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Nonlinear models of development,
amplification and compression in the

mammalian cochlea
By R. Szalai, K. Tsaneva-Atanasova, M. E. Homer, A. R. Champneys †,

H. J. Kennedy ‡, N. P. Cooper ¶

This paper reviews current understanding and presents new results on some of
the nonlinear processes that underlie the function of the the mammalian cochlea.
These processes occur within mechano-sensory hair cells that form part of the organ
of Corti. After a general overview of cochlear physiology, mathematical modelling
results are presented in three parts. First, the dynamic interplay between ion chan-
nels within the sensory inner hair cells is used to explain some new electrophysi-
ological recordings from early development. Next, the state-of-the-art is reviewed
in modelling the electro-motility present within the outer hair cells, including the
current debate concerning the role of cell body motility versus active hair bundle
dynamics. A simplified model is introduced that combines both effects in order to
explain observed amplification and compression in experiments. Finally, new mod-
elling evidence is presented that structural longitudinal coupling between outer hair
cells may be necessary in order to capture all features of the observed mechanical
responses.

Keywords: inner ear, inner hair cell, outer hair cell, compression,
electromechanical transduction

1. Cochlear physiology

Hearing is a complex biological process, that relies on many highly developed sub-
systems. The main concern of this paper is the cochlea, which houses the first
active and nonlinear components of the auditory system. The cochlea’s most basic
function is to convert sound-evoked motion into an ensemble of neural signals which
underlies an organism’s ability to hear.

A schematic view of the mammalian cochlea can be seen in Fig. 1(a,b). It is
a coiled tube that consists of three fluid-filled chambers: the scala tympani, scala
media and scala vestibuli. At the basal end there are two openings: the oval window,
which is connected to the middle ear, and the round window, which is covered by
an elastic membrane. The scala tympani and scala media are separated by the
organ of Corti, which is built on the flexible basilar membrane. The scala media
and scala tympani are separated only by the thin Reissner’s membrane and are
usually modelled as a single chamber.
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Figure 1. (a) A schematic view of the anatomy of the cochlea. (b) A schematic trans-
verse section through the organ of Corti. Here TM represents the tectorial mem-
brane, OHC an outer hair cell, RL the reticular lamina, BM the basilar membrane,
D a Deiters’ cell, AN an auditory nerve fibre and IHC an inner hair cell. (c) An
image showing the arrangement of hair bundles of OHCs protruding beyond the
RL in a view from above, with the vertical axis representing the radial direction
and the horizontal axis representing the longitudinal direction. The image was down-
loaded from http://www.udel.edu/biology/Wags/histopage/empage/ee/ee4.gif. (d-e)
Schematic representation of the amplitude and phase of a travelling wave with longitudinal
distance along the basilar membrane.

A typical transverse cross-section through the organ of Corti is depicted schemat-
ically in Fig. 1(b); see also the photographic view from above in Fig. 1(c) with the
tectorial membrane removed. The three rows of outer hair cells (OHCs) are con-
nected to the basilar membrane by the Deiters’ cells, and at the other end to
the reticular lamina. The hair bundle of the OHCs are stimulated by the shear-
ing motion of the tectorial membrane which slides above the reticular lamina as
the basilar membrane is deflected by pressure differences between the fluid filled
chambers. Sensing of sound occurs through the inner hair cells (IHCs), which are
positioned on the opposite side of the tunnel of Corti (the triangular shaped void
depicted in Fig. 1(b)). The inner hair cells signal the characteristics of a sound to
the brain via synaptic contacts with individual fibres of the auditory nerve.

Attempts to understand the function of the human hearing organ can be traced
to the work of Aristotle, who supposed that acoustic resonance occurs in an air filled
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Nonlinear models of mammalian hearing 3

cavity located behind the eardrum; see Gitter (1990). The discovery of the anatomy
of the basilar membrane by Hensen (1863) inspired Helmholtz (1863) to formulate
the theory of tonotopy, also known as the place theory of hearing. Specifically, every
transverse cross-section of the cochlea is most sensitive to a particular frequency,
the so-called characteristic frequency (CF) of that location. The tonotopy map is
such that low frequencies excite the basilar membrane at apical positions along
the cochlear tube, while high frequencies stimulate the basal end. Helmholtz also
recognised that merely having a resonant basilar membrane does not explain the
observed sharp frequency discrimination. Therefore he hypothesised that there are
additional oscillators connecting the basilar membrane and the sensory nerves.

The experiments of Békésy (1960) indicated that the fluid-structure interaction
of the cochlear tube and membrane supports a travelling wave. This wave reaches
a maximum amplitude and rapidly attenuates at a frequency-dependent distance
from the stapes, thus explaining the tonotopic map. Such behaviour can be repro-
duced theoretically via a dynamic interplay between the fluid in the cochlear duct
and the basilar membrane, with stiffness that varies with longitudinal position; see
e.g. Zwislocki (1948), Lighthill (1981), and Lesser & Berkley (1972).

Békésy’s experiments were conducted using high-amplitude stimulation of post-
mortem cochleae, and revealed only relatively broadly tuned mechanics. Later ex-
periments by Johnstone & Boyle (1967), Rhode (1971), and Sellick et al. (1982)
found much sharper tuning and active mechanical responses in living animals. An-
other piece of evidence pointing to an active process in the cochlea’s mechanics was
the discovery by Kemp (1978) that sound is emitted from a healthy ear after a
short stimulus, a phenomenon known as otoacoustic emission.

As experimental technology developed, it became possible to characterise the
nonlinear vibrations of the active basilar membrane more fully (see Robles & Rug-
gero (2001) for review). Exemplar basilar membrane responses obtained by Rhode
(2007) are shown in Fig. 4(b-c) for the 9.1 kHz CF position of the chinchilla cochlea
when subjected to a range of different pure tone frequencies and amplitudes. These
data represent the experimental results by which we shall benchmark modelling
results in §3 and §4 below.

The active component of the cochlea’s mechanics is widely accepted to be located
within the OHCs of the organ of Corti. These particular cells have two types of
active processes; see e.g. Dallos (2008) and Hudspeth (2008). The hair bundle on
top of the cell is motile, and can hence exert force against the vibrating structures
of the cochlea. For example, the experimental results of Kennedy et al. (2005) show
that direct mechanical stimulation of the hair bundles can result in a period of
negative stiffness. On the other hand it was observed by Brownell et al. (1985) that
if OHCs are depolarised they shorten. Later Zheng et al. (2000) discovered that a
piezoelectric protein called prestin, which is embedded within the lateral membrane
of the OHC body is responsible for this effect. Prestin can expand and contract in
response to changes in the cell potential, and makes the cell body change its shape.
Both bundle motility and somatic motility can be stimulated by cochlear vibrations
through the mechanically sensitive ion channels (MET channels) found at the tips
of the hairs.

There is currently a debate in the literature on the relative importance of these
two forms of motility in the active amplification process within mammalian hearing;
see, for example, Dallos et al. (2008). While somatic motility can exert larger forces,
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4 R. Szalai et al.

and may hence seem more potent from a mechanical point of view, amplification is
also known to occur in lower organisms such as birds and reptiles, whose hair cells
do not contain prestin but have rather more pronounced stereocilia. On the other
hand, transmission to the basilar membrane motion is more straightforward with a
somatic motility hypothesis, and the experimental results of Lagarde et al. (2009),
in mutant mice, suggest that somatic motility alone is sufficient to match wild
type behaviour. It has also been suggested that somatic motility may be too slow.
However, Frank et al. (1999) have recently shown that somatic motility can operate
up to very high frequencies - much higher than the highest that are perceived by
humans, for example. The main limitation on the speed of somatic motility seems to
be the time needed to charge up the capacitance of the OHC’s cell body - a process
which involves low-pass filtering with a corner frequency of about 1 kHz. However,
taking into account the active mechanism of the hair bundle even this filter can be
compensated for, see Ó Maoiléidigh & Jülicher (2010). Indeed the model we present
in §3 below suggests that from a modelling point of view, the observed behaviour
can be best explained by a combination of both bundle- and somatic motility.

There have been many other explanations of the source of the active process
in hearing; see for examples Hudspeth et al. (2010); Ashmore et al. (2010), and
references therein. Of particular note is the work of Zweig (1991), who added a
complex, but linear feedback term to a simple travelling-wave model of the basilar
membrane; the results were found to reproduce the active response of the cochlea
well. See also the work of Steele & Lim (1999) and Geisler (1993), who found similar
results using a spatial feed-forward term within the travelling-wave equation. A
discussion and extension of these results forms the subject of §4 below.

The measurements in Figs. 1 and 4 all concern the motion of the basilar mem-
brane, rather than of hearing itself. The transduction into neural signals occurs
within the IHCs. It is widely held that increased basilar membrane motion is trans-
ferred into increased stimulation of the IHCs through shearing motion of the tecto-
rial membrane with respect to the reticular laminar. This motion causes displace-
ment of the hairs of the IHCs, which then causes ion channels to open, which in
turn causes depolarisation of the IHCs, allowing the connected nerve fibres to fire.

The rest of this paper is organised as follows. First, we present recent progress
on mathematical modelling and experimental investigation of hair cell dynamics.
Section 2 introduces some recent progress by Tsaneva-Atanasova and Kennedy on
mathematical models of the function of developing inner IHCs. The model is val-
idated using electrophysiological recordings reported here for the first time and
simulation results are explained with the aid of numerical bifurcation analysis.
Section 3 reviews local nonlinear models of active OHC behaviour, within a fixed
transverse section of the organ of Corti. We describe a simple model, first proposed
in Szalai et al. (2011b), which is based on a comprehensive model by Ó Maoiléidigh
& Jülicher (2010) with the emphasis on the role of somatic motility, transduction
current adaptation and nonlinearity that is consistent with the experimental results
in Kennedy et al. (2005). We also argue that it is not necessary for local models
of the OHC dynamics to take the form of the popular “Hopf oscillator” (Eguíluz
et al., 2003) to provide results in agreement with experimental data. We then go
on, in §4, to discuss how local models (specifically, of the organ of Corti) can be in-
corporated into a longitudinal cochlear model, which includes fluid coupling as well
as coupling through a feed-forward mechanism. Preliminary results are presented
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Nonlinear models of mammalian hearing 5

that show how a longitudinally coupled version of the local OHC model can quali-
tatively reproduce experimentally observed vibration characteristics of the basilar
membrane. Finally §5 draws conclusions and suggests avenues for further work.

2. Modelling the development of inner hair cell function

While outer hair cells serve to mechanically pre-amplify the mechanical vibrations
(i.e. sound) that reaches the inner ear, inner hair cells are the proper receptor cells
of hearing and are connected to the afferent nerves. Sound transduction by IHCs
generates a receptor potential which triggers the coordinated release of neurotrans-
mitters onto the ensemble of auditory nerve fibres. The membrane filter properties
that define the input-output function of IHCs are dependent on membrane con-
ductance and capacitance (Raybould et al., 2001). In normal hearing, deflection of
the hairs of an IHC causes the opening of mechano-electrical transducer ion (MET)
channels. This allows a flow of positively charged ions, which depolarises the cell’s
plasma membrane, and causes the nerve connections at the basal end of the cell to
respond. These signals are then sent through nerve pathways to the brain, which
makes sense of them as sounds. This process must be performed at exceptional
speed in order to encode the complex characteristics of sound such as speech and
music. It is therefore important that the excitability of the membrane is carefully
controlled to be ready to respond rapidly.

The main control of the membrane potential in an IHC occurs through the
action of calcium on the excitability of the hair cells. Calcium is involved in both
the mechanotransduction at the cell’s apex and neurotransmitter release at base, see
e.g. (Johnson & Marcotti, 2008). Thus, regulation of intracellular Ca2+ is important
for local dynamic fine-tuning of the IHC membrane filter (Raybould et al., 2001).
A delicate calcium balance must be maintained in order for hearing to occur, but
more insight is required into how this is achieved. An interesting approach to such
a problem is to study how calcium also controls the developmental processes within
IHCs. Before we are able to hear, the ear must develop the unique sensory properties
of the hair cells and form the intricate connections to the brain. It is believed that
a key factor in this process is an increase in calcium ions (Ca2+), that is thought to
cause neurotransmitters to be released, which in turn helps guide neural connections
to form at the basal end of the cell.

During development, IHCs do not respond to sound but instead are capable of
firing spontaneous and evoked Ca2+ based spikes that disappear close to the onset
of hearing, see e.g. Marcotti et al. (2003). These spikes generate sufficient Ca2+

influx to trigger neurotransmitter release, see e.g. Johnson et al. (2005), and acti-
vate small conductance Ca2+ activated K+ KCa currents (so-called SK2 currents)
that are known to be expressed in the cochlea, see e.g. Rennie et al. (2004). Under
basal conditions the membrane potential of these cells is constant near its equilib-
rium value and the intracellular calcium concentration, [Ca2+]i is low, so the KCa
channels are closed. The negative membrane potential keeps the voltage-dependent
Ca2+ channels and [Ca2+]i low, and no significant neurotransmitter release takes
place. Upon stimulation, which generally leads to depolarisation, the membrane
potential increases, opening voltage-gated Ca2+ channels. This results in Ca2+ in-
flux into the cell cytosol, which stimulates the release of neurotransmitters, see
e.g. (Johnson et al., 2007). The increase of [Ca2+]i opens KCa channels, generating
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6 R. Szalai et al.

outflow of K+ ions, which repolarises the membrane potential. This repolarisation
leads in turn to closure of voltage-gated Ca2+ channels and subsequent decrease in
the levels of intracellular calcium concentration. In immature IHCs, the combined
sequence of events described above triggers repetitive rises (oscillations) in the in-
tracellular calcium concentration that are accompanied by action potential firing
in the form of single spikes, as well as plateau-bursting electrical activity (see new
data in the right-hand panel of Fig. 2(b), more details of which will be presented
elsewhere). Plateau-bursting electrical activity is characterised by periodic switches
between an active (depolarised) phase accompanied by increase in [Ca2+]i and a
silent (repolarisation) phase during which [Ca2+]i decreases.

We have developed a simple preliminary model based on realistic interaction
between ion channels to describe how Ca2+ influx and buffering generate a [Ca2+]i
signal within developing IHCs. Our model is of Hodgkin & Huxley (1952) type, and
is based on the voltage-clamp experimental data obtained from immature IHCs
see, e.g., Marcotti et al. (2003), Marcotti et al. (2004) and (Johnson & Marcotti,
2008). (Further details, including the parameter fitting technique, will be presented
elsewhere.) The model equations take the form of four coupled ordinary differential
equations (ODEs) for the membrane potential Vm, the concentration of intracel-
lular calcium c =[Ca2+]i, an activation variable n and an inactivation variable h
associated with the voltage dependent K+ channels:

Cm
dVm

dt
= Iapp − ICa − IK − IKCa − Ileak, (2.1)

dn

dt
=
n∞(Vm)− n
τn(Vm)

, (2.2)

dh

dt
=
h∞(Vm)− h

τh
, (2.3)

dc

dt
= fcβ

(
−αICa(Vm)− kPMCAc

2

c2 +K2
p

)
− kSERCAc+ pER(cER − c). (2.4)

Here, Cm is the membrane capacitance, τn(Vm) is the activation time constant
for the voltage dependent K+ channels, τh is the inactivation time constant for
the voltage dependent K+ channels, n∞(Vm) and h∞(Vm) are the steady state
functions for n and h, respectively. Equation (2.1) describes the overall dynamics in
which the rate of change of membrane potential Vm is balanced by the various ionic
currents. These currents include the voltage gated calcium current ICa, the voltage
gated K+ current IK, and the Ca2+-sensitive potassium current IKCa . Specific
forms of the currents included in the model are

ICa(Vm) = gCam∞(Vm)q∞(c)(Vm − VCa),
IK(Vm, n) = gKnh(Vm − VK),

IKCa(Vm, c) = gKCas∞(c)(Vm − VK),
Ileak(Vm) = gleak(Vm − Vleak),
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and the steady state activation/inactivation functions are

m∞(Vm) =
(

1 + e (VmL−Vm)/sm

)−1

,

n∞(Vm) =
(

1 + e (Vn−Vm)/sn

)−1

,

τn(Vm) = 0.0022 + 0.0029 e−Vm/14.3 ,

h∞(Vm) = 0.214 + 0.355
(

1 + e (Vm−Vh1)/sh1

)−1

+ 0.448
(

1 + e (Vm−Vh2)/sh2

)−1

,

q∞(c) =
(

1 +
c

Kq

)−1

,

s∞(c) =
c4

c4 + k4
s
,

where q∞(c) is the steady state Ca2+-dependent inactivation of the voltage gated
calcium current (Grant & Fuchs, 2008) and s∞(c) is the steady state Ca2+-dependent
activation of the KCa channels.

The plateau spikes during a burst are due to the interaction between the voltage-
dependent calcium and potassium currents ICa and IK. There is also a slow process
included, which is responsible for the shifts between the active and the silent phases.
The slow modulation is provided by the intracellular calcium concentration c, which
is a negative feedback variable. The rate of change of c is also given by a balance
equation (2.4) for the fluxes involved in its dynamics. The Ca2+ flux across the
plasma membrane is given by the difference between the Ca2+ influx, represented by
the voltage-gated calcium current, and Ca2+ efflux through the plasma membrane
Ca2+ pump. Here, Cm = 10−5 × Acell is the membrane capacitance, and fc is the
fraction of free to total cytosolic Ca2+, α = 105

/
(2× 9.65×Acell) is a factor that

converts current to flux, Acell = π × d2
cell is the area of the cell, and kPMCA is

the plasma membrane Ca2+ ATPase pump rate. Since c represents the free Ca2+

concentration in the cytosol, the corresponding fluxes are multiplied by the fraction
of free to total cytosolic calcium, fc.

The values of all parameters used in the model simulations are as follows: kPMCA
= 3.6s−1, Iapp = 0pA, kSERCA = 1.2s−1, Kp = 0.08µM, dcell = 15µm, ks = 1.25nS,
VK = −60mV, gCa = 2.4nS, VCa = 60mV, gK = 2.85nS, Vleak = −20mV, gleak =
0.12nS, VmL = −26.7mV, Vn = −16mV, sm = 11.5mV, sn = 10mV, Vh1 = −60.5mV,
Vh2 = −17.8mV, sh1 = 6.8mV, sh2 = 7.1 mV, kq = 0.6µM, τh = 0.55s−1, [Ca2+]ER=
500µM, fc = 0.01.

It has been established experimentally that the activation of KCa channels con-
trols the magnitude and duration of IHCs response to stimulation (Marcotti et al.,
2004). Figure 2(a) presents a validation of our IHC model, illustrated via simulations
of a gradual reduction in the amount of IKCa , achieved by reducing the maximum
channel conductance gKCa in the model. These simulations accurately reproduce pre-
viously published experimental data of continuous recordings of voltage responses
in the presence of KCa channel blocker (see e.g. Fig. 3C in Marcotti et al. (2004)).
As KCa channel activity is decreased in the model, spike repolarisation gradually
slows and eventually begins to fail leading to prolonged depolarisations. Moreover
the model predicts that, in response to spikes, signals of intracellular calcium c ini-
tially rise sharply and are brief. However as repolarisation begins to fail the resting
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8 R. Szalai et al.

c-value rises and the c-increases are less sharp, rising throughout depolarisation.
Interestingly, our experimental recordings of spikes (top traces in the right panel of
Fig. 2), and their corresponding near membrane c-signals (bottom), confirm that
during prolonged action potentials (bursts) c-signals appear larger in magnitude
and duration. This would presumably result in increased neurotransmitter release
probability (Johnson et al., 2007). In the left-hand panel of Fig. 2(b) we show typ-
ical IHC model solutions for a fixed value of gKCa = 4 nS. These results show that
our model supports periodic solutions of mixed type, that are composed of a single
spike and a burst with several small amplitude spikes. We have also observed such
patterns of electrical activity in immature IHC as shown in the right-hand panel of
Fig. 2(b).

In order to gain an insight into the effect of changing maximum KCa channel
conductance, gKCa , we have performed a bifurcation analysis of the full model sys-
tem Eqns. (2.1)-(2.4) using gKCa as a bifurcation parameter. Note that gKCa also
indirectly affects the time scale at which c changes in the model (Eqn. (2.4)). The
corresponding bifurcation diagram of the full IHC model, presented in three di-
mensional (gKCa c, Vm)-space is shown in Fig. 2(c). The bifurcation diagram of our
model shows the emergence of complex bursting from a primordial, large ampli-
tude spiking solution that undergoes a cascade of bifurcations in the full system as
the parameter, gKCa , decreases. For gKCa ≈ 9.25 the branch of periodic orbits that
corresponds to stable large amplitude spiking loses stability in a period-doubling
bifurcation (PD). As gKCa decreases a new stable period-2 orbit emanates from
PD and corresponds to a 2-large spikes bursting solution. This period-2 bursting
attractor loses stability in another period-doubling bifurcation that gives rise to
a complex period-4 bursting solution (not shown) that is stable for considerably
smaller range of values of gKCa and in turn leads to a classical period-doubling
cascade to chaos (not shown). However the range of values for gKCa for which this
behaviour is found is rather narrow, and we will not focus on it further. Instead,
we concentrate on the stable complex bursting behaviour of the IHC model that
occurs over a wider range of gKCa-values.

Direct numerical simulations of Eqns. (2.1)-(2.4) show that decreasing gKCa

results in complex bursting solutions with more small spikes. Thus we continue
such periodic orbits, namely with 1-large spike + 2, 3, 4, 5, 6, or 7 small spikes,
in parameter gKCa . We find that they lie on isolated solution branches, or isolas,
as illustrated in Fig. 2(c). As gKCa decreases each of these isolas that we compute
loses stability in period-doubling bifurcations (not shown) that presumably give
rise to period-doubling solutions and generate further complex behaviour that is
beyond the scope of this paper. Examples of complex bursting trajectories with
1-large spike + 2, 3, 4, 5, 6, or 7 small spikes are superimposed on the bifurcation
diagram in Fig. 2(c). Note also that as gKCa decreases, the stable portions of the
isolas become smaller, resulting in smaller regions in parameter space where bursts
with large number of small spikes exist.

This behaviour can readily be understood from a physiological point of view,
since decreasing gKCa effectively slows down the calcium component of the bursting
orbits in the full system (2.1)-(2.4), hence the trajectory spends more and more time
in the direction in the region of phase space with large c and as a result generates
more spikes within a burst. Consequently the longer bursts are accompanied by
larger Ca2+ signals.
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Nonlinear models of mammalian hearing 9

Figure 2. (a) Model simulation and experimental recordings of the effects of blocking
SK currents on the frequency and duration of action potentials, and the corresponding
whole cell calcium signals. (b) Typical IHC model responses for a fixed value of gKCa =
4 nS. (c) Three dimensional bifurcation (gKCa , c, Vm) diagram of the full IHC model;
HB-Hopf bifurcation; TR-torus bifurcation; PD-period-doubling bifurcation; broken lines
denote unstable solution branches. Sample bursting trajectories with increasing number
of spikes, i.e decreasing values of gKCa = 9.5; 8.5; 8; 4; 3; 2.5; 2.25; 2 are superimposed on
the bifurcation diagram of the full system.

These results on the dynamics of IHCs, while not describing actual hearing,
are likely to be important in development since the levels of intracellular calcium

Article submitted to Royal Society



10 R. Szalai et al.

are instrumental for the regulation of neurotransmitter release. More widely, by
correctly fitting mathematical models to the more experimentally amenable devel-
oping IHCs, we can in principle change parameters to represent mature IHCs in
order to understand how they operate within hearing. For example, the transition
between various oscillatory regimes could be regarded as a form of plasticity of the
intrinsic membrane properties of IHCs, and thus could have a profound effect on
their function. The mathematical model described here, carefully validated with
new experimental results, will play a key role in developing this understanding.

3. Micro-mechanical models of outer hair cell amplification

While the IHCs are believed to be primarily responsible for encoding acoustic stim-
uli, the primary role of the OHCs appears to be cochlear amplification (Ashmore
et al., 2010). As described in §1, OHCs provide two forms of motility: hair bundle
motility (Kennedy et al., 2005) and somatic motility (Brownell et al., 1985).

A schematic of an OHC can be seen in Fig. 3(c). Like the IHC, the OHC has
MET (ion) channels that are connected to adjacent hairs in the bundle through
elastic fibres, i.e. the tip links. The tip links are presumed, as in non-mammalian
hair cells, to be coupled to myosin motors that pre-tense the tip link, perhaps to
the most sensitive state of the MET channels. The MET channels are not only
mechanically sensitive, but also Ca2+ sensitive. This provides a fast adaptation
mechanism to tune the operating point of the entire hair bundle (Kennedy et al.,
2003). The myosin motors are also Ca2+ sensitive; that is, their force decreases with
increasing Ca2+ concentration.

It has been suggested that the negative stiffness seen in mammalian OHCs, to-
gether with spontaneous oscillations of the hair bundle that has been observed in
lower vertebrates, e.g., in bullfrog, suggest that the nonlinearity of hair cells can
be essentially modelled as that of a nonlinear oscillator undergoing a Hopf bifur-
cation. (Eguíluz et al., 2003). See Hudspeth (2008) for a detailed review, including
appealing evidence that a forced Hopf bifurcation normal form can give rise to a
compressive nonlinearity and a possible explanation for otoacoustic emissions and
two-tone interference in hearing (Jülicher et al., 2001).

In order to understand the possible physiological basis for the Hopf bifurcation
hypothesis, Tinevez et al. (2007) adapted a model of the myosin motor mechanism
constructed by Assad & Corey (1992) that can account for gating currents observed
on a voltage clamped cell, as well as the mechanical properties of the hair bundle
in bullfrogs. The current through the ion channels is qualitatively similar to that
illustrated in Fig. 3(b). In particular, Tinevez et al. (2007) adapted the model
to describe mammalian hair bundle dynamics, based on the experimental data of
Kennedy et al. (2005). It was found that this model can indeed undergo Hopf
bifurcation.

Ó Maoiléidigh & Jülicher (2010) incorporated this myosin motor dynamics in
their unified ODE model of an OHC which also includes the charge dynamics and
linear coupling to all the structural elements in the cochlear cross-section. Recently,
Szalai et al. (2011b) analysed a version of this model and various other simplified
ODE models using bifurcation analysis. They find that the dynamics of the system
contains many local bifurcations including saddle-node, cusp and Hopf bifurcations
of the equilibrium state. They argue that the presence of a bifurcation per se is not
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the most important feature needed to reproduce the observed compressive nonlinear
response; rather it is the form of the nonlinearity that is key.

We present here a simplified model of the dynamics of the organ of Corti that
captures what we believe to be the simplest ingredients that are consistent with
physiological observations. For more details of how this model may be seen as a
reduction of that of Ó Maoiléidigh & Jülicher (2010), see Szalai et al. (2011b). The
model is depicted schematically in Fig. 3(d). The model includes adaptation due to
hair bundle displacement and nonlinearity of the transduction current. The actual
force to move the basilar membrane is exerted via the OHC’s somatic motility
mechanism. We assume an elastic and underdamped basilar membrane. The hair
cells connect to the basilar membrane through the elastic Deiters’ cells on one hand,
and are rigidly fixed to the reticular lamina, which provides a stationary frame. The
passive organ of Corti mechanism is assumed to stimulate the hair bundle, which
in our model does not exert any force.

We use a simplified approach to describe the transduction current I as a func-
tion of the hair bundle displacement. To keep a consistent notation with earlier
models, in particular the work of Ó Maoiléidigh & Jülicher (2010), we refer to the
deflection of the tip link from its equilibrium position via an adaptation variable
ya. Specifically we assume

ẏa = −κ(ya − Z), (3.1)
I = −PO(∆(αya + βẏa)), (3.2)

where Z is the deflection of the hair bundle, and the open probability function PO
is given by the Boltzmann function

PO(y) =
1

1 + e−y

where the induced current has been scaled to unity if the ion channels are fully
open. In contrast to previous work, we do not include separate dynamics for the
hair bundle displacement y and the tip link ya, as this is only a phenomenological
description of the data in Kennedy et al. (2005). The behaviour of the model is
illustrated in Fig. 3(a-b). As in the experiments, we stimulate the hair bundle in
the model with step displacements of different magnitude (shown in Fig. 3(a)).
This results in peaks of the transduction current whose maximum value depends
on the height of the stimulating step with the function PO. When the stimulation
is held the current falls to almost zero; that is the adaptation is nearly complete.
This means that the transduction current is more of a function of the hair bundle
velocity than its position. We found that the values α = 0.1 and β = 1 form a good
fit with the experimental observations (see Szalai et al. (2011b) for more details).
The parameter ∆ is an overall scale factor of the argument that controls the slope
of Po at equilibrium, and can be determined from energetic considerations of the
ion channels (Markin & Hudspeth, 1995).

To include (3.1) and (3.2) as a feedback mechanism, we assume that the basilar
membrane is modelled as a linear oscillator with natural frequency ω0, the CF of
the longitudinal position in question, and damping ratio ζ. This basilar membrane
motion is supposed to be coupled to the OHC through the Deiters’ cells, that
are again represented by a spring and a damper. We suppose that the spring and
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damping constants of this coupling are chosen so that the extension l(t) of the
OHC causes an additional force on the basilar membrane equivalent to a reduced
restoring force −f1ω2

0l and reduced damping −2f0ζω0 l̇.
The extension l(t) of the OHC we suppose to be controlled linearly by somatic

motility. Specifically the excess charge q in the hair cell is assumed to leak at rate γ
and that the hair cell expands and contracts from its equilibrium length l0 in direct
proportion to the excess charge. For simplicity the units of the charge are chosen so
that l(t) = l0 + q(t). The hair cell is charged by the transduction current. The hair
bundle excitation is driven by the basilar membrane motion z(t) and indirectly by
the assumed sinusoidal pressure difference p = F sinωt. Even though the indirect
forcing by the pressure is small, its effect can be rather large due to the sensitivity
of the hair bundle. A parameter ε is included to represent the relative importance
of p(t) on the motion of the basilar membrane z and on the deflection of the hair
bundles ya.

Under the above assumptions, the governing set of equations of the organ of
Corti model is

z̈ = −2ζω0 (ż − f0q̇)− ω2
0 (z − f1q) + εF sinωt,

ẏa = −κ (ya − (z + F sinωt)) ,
q̇ = −γq + PO(∆(αya + βẏa))− PO(0).

(3.3)

Note that the only nonlinearity is the open probability function PO.
The bifurcation diagram of (3.3) can be seen in Fig. 3(e). The white region

is stable and bounded by a pitchfork bifurcation (horizontal line) and a Hopf bi-
furcation curve (diagonal line). Both bifurcations are supercritical, hence there is
no additional dynamics of the unforced system in the stable region other than the
equilibrium. We have found that within the white stability region, the system is
rather robust to parameter changes. At our chosen set of parameters (denoted by a
cross in Fig. 3(e)) the response of the model can be seen in Fig. 3(f). The response
has the desired qualitative feature of being linear for small forcing amplitude, com-
pressive for medium amplitudes and linear again for higher amplitudes. One might
notice that its tuning is rather sharp, sharper than is possible by a single degree of
freedom (DOF) oscillator, but less sharp than a two DOF oscillator. This is due to
the additional dynamics from the adaptation and charging of the hair cell.

One conclusion from these results is that the Hopf bifurcation normal form is too
simplistic to describe the physiology. The presence of a Hopf bifurcation within the
bifurcation diagram of Fig. 3(e), though, suggests a possible source of otoacoustic
emissions as being due to the consequent limit cycle oscillation that might result
from a perturbation to the system’s parameters away from its stable operating
point. It has been suggested that spatial inhomogenity in the cochlea might cause
such a perturbation (Elliot et al., 2009). However, the Hopf bifurcation present
in this cochlear model, is more like a global than local feature of the cochlea. In
particular, we believe that the cochlea is not an ensemble of critically tuned Hopf
oscillators, as has been proposed. It is better to think of the cochlea as being a
coupled system of simple nonlinear oscillators, which may exhibit a Hopf bifurcation
as an emergent feature. In fact, as we outline in the next section, it is the nature
of the longitudinal coupling between these oscillators that seems to be the most
important feature in explaining experimental observations.
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(a)

(b)

(f)(e)

(f)

(d)

(c)
y ya

Figure 3. Outer hair cell active mechanisms: (a) applied hair bundle stimulation and (b)
the corresponding transduction output current through the ion channels; (c) schematic
depiction of the of the hair bundles and the outer hair open probability function; schematic
description of the overall mechanics. (e) Bifurcation diagram of the mathematical model
(3.3) see text for details and (e) the mechanical response of the model at frequencies: ¬

5kHz, ­ 6.6kHz, ® 8kHz, ¯ 9kHz and ° 10kHz. Other parameter values used are α = 0.1,
β = 1, κ = 6.6, f0 = f1 = −0.1, ω0 = 6.6 × 2π, ζ = 0.1, ε = γ = 1/20 and ∆ = 8.

4. Longitudinal coupling

The organ of Corti model in §3, even though it has some desirable features, is
far from complete. The cochlea cannot simply be described as an ensemble of dis-
connected oscillators each subject to a simple pure-tone input. In truth, there is
significant longitudinal coupling between individual organ of Corti cross-sections.
Effects that cause this coupling include the longitudinal stiffness of the basilar mem-
brane (which is significantly weaker than its transverse stiffness), the motion of the
tectorial membrane, the fluid motion, the fact that the hair cells themselves tilt
in the longitudinal direction, and that the Deiters’ cells are coupled longitudinally
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through their so-called phalangeal processes to the reticular lamina (see Fig. 4(a)
for a schematic).

Early models of the cochlea assumed no coupling between basilar membrane
cross-sections, other than the fluid motion in the ducts of the cochlea. These mod-
els could not account for every detail of the basilar membrane vibration, whether or
not they included higher spatial dimensional fluid motion. On the other hand, Zweig
(1991) determined the impedance of the basilar membrane necessary to produce ob-
served basilar membrane response. He found that the effective basilar membrane
oscillator must have a negative damping coefficient and a linear time-delayed feed-
back term. Such a model is rather difficult to underpin physiologically. The negative
damping could be thought of as a crude model of OHC dynamics, but there is no
obvious physiological evidence for a local time-delay of the appropriate duration in
the organ of Corti.

The puzzle of Zweig however can be resolved by other means. Steele & Lim
(1999) and Geisler (1993) suggested that a longitudinal forward coupling mechanism
in the cochlea can produce the same result. Recent work by Szalai et al. (2011a)
provides further evidence in this direction, and an explanation of the similarities
and differences between temporal delay and spatial feed-forward. Other forms of
longitudinal coupling could arise from a second travelling wave, as suggested by
Hubbard (1993), that could be related to either the tunnel of Corti flow (Karavitaki
& D.C., 2007), or the waves of the tectorial membrane (Ghaffari et al., 2007).
Recently Meaud & Grosh (2010) considered simple plate models for the basilar
membrane and the tectorial membrane. They showed that the combined effects of
these yield longitudinal coupling that is bidirectional. This bi-directional coupling
was found to lead to a cochlear response that has broader, more realistic, peaks as
well as to lead to increased stability.

In this paper we use a combination of passive bidirectional coupling and active
forward coupling. The bidirectional coupling is inspired by Meaud & Grosh (2010)
while the spatial feed-forward coupling is used as more realistic surrogate of the
the time delay in Zweig’s model (Szalai et al., 2011a). We then assume that the
micromechanics is described by (3.3) with some simplifications.

Specifically, the model consists of two parts: the fluid dynamics in the chambers
of the cochlea, and the micromechanical model of the organ of Corti. As is common
in modelling the fluid mechanics, we assume an incompressible and inviscid fluid
description of the perilymph, which yields a wave equation for the pressure differ-
ence p between the scala tympani and scala vestibuli, and the basilar membrane
displacement z,

∂2z

∂t2
(x, t) =

ε2

m

∂2p

∂x2
(x, t). (4.1)

Here, the lumped parameter ε ≈ 0.025 is a function of the geometry of the cochlear
chambers and the density of the perilymph fluid, whilem is the mass surface density
of the basilar membrane. We scale the cochlea length to unity, therefore 0 6 x 6 1.

To describe the basilar membrane motion we use a simplified version of our local
model (3.3). First it is no longer necessary to introduce the applied forcing term
p = sin(ω0t) into the stimulation of the hair cells. Instead, we suppose that the
basilar membrane (the main elastic member within the organ of Corti) drives all
mechanical components within a cross-section, including the motion between the
tectorial membrane and reticular lamina that stimulates the OHC hair bundles.
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Hence the variable Z can be replaced with something strictly proportional to the
basilar membrane displacement z. Also, we assume that the current adaptation is
rather fast compared to the other dynamics, that is, the adaptation variable ya and
the basilar membrane displacement z are also strictly proportional. Without loss
of generality, we can assume ya = z. The governing equations are therefore

p(x, t)
m

= z̈(x, t) + 2ζω0ż(x, t) + ω2
0 (z(x, t)− fbq(x− h(x), t))

− ω2
0

fb

2
(z(x− h(x), t) + z(x+ h(x), t))

q̇(x, t) = −γq(x, t) + PO (∆ (αz(x, t) + βż(x, t)))− PO(0).

(4.2)

Another simplification to the model (3.3) is that we use only the charge q and
not its derivative as the feed-forward term as a modelling convenience. However,
we introduce feed-forward and feed-backward terms from the basilar membrane
motion. These two terms are equal in magnitude, as they approximate the lon-
gitudinal stiffness of basilar membrane, meaning that the membrane is more like
an inhomogeneous elastic plate rather than an ensemble of strings, cf. (Meaud &
Grosh, 2010). For computational simplicity here we assume that the feed-forward
distance h(x) of the action of the hair cells is the same as the longitudinal coupling
distance of the basilar membrane (although this assumption can easily be relaxed).
A realistic estimate for the magnitude of h(x) can be computed from the length
of the hair cells based on the assumption that the geometry of the organ of Corti
is self-similar at different positions along the length of the cochlea. Specifically we
take h(x) = 1.2l(x), where l is the length of the OHC.

In order to match the experimental data of Rhode (2007), shown in Fig. 4(b),(c),
we assume the following mechanics for the basilar membrane: l(x) = (0.0027 +
0.0027x), natural frequency ω0(x) = 2π20.8(e−4.8354x− 0.1455), and damping coef-
ficient ζ(x) = 0.03(1−e−40(1−x))+0.1e−40(1−x). We also include spatial inhomogen-
ity by assuming that the feedback coefficient fb has a normal random distribution
around f̄b(x) = 0.08(1 − e−40(1−x)) with standard deviation 0.01f̄b(x). Other pa-
rameters are the same as in (3.3), with the exception of γ = 1.

We have used a boundary-value problem formulation to solve (4.1) and (4.2).
We also assume that the stapes is moved by a harmonic velocity, that is, u(0, t) =
A sinωt where u is the fluid velocity of the scala vestibuli. From the 1D fluid flow
equation, we find that u̇(x, t) = −(1/ρ)p′(x, t), where ρ is the fluid density. Hence,
assuming that the pressure at the cochlear apex vanishes, we find pressure boundary
conditions

p′(0, t) = −ρωA cosωt, p(1, t) = 0. (4.3)

For the basilar membrane displacement z and charge q, since the response of the
cochlea for a single tone excitation is periodic, we prescribe a periodic boundary
condition in time

z(x, t) = z(x, t+
2π
ω

), q(x, t) = q(x, t+
2π
ω

) (4.4)

The numerical method used to solve (4.1) and (4.2) subject to (4.3) and (4.4) is a
finite differences discretisation in space and a piecewise-polynomial approximation,
so called orthogonal collocation, in time (de Boor & Swartz, 1973). The solution
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of the nonlinear equation is propagated with increasing forcing amplitude A using
pseudo-arclength continuation (Doedel et al., 1991). Preliminary numerical results
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Figure 4. Models with longitudinal coupling. (a) Schematic diagram of the a longitudi-
nal cross-section of the organ of Corti. (b),(c) Experimental data due to (Rhode, 2007)
showing I/O functions measured on a chinchilla basilar membrane at CF= 9.1kHz as a
function of input amplitude and input frequency. The dashed lines have slope 1 for com-
parison. Reproduced with permission from ASA. (d),(e) Model predictions of (b) and (c)
respectively. See text for details.

are shown in Fig. 4(d-e). More details will be presented elsewhere.
Figure 4 (b-c) shows, for comparison, experimental results from Rhode (2007)

at 9.1 kHz characteristic frequency (CF). Figure 4(b) shows the input-output func-
tions for different stimulus frequencies. For frequencies substantially lower than
CF the response is linear. For frequencies closer to CF the response becomes com-
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pressive for mid range amplitudes and tends towards linear for high amplitudes.
The compressive nature remains for very high frequencies but the linear region for
higher amplitudes starts earlier. In Fig. 4(c) the cochlear response is shown as a
function of frequency at constant amplitudes. For low amplitudes, the response has
a distinct broad peak at the CF. With increasing amplitude the peak gets less pro-
nounced and slightly moves towards lower frequencies. The amplitude independent
variation at lower frequencies observed in experiments could be due to the middle
ear, while wiggles at higher than CF frequencies might be explained by interference
of vibrations from the travelling wave and a faster wave (Olson, 1998). Another
observation is that in Fig. 4(c) the response at 13 kHz is nearly linear, even a little
expansive. This might also be explained by a second sound source perhaps from the
compressive wave or the basilar membrane longitudinally coupled dynamics.

In comparison, our model (4.1) and (4.2) yields similar results in Figs. 4(d-e).
The significant differences are that the numerical results show sharper responses,
which yield somewhat thinner peaks in Fig. 4(e), and curves that are somewhat
further apart in Fig. 4(d). Because we do not model the middle ear, amplitude
disturbances due to it (at low frequencies) are absent in Fig. 4(e). However, sur-
prisingly the disturbances at high frequencies are reproduced in Fig. 4(e). This is
especially striking since the model does not include fast compression waves or any
other source that the travelling wave could interfere with. A control simulation
with longitudinally smooth feedback fb = f̄b shows identical dips in the tuning
curves, hence the inhomogeneity of parameters is similarly ruled out as a possible
cause. Also, surprisingly, in Fig. 4(d) for the 13 kHz curve we get a similar response
to the experimental result. Our speculation is that the early linearity of high fre-
quency input-output functions is due to the longitudinal coupling, without which
the curve would be flat up until high-amplitude forcing. The exact mechanism for
this linearity however is still under investigation.

5. Conclusions

This paper has reviewed the dynamical properties of the mammalian cochlea, and
presented some preliminary results on modelling its specific nonlinear components.

First, we presented a new model, supported by new data, of how inner hair
cell calcium currents might play a role in the development of hearing. IHCs Ca2+

signalling pathways are thought to be critical to both the intrinsic development
of IHCs and the auditory system as a whole. Understanding the basic elements
of these signalling pathways in the healthy ear is essential in order to approach
future strategies for hair cell regeneration or replacement therapies that may be
used to treat conditions such as age related hearing loss. Such understanding could
be greatly facilitated by using complementary approaches of experimentation and
mathematical modelling.

Next, we reviewed the dynamics of the outer hair cells, which are believed to
be the source of cochlear amplification. The nonlinearity of these cells appears to
play a significant role in cochlear function, leading to compressive nonlinearity in
the basilar membrane response and in sound perception more generally. Based on
our synthesis of earlier micromechanical models we introduced a longitudinally cou-
pled cochlear model that includes many aspects of the cochlear mechanism already
identified by others. In particular we argue that it is the combination of spatial
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feed-forward, longitudinal coupling, somatic motility and nonlinear MET channel
open probabilities, that enables our model to agree qualitatively and quantitatively
with data.

Note that all of this agreement is found by physiological modelling without
assuming a priori that the hair bundles are tuned to undergo a local bifurcation.
This finding seems to run counter to some current opinion in the literature which
suggests the normal form for a Hopf bifurcation is a suitable local model for the
mammalian cochlea (see e.g. Hudspeth et al. (2010) for a recent opinion piece).
Indeed, proponents of a Hopf bifurcation theory point to a supposed 1/3-power law
in the amplification data (which does not seem to be universal). In fact it can be
shown by harmonic balance (Szalai et al., 2011b) that a 1/3-power law comes from
the presence of the lowest-order term nonlinear term in any nonlinear function.

One key question that remains, then, is what is the true source of the nonlin-
earity in the OHC dynamics? Here, we have assumed an open probability function
that depends on a mixture of the displacement and rate of displacement of the hair
bundles. This provides a good agreement with the experimental data, but does not
shed light on the biochemical processes that might cause such a response. This is
where future work that incorporates ion-channel modelling as we described for the
IHCs might be helpful. In particular, Verpy et al. (2008) have found that stereocilin
deficient mice lack signatures of nonlinearity, but preserve amplification and sharp
tuning that progressively vanishes. Determining the effect of stereocilia links on
mechanoelectrical transduction is therefore another avenue to pursue.

One key mathematical technique we have used in this paper and seems especially
important when investigating nonlinear models is the use of numerical bifurcation
analysis. This method can be useful to test for robustness of mechanisms, to point
to possible multistability or plasticity and the proximity of instability. Bifurcation
analysis works best on simplified models which capture the essential features be-
lieved to be at work.

More generally though, as the nature of the cochlear amplifier is still debated,
we need to use more comprehensive simulation models that incorporate the true ge-
ometry of the cochlea in order to decide what modelling assumptions play essential
roles. Even though linear, the model of Grosh and Meaude described in Ashmore
et al. (2010) comes closest to this requirement. Careful parametrisation of such
models remains a major issue, as does the correct treatment of noise, inhomogenity
and within-species heterogeneity.
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