 1 for any τ ; again,
this is to be expected from the fact that the DDE is a regular perturbation of
the Yamada system. In contrast to the case for A = 6.5 in Figure 5(a), for
A = 5.9 the locus of Hopf bifurcation is no longer a single curve. Figure 8(a)
actually shows several disjoint Hopf curves that intersect in numerous double
Hopf points; along the shown curves H one finds a Hopf bifurcation at the
equilibrium E3. Note further that the transcritical locus T no longer intersects
the Hopf curves H; it lies at κT = 0.9, which is outside the range shown in
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Figure 8(a).
Another new feature of Figure 8(a) are codimension-two points on the saddle-

node line S. There are a Bodganov-Takens point BT (where the system has
a double-zero eigenvalue) and two codimension-two saddle-node Hopf points
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SH (where there is a zero eigenvalue and a complex conjugate pair of purely
imaginary eigenvalues) [29, 30]. These points are end points of Hopf curves.
Panel (c) shows that the imaginary part ω along the Hopf curve H decreases
to zero as the point BT is approached, which is evidence for the fact that one
is indeed dealing with a Bodganov-Takens point. As was also checked, the
imaginary part ω along the respective Hopf curves tends to a nonzero limit at
the points SH. Notice also that the homoclinic loop curve L ends at the point
BT; see Figure 8(b).

Figure 9 shows a qualitative sketch of the partial bifurcation diagram for A =
5.9. As before, we added a number of bifurcation curves that are very difficult
to continue directly in the DDE, but must exist near the known codimension-
two bifurcation points; existence and positions of these curves was again verified
by careful numerical simulations of Eqs. (1)–(3). There are two (grey) curves
SL of sadddle-node bifurcation of limit cycles emanating from codimension-
two degenerate Hopf points DH, and one (grey) curve SL emanating from a
codimension-two Hopf-Hopf point HH. Furthermore, we also added an addi-
tional homoclinic loop curve L that connects the two points SH and bounds a
second region where one finds the excitable phase portrait 2.

Figure 9 is meant to show what additional bifurcation curves are involved in
the interaction of the three left-most Hopf curves of the bifurcation diagram in
Figure 8(a). Indeed, many more additional Hopf curves and codimension-two
points HH exist, meaning that the sketch in Figure 9 does not give a complete
division of the (τ, κ)-plane into regions of different dynamics. Nevertheless, it
is complete enough to allow us to identify the regions where one finds portraits
1–6 and 10 from Figure 3.

6 Dependence of the bifurcation diagram on the
gain pump parameter

The two bifurcation diagrams in the (τ, κ)-plane for A = 5.9 and A = 6.5,
in Figure 8(a) and Figure 5(a), respectively, are clearly qualitatively different.
Yet, since they depend only on the gain pump parameter A, changing A from
A = 5.9 to A = 6.5 (or vice versa) transforms the two bifurcation diagrams
into one another. We now describe briefly how this happens via the transition
through codimension-three bifurcations. Here we take a geometric approach
that is supported by numerical computation with DDE-BIFTOOL.

The overall features of this transition when A is increased through the in-
terval A ∈ [5.9, 6.5] can be described as follows.

• the different Hopf curves for A = 5.9 merge into the single Hopf curve
for A = 6.5;

• the codimension-two points BT and SH disappear towards infinite values
of τ ;

• the curve S disappears when A reaches the curve S in Figure 2(b)
at A = (−1 + a+ 2

√
(a− 1)B +B))/a; and
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• the transcritical curve T moves down and starts to intersect the curve H.

We concentrate here on the bifurcations of the Hopf curves as the main
ingredients in the transition for A ∈ [5.9, 6.5]. To this end, we now consider all
Hopf curves for A = 5.9 — including those where the bifurcation takes place at
E2, which are not shown in Figures 8(a) and 9.

As A is increased, one finds values of A where the connectivity between
different branches of Hopf curves in the (τ, κ)-plane changes locally; we speak
of a saddle transition of Hopf curves. Figure 10 shows two examples of this
bifurcation, which is of codimension three. More specifically, Figure 10(a1) and
(a2) show the bifurcation diagram before and after a saddle transition of Hopf
curves near the points BT and SH; the inset panels show the purely imaginary
parts of the bifurcating eigenvalues along the Hopf curves. Notice how two
separate Hopf bifurcation curves that end at BT and SH, respectively, connect
differently, creating a direct connection from BT to SH. Figure 10(b1) and (b2)
show a saddle transition of Hopf curves near the point SH for larger values of τ .
The result is again a different connectivity of Hopf curves H near the point SH.
A saddle-transition of Hopf curves is a bifurcation of codimension three because
it changes the topological type of the bifurcation diagram in the (τ, κ)-plane
at a single discrete value of A. This bifurcation has been found in transitions
between different two-parameter bifurcation diagrams in other laser systems;
see, for example, [32, 33]. When seen in (τ, κ,A)-space, a saddle-transition of
Hopf curves corresponds to the transition of a plane given by A = const through
a saddle-point of the two-dimensional surface H(τ, κ) of Hopf bifurcation; here
a saddle point is given by the condition that gradH = 0 and the determinant
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Figure 11: Sketch of the transition through a codimension-three degenerate
Hopf-Hopf point DHH, where a loop in a Hopf curve H with a point HH tans-
forms into a lobe with a point DH.

of the Hessian is negative.
After the saddle transitions of Hopf curves in Figure 10, the codimension-

two points BT and SH are ‘free to move’ towards larger values of τ as A is
increased further. In the process they ‘drag’ the other bifurcation curves with
them towards larger values of τ . In this way, the homoclinic loop curve L ending
at BT (not shown in Figure 10) becomes the lower boundary of the bifurcation
diagram; compare with Figure 5(a). With increasing A the saddle-node curve S
moves down in κ and finally disappears at A = (−1 + a+ 2

√
(a− 1)B +B))/a

into the (unphysical) region of negative κ.
Relating the saddle transition in Figure 10(b1) and (b2) back to the larger

picture in Figure 9 shows that this transition results in a Hopf curve H with a
loop, where the self-intersection point is the sketched Hopf-Hopf point. Invest-
igation with DDE-BIFTOOL shows that, when A is increased beyond the value
5.9312, then this loop changes into the ‘lobe’ with a point DH that one finds
in Figure 6(b). The mechanism is the transition through a codimension-three
degenerate Hopf-Hopf bifurcation point DHH, and it is sketched in Figure 11.
At the moment of bifurcation in panel (b), the Hopf curve has a cusp, which is
the point DHH.

7 Conclusions

We presented a bifurcation study of the influence of an optical feedback loop
on a semiconductor laser with a saturable absorber as modeled by the Yamada
ODE. The resulting DDE model was studied by means of linear stability analysis
of its equilibria in combination with a bifurcation analysis with the continuation
package DDE-BIFTOOL. More specifically, bifurcation diagrams in the plane
of delay time τ and feedback strength κ were presented for two relevant choices
of the gain pump parameter A. The transition of the bifurcation diagram in
the (τ, κ)-plane with A was discussed in terms of transitions through certain
codimension-three bifurcations.

The work presented here can be seen as a case study of how a laser system
with delay can be investigated with tools from bifurcation theory and, in partic-
ular, with numerical continuation as implemented, for example, in the package
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DDE-BIFTOOL. The physical motivation for this work is the wish to use the
additional control parameters τ and κ to ensure reliable self-pulsations of the
overall system with small timing jitter. To this end, the bifurcation diagram in
the (τ, κ)-plane was considered for a small range of the gain pump parameter
A near the region where the SLSA without delay is excitable. In this way, we
identified large and experimentally accessible additional regions where the SLSA
produces a stable train of pulses in the presence of the optical feedback loop.

Indeed, this study is far from complete and there are several directions for
future research. First of all, an investigation of the influence of noise on dy-
namics of the SLSA with delay would be the logical next step to determine the
timing properties of the corresponding pulse trains under more realistic condi-
tions. Secondly, we restricted our attention to a relatively small range of the
delay time τ . As a result, the phase portraits we found for the SLSA with delay
are all quite special in that they can be drawn by planar phase portraits, where
the missing (infinitely-many) directions are strongly attracting. A more wide-
ranging bifurcation analysis, in dependence of A as well as on other parameters
of the Yamada system, would be expected to result in the discovery of more
complicated dynamics.
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