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ON TIME-DELAYED AND FEED-FORWARD TRANSMISSION LINE
MODELS OF THE COCHLEA

ROBERT SZALAI1, BASTIAN EPP2, ALAN R. CHAMPNEYS3 AND MARTIN HOMER4

Abstract. The mammalian cochlea is a remarkable organ that is able to provide up to 60dB
amplification of low amplitude sound with sharp tuning. It has been proposed that in order
qualitatively to explain experimental data, models of the basilar membrane impedance must
include an exponential term that represents a delayed feedback. There are also models that in-
clude, e.g., a spatial feed-forward mechanism, whose solution is often approximated by replacing
the feed-forward term by an exponential term that yields similar qualitatively accurate results.
This suggests a mathematical equivalence between time delay and the spatial feed-forward mod-
els. Using a WKB approximation to compare numerical steady-state solutions, we show that
there is no such simple equivalence. An investigation of the steady-state outputs shows that
both models can display sharp tuning, but that the time-delay model requires negative damping
for such an effect to occur. Conversely, the feed-forward model provides the most promising
results with small positive damping. These results are extended by a careful stability analysis
of both models. Here it is shown that whereas a small time delay can stabilize an unstable
transmission-line model (with negative damping), that the feed-forward model is stable when
the damping is positive. The techniques developed in the paper are directed towards a more
comprehensive analysis of nonlinear models.

1. Introduction

Hearing in mammals occurs via a complicated mechanism, in which the key organ in is the
cochlea. It responds to sound pressure waves in fluid that are coupled to sound pressure waves
in the outside air through the ear drum and the middle ear. Essentially, the cochlea is the stage
of the auditory pathway where mechanical vibration is transformed into neural signals, to be
transmitted to the brain. It is capable of sensing a wide range of frequencies and amplitudes,
with a great frequency and temporal resolution, see e.g. [11].

The cochlea is also active; that is, it amplifies vibration by 50-60dB for small amplitudes. The
active process displays a so-called compressive nonlinearity in its input-output characteristic;
that is, the amplification decreases as the input amplitude increases. Moreover, there is sharp
frequency tuning, so that individual spatial locations along the cochlea amplify different input
frequencies. In this paper, we shall not consider the effect of variation of input amplitude. We
instead suppose that the stimuli are sufficiently small so as to, engage the cochlear amplifier in
full.

Mathematical modeling of the physiology of the cochlea has a long history dating back to
Helmholtz [9], who suggested that it contains an ensemble of resonators that are sensitive to
different frequencies. As the anatomy of the cochlea (illustrated schematically in Figure 1.1)
became better understood, it was discovered by Békésy [2] that the cochlea supports a traveling
wave that is the result of the interaction between the fluid and the resonant structures in the organ
of Corti. Since then, due to the pioneering work of Charles Steele, and others, over more than 35
years, passive models of the fluid-structure interaction have been proposed and embellished, see
[23] and references therein. Many of the features of the fine tuning can be explained by the way
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Figure 1.1. The basic anatomy of the mammalian cochlea. (a) The cochlea in
its true representation as a coiled partitioned tube showing the basilar membrane
as a shaded surface. (b) Longidudinal cross section of the organ of Corti, showing
the basilar membrane, the phalangeal processes (PH) of the Deiter’s cells and the
tilted outer hair cells (OHC).

the geometry of the cochlear tube causes travelling waves to reach a maximum amplitude and
stop at a frequency-dependent distance along the cochlea. More sophisticated cochlear models
also exist, which take more detailed account of the fluid motion and the precise micro-mechanics
of the cochlea based on physiological data, see e.g. [18, 17].

However, there are still significant questions to be answered, such as identifying the mechanism
for amplification in the cochlea [4, 13]. It is widely held that outer hair cells are responsible for
amplification but the mechanism is still unclear; see [1] for a discussion. In particular, two broad
schools of thought suggest that either hair bundle motility [21] or the piezoelectric elongation of
the cell body [3] are primarily responsible. Recent modeling studies suggest that a combination of
the two mechanisms may be required in order to explain observed data [15, 20]. As a conceptual
model of the active process, it has been proposed that the output at a fixed longitudinal position
along the basilar membrane resembles that of a nonlinear oscillator that is tuned to be at the
onset of a Hopf bifurcation [5].

One of the key unsolved problems associated with any active process is to explain how am-
plification can occur for very low inputs without activating an instability. In this paper we deal
with feedback mechanisms in the cochlea that enhance tuning and provide the stability of the
active process.

Another motivation for this work is the observation, due to Zweig [24], that most models of the
cochlea cannot qualitatively fit measurement data for frequencies where the decay of the phase of
the basilar membrane vibration becomes steep and then flat. In order to explain this inaccuracy,
Zweig used a simple transmission line model and determined the impedance of the organ of Corti
necessary to reproduce the experimental data. This extracted impedance implied that, in order
to achieve a qualitative agreement with data, a delay term must be included in the transfer
function of the organ of Corti. Zweig’s results are striking, there is no obvious mechanism in the
cochlea that can result in a pure time delay, independent of the dynamics.

Alternatively, there are other mechanisms that reproduce experimental data just as well, but
do not explicitly include a time delay. Hubbard [10] introduced a secondary traveling wave that
could be related to either the tunnel of Corti flow [12], or the waves of the tectorial membrane
[8]. Also, tilting of the outer hair cells can introduce a spatial feed-forward mechanism that can



ON TIME-DELAYED AND FEED-FORWARD TRANSMISSION LINE MODELS OF THE COCHLEA 3

similarly explain experimental findings [7, 16]. However, not all mammalian species have tilting
outer hair cells, but all have a phalangeal processes on their Deiter cells, resulting in logitudinal
mechanical coupling (see Figure 1.1). Yoon and Steele argue that these processes, together with
tilting outer hair cells lead to amplification via a push-pull mechanism [23].

The purpose of this paper is neither to resolve this controversy, nor to examine the physiological
origins of any active process. Rather we shall use simple mathematical models to examine
the generic effects on basilar membrane dynamics of coupling in both space and time, and the
relationship between them.

The outline of the rest of this paper is as follows. In section 2 we introduce simple mathematical
models of the cochlea described as a transmission-line. We describe models with time-delay and
feed-forward longitudinal coupling. Further, we describe a solution technique that can determine
the response of both models to oscillatory forcing, whether stable or unstable, and examine
results with particular focus on the relationship between coupling in space and time. Section 3
then addresses the stability of the response of both models. Finally, section 4 draws conclusions
and suggests avenues for future work.

2. Transmission line models

2A. Zweig’s model. In the model introduced by [24], the cochlea is modeled as a rectangular
box with two ducts of the same and constant cross-section A. The ducts are separated by the
flexible basilar membrane, which is assumed in the model to have a single degree of freedom, with
displacement ξ(x, t), where x represents the longitudinal distance along the cochlea, measured
from the stapes, and t time. The fluid in the ducts are driven by oscillations of the oval window
that generate a pressure difference between the two ducts, p(x, t) and drives the basilar membrane.
The equations of motion can then be derived from the one-dimensional Stokes equation assuming
that the endolymph/perilymph fluid inside the cochlea is inviscid and incompressible. The fluid
mechanics can then be reduced to a single equation for the pressure difference p(x, t) across the
membrane:

∂

∂t2
p(x, t) =

ε2

m

∂

∂x2
p(x, t), (2-1)

where ε2 = 2mA
ρβ , m is the surface mass density of the basilar membrane, A is the cross section

area of the duct, ρ is the fluid density and β is the width of the membrane. The relation between
the pressure difference p and the basilar membrane displacement ξ is also determined by the
mechanics of the basilar membrane, that is

p(x, t)
m

=
∂

∂t2
ξ(x, t) + 2ζ(x)ω0(x)

∂

∂t
ξ(x, t) + ω2

0(x)ξ(x, t) + σ(x)ω2
0(x)ξ(x, t− τ(x)). (2-2)

The meaning of the parameters and space-dependent coefficients in Equations (2-1) and (2-2)
are given in Table 2 along with the values that we have used in this study. Note that, apart from
the damping factor ζ0, which we allow to vary, these values are the same as those determined
by Zweig in [24] and [6], where all distances are measured in the units of the uncoiled cochlea
length. We will discuss the physiological motivation of the time-delayed feedback term below.
Using the properties of linear equations one can assume that a steady time-periodic solution to
the model (Equations (2-2) and (2-1)) can be expressed in the form of a series

p(x, t) =
∑
i

p̄i(x)eλit, (2-3)



ON TIME-DELAYED AND FEED-FORWARD TRANSMISSION LINE MODELS OF THE COCHLEA 4

Parameter Value [Dimension] Description
t t ∈ R [ms] Time
x 0 ≤ x ≤ 1 [-] Longitudinal coordinate
ξ - [-] Membrane displacement
p - [kgms−2] Pressure difference
m - [kg] Membrane mass
A - [-] Duct cross-section
ρ - [kg] Fluid density
β - [-] Membrane width
θ(x) e−10x + e−20(1−x) [-] Interpolating function
ζ(x) 0.1e1.1973xθ(x) + ζ0e−0.3914x (1− θ(x)) [-] Relative damping factor
ζ0 −0.06 or 0.01 [-] Coefficient of ζ(x)
ω0(x)

(
20.832e−4.8354x − 0.1455

)
× 2π [ms−1] Natural frequency of the membrane

σ(x) 0.1416e−3914x [-] Feedback stiffness amplitude

ε
√

2mA
ρβ = 0.006 [-] Coupling parameter

τ(x) 1.742× 2π/ω0(x) [ms] Feedback time delay

Table 2. Model parameters (Equation (2-4)).

which is a separation of variables with exponential time dependence and spatial patterns p̄i(x).
Substituting this expansion into Equations (2-3) and (2-1) we obtain

λ2p̄ = ε2κ2(λ, x)
∂

∂x2
p̄, (2-4)

where
κ2(λ, x) = λ2 + 2λζ(x)ω0(x) + ω2

0(x)
(

1 + σ(x)e−λτ(x).
)

Equation (2-4) has to hold for each p̄ = p̄i and λ = λi, where as yet we have not determined
which values λi must take.

The natural boundary condition to take at apex of the cochlea, where fluid is allowed to flow
between the two chambers divided by the basilar membrane, is

p(1, 0) = 0. (2-5)

Typically the choice of λi’s is determined by the boundary condition at the stapes, which we
assume to take the form ∂

∂xp(0, t) = −ρvst(t), where vst is the stapes velocity.
In this study we shall assume a single frequency sound input with constant phase. It is most

convenient to solve in complex co-ordinates, and therefore we set
∂

∂x
p(0, t) = −ρvst(t) = eiωt. (2-6)

The form of the boundary conditions, Equations (2-5) and (2-6), means that we can choose a
single λ = iω and a single p̄ and hence the boundary conditions on p̄ become

∂

∂x
p̄(0) = 1, p̄(1) = 0. (2-7)

Hence we have reduced the dynamic problem to that of finding a steady solution to the two-
point boundary value problem (2-4) for p(x) subject to the boundary conditions (2-7). In order
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to solve such a problem we have used Chebyshev collocation [22] with 2400 mesh points in x,
which yields very high accuracy.

A typical numerical solution for the excitation pattern of the cochlea, defined as the maximum
amplitude of the basilar membrane at each longitudinal position x, is shown in Figure 2.1 for
the particular choice of stimulus frequency 1.6kHz. Solutions with non-zero time delay are
represented by continuous green lines, and without time-delay (tau(x) = 0) by dotted black
lines. Similar results are obtained for a variety of different input frequencies with the sharp
peak occurring at a frequency-dependent distance. It can be seen that with negative damping
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Figure 2.1. Steady state solutions of cochlea models for 1.6kHz harmonic stim-
ulus: continuous green curves correspond to the time-delay model (2-4), dotted
black lines correspond to the time-delay model with τ(x) = 0, and dashed red
lines corresponds to the feed-forward model (2-9). The damping parameter for
the left column is ζ0 = −0.06, and for the right column is ζ0 = 0.01.

ζ0 = −0.06 (left-hand column of Figure 2.1), the tuning is sharper than with small positive
damping (ζ0 = 0.01; right-hand column of Figure 2.1). We also can see that when the delay
is removed there is no sharp tuning. Moreover, the phase curves (bottom row of Figure 2.1)
suggest that the zero-delay case causes instability in the presence of negative damping, as the
phase increases rather than decreases with x. Note that a decrease in phase is not a sufficient
condition for stability, and a thorough stability analysis needs to be carried out to assess the
stability. Such an analysis forms the subject of Section 3.

2B. Delay equivalency. It can be argued that time delay in the active part of the cochlea,
although it cannot be directly related to a physiological effect, is in some sense equivalent to a
spatial feed-forward mechanism that captures the action of the tilted hair cells and the phalangeal
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processes. The logic for this argument is that the the cochlea supports a traveling wave whose
speed is easily determined. From this speed, and starting from a time-delay model, one can
calculate the distance that the wave travels during a fixed delay interval. This distance should
then be equal to the spatial constant of the feed-forward mechanism.

The reason for studying the temporal delay model is that it is much simpler to solve using
the method we introduced in the previous section, and the model with delay can can reproduce
the cochlear response qualitatively better than without delay, as shown by the continuous green
curves in Figure. 2.1. It is useful then to consider the relation between the time-delay and
feed-forward models in more detail.

We use the WKB technique to solve Equation (2-4). The approximate solution assumes the
form of p̄(x) = sinhφ(x)/ε with φ(x) = −

´ 1
x

λ
κ(λ,z)dz. The wavelength of the solution becomes

δ(x) =
2πε

Im
(

iω0(x)
κ(iω0(x),x)

) .
With knowledge of the spatial wavelength, it is possible to calculate the distance that will have
the same phase as the delayed wave, p̄(x)e−λτ , namely p̄(x+ ∆(x)), where

∆(x) = ω0(x)τ(x)δ(x) (2-8)

Note that since τ(x)ω(x) is a constant, ∆(x) is a constant multiple of δ(x), and note further that
δ(x) is roughly constant along the cochlea. For our parameter values, the estimated feed-forward
distance ∆(x) defined by Equation (2-8) is plotted in Figure 2.2. The obtained distance values
are unreasonably large, around 2% of the length of the uncoiled cochlea, which would mean
0.75mm for the 35mm long human cochlea.

Figure 2.2. The equivalent feed-forward distance ∆(x) along the cochlea. The
damping parameter is ζ = −0.06 (a) and ζ = 0.01 (b).

Furthermore, this approximation of the feedback term is inaccurate. It does not take into
account that the wave is decaying both to the left and to the right of its peak and hence a
solution with smaller amplitude will be fed back. It also ignores the fact that the feed-forward
mechanism changes the wave speed. We therefore proceed to study a model in which explicitly
includes a spatial feed-forward term, instead of time-delay.

2C. Feed-forward model. Replacing the time delay in Equation (2-4) with a spatial delay of
distance ∆(x) yields the feed-forward model. In some respect this is more physiological, but it
still does not properly take into account the underlying source of the feed-forward term. The
governing equation after expanding the solution into the form (2-3) becomes

λ2p̄(x) = ε2κ0(λ, x)
∂

∂x2
p̄(x) + κ1(x)

∂

∂x2
p̄(x+ ∆(x)), (2-9)
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where κ0(λ, x) = λ2 + 2λζ(x)ω0(x) + ω2
0(x) and κ1(x) = ω2

0(x)σ(x). The excitation pattern
compared to the time-delay model can be seen in Figure 2.1. With the obtained value of ∆(x)
in Figure 2.2 we were not able to obtain a plausible result, which is already an indication that
the derived relation in Equation (2-8) is inaccurate. Indeed, when looking for an exact value
of distance ∆(x) and a constant σ̂ that replaces the feedback coefficient σ, we find that ∆(x)
and σ̂ heavily depend on the stimulus frequency, and it is impossible to use fixed values for
all frequencies. Nevertheless, we find from our simulations (indicated by dashed red lines in
Figure 2.1) that a spatial delay of a quarter of the (inaccurately) estimated distance ∆(x)/4
gives responses with the expected tall and broad peaks.

It can also be seen in Figure 2.1 that the feed-forward effect does not stabilize the model with
negative damping and has less sharp tuning. However, with small positive damping the tuning
is sharp and stability appears to be preserved. Note that stability in this context means only
stability with respect to single frequency response. A more thorough stability analysis is outlined
in the next section.

3. Stability

3A. Stability of the delayed model. Stability calculations for a delay equation can be de-
manding, depending on the type of the equation [19]. For delayed ordinary differential equations
(DDEs) the problem reduces to finding roots of an exponential polynomial, followed by a check
that all of these (typically infinitely many) roots have negative real part to ensure stability. In
a numerical scheme one can count the number of unstable roots using the so-called argument
principle [14]. The argument principle states that along a contour in the complex plane the
argument variation of the function will be a constant times the difference between the number
of poles and roots of the function inside the contour. This is very helpful, but only in the case
that the function does not have poles.

Here we construct a function (the characteristic function) for the time-delayed cochlea model,
whose roots determine the stability. However, since our underlying model is a delayed partial
differential equation, it is not possible to guarantee that this function is without poles.

The construction of the characteristic function goes as follows. We say that λ is a characteristic
root of Equation (2-4) if it has a non-trivial solution that satisfies the boundary conditions
∂
∂x p̄(0) = 0 and p̄(1) = 0. Since Equation (2-4) is an ODE, one can solve it uniquely by specifying
two boundary conditions p̄(0) = a1 and ∂

∂x p̄(1) = a2. If for non-zero a1 and a2 the conditions
∂
∂x p̄(0) = 0 and p̄(1) = 0 hold, there is a non-trivial solution and hence λ is a characteristic root.
One can therefore generate a characteristic matrix M such that(

∂
∂x p̄(0)
p̄(1)

)
= M(λ)

(
∂
∂x p̄(1)
p̄(0)

)
.

The left-hand-side of the above equation can only be zero for non zero right-hand side vector if
detM(λ) = 0. Hence, the roots of detM(λ) = 0 are the characteristic roots of Equation (2-4).
Since this is a delayed partial differential equation there may be a continuous spectrum, so finding
the roots is a challenge. One can however approximate the roots by finding local maxima of the
function 1/ detM(λ) that are above a certain threshold.

We solve the boundary value problem with a central finite difference scheme with 1200 equidis-
tant points that is a rather fast and moderately accurate method. A plot of the roots can be
seen in Figure 3.1, denoted by black dots. In the non-delay case, we can also approximate the
roots by a (slower but more accurate) direct method using Chebyshev collocation to check the
accuracy of our computation (denoted by yellow dots in Figure 3.1). We see that in the case
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Figure 3.1. Stability of the time-delay model. Black points show the characteris-
tic roots of Equation (2-4), computed from the characteristic function detM = 0,
without delay (panels (a) and (b)), and with delay (panels (c) and (d)). Panels
(a) and (b) are computed without the delay term and the roots are also computed
with the direct method of section 3B (yellow dots). The damping parameter is
ζ0 = −0.06 for panels (a) and (c), and ζ0 = 0.01 for panels (b) and (d).

of negative damping (ζ0 = −0.06, shown in the left-hand column of Figure 3.1) adding time
delay stabilizes the system. On the other hand, with positive damping (ζ0 = 0.01, shown in the
right-hand column of Figure 3.1) the solution is always stable, with or without time-delay.

We note that both numerical methods provide spectra that are essentially indistinguishable in
the case of no time-delay, which gives confidence in the accuracy of our computations. Further-
more, every root of our characteristic function is accompanied by a pole, therefore counting the
difference between the number of roots and poles gives identically zero result, hence the argument
principle cannot be used.

3B. Stability of the feed-forward model. The stability of the feed-forward model can be
calculated more efficiently than that of the time-delay model. In order to formulate the spectral
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problem we introduce the differential operators

D2
0 : (D2

0ϕ)(x) =
∂

∂x2
ϕ(x) ϕ ∈ {φ ∈ C2[0, 1] :

∂

∂x
φ(0) = 0, φ(1) = 0},

D2
∆ : (D2

∆ϕ)(x) =
∂

∂x2
ϕ(x+ ∆(x)) ϕ ∈ {φ ∈ C2[0, 1] :

∂

∂x
φ(0) = 0, φ(1) = 0},

noting that the boundary conditions for Equation (2-9) are ∂
∂x p̄(0) = 0 and p̄(1) = 0. The

spectral problem is not an ODE any more, but is instead a neutral delay-differential equation. In
contrast to the time-delay case the equation is polynomial in λ, and therefore can be transformed
into a regular eigenvalue/eigenfunction problem:[(

0 I
ε2ω2

0

(
D2

0 + σD2
∆

)
2ε2ζω0D

2
0

)
− λ

(
I 0
0 I

)](
ψ1

ψ2

)
=
(

0
0

)
. (3-1)

We discretize this boundary problem with Chebyshev collocation, using 2400 points, exactly as
for the steady state solution, and put into an eigenvalue solver to obtain the spectrum.

The spectrum of Eq. 3-1 is shown in Figure (3.2). We see that the feed-forward mechanism

Re(

Im(

Re(

Im(

Negative damping Positive damping

Figure 3.2. Characteristic roots of the feed-forward model (2-9). The damping
parameter is ζ = −0.06 (a) and ζ = 0.01 (b).

does not stabilise the system with negative damping, but that stability is preserved with the
combination of positive damping and spatial feed forward.

4. Conclusion

In this paper we have compared two cochlea models, one with time delay, and another with
a spatial feed-forward mechanism. We calculated an approximate relation between the temporal
and spatial delays and showed that no simple relation between the two such models can exist.
Moreover, we found that the two models do not yield similar excitation profiles for equivalent
physiological parameters. From a mathematical point of view, it is easier to control stability
with a time-delay than with the feed-forward mechanism. In particular, we were not able to find
a value for the feed-forward distance that made the model stable. However, the restriction on
the damping does not restrict the sharpness of tuning with a stable model. In fact, with small
positive damping one can achieve sharp tuning and qualitatively good agreement with data (also
shown elsewhere [23]).
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Furthermore, our stability analysis has given information on the alignment of the character-
istic roots along the complex imaginary axis, which might also give insight into spontaneous
otoacoustic emissions and even explain synchronization of the emitted frequencies. The distance
of the roots from the imaginary axis might also indicate the sensitivity to different frequencies.

A natural next step that will be investigated in future work would be to introduce a nonlin-
ear model for the outer hair cells themselves. Introduction of such a nonlinear term into the
transmission line equations would enable us to investigate the effect of the loss of stability on the
dynamics. More importantly, we would like to understand what kinds of local hair cell dynam-
ics lead to compressive active nonlinearity when the spatial feedforward or temporal delay are
taken into account. In particular, through matching with experimental data, this would enable
us to gain a better global understanding of the relative importance of the longitudinal effects
considered in this paper and the local hair cell dynamics.
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