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Abstract

In many cell types, oscillations in the concentration of free intracellular cal-

cium ions are used to control a variety of cellular functions. It has been

suggested [16] that the mechanisms underlying the generation and control of

such oscillations can be determined by means of a simple experiment, whereby

a single exogenous pulse of inositol trisphosphate (IP3) is applied to the cell.

However, more detailed mathematical investigations [6] have shown that this is

not necessarily always true, and that the experimental data are more difficult

to interpret than first thought. Here, we use geometric singular perturbation

techniques to study the dynamics of Class I, Class II and Hybrid models of

calcium oscillations. In particular, we show how recently developed canard

theory for singularly perturbed systems systems with three or more slow vari-

ables [19] applies to these calcium models and how the presence of a curve of

folded singularities and corresponding canards can result in anomalous delays

in the response of these models to a pulse of IP3.

Oscillations in the concentration of cytoplasmic free calcium are a signalling

mechanism in practically every cell type, and control a wide variety of cel-

lular functions, from secretion and movement to cell differentiation and gene

expression [2]. It is thus important to understand the mechanisms underlying

the generation and control of such oscillations. Previous work has shown that

calcium oscillations often arise as the result of one of two principal mecha-

nisms, so-called Class I and Class II mechanisms. It has been claimed [16]
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that a simple experiment (a single exogenous pulse of inositol trisphosphate,

or IP3) is able to distinguish between whether or not calcium oscillations in

a cell are a result principally of a Class I or a Class II mechanism. However,

more detailed mathematical studies of these models [6] have shown that the

situation is more complex than appeared at first, and there are situations in

which a Class I model can look remarkably like a Class II model, making inter-

pretation of the experimental data ambiguous and difficult. Here we perform

a detailed mathematical study of Class I and Class II models, investigate how

they respond to a pulse of IP3, and provide a detailed explanation of why

Class I and Class II models cannot necessarily be easily distinguished by the

IP3 pulse experiment. It turns out that this is related to the phenomenon of

canards in systems with three slow variables, the theory of which has been

developed recently [19].

1 Introduction

Calcium is one of the main secondary signalling messengers in living cells [2]. Changes

in calcium concentration usually take the form of oscillations, in which the free cy-

toplasmic calcium concentration alternately rises and falls, the signal being encoded

in the frequency of the oscillation.

There is general agreement over the first steps of the process that results in

calcium oscillations [11]: binding of an agonist to a cell-surface receptor initiates a

series of reactions that ends in the formation of the intracellular second messenger,

inositol (1,4,5)-trisphosphate (IP3), which opens IP3 receptors (which are also cal-

cium channels) on the membrane of the endoplasmic reticulum (ER), leading to the

release of calcium from that internal store. Oscillations in the cytoplasmic calcium

concentration occur as calcium is alternatively released from, and pumped into, the

ER.

The exact mechanisms that cause such cyclical release and reuptake remain con-

troversial. There are two principal hypotheses: Class I models claim that the oscil-

lations occur as a result of calcium feedback on the IP3 receptor (IPR) [16]. Since

calcium can activate the IPR quickly, release of calcium from the ER is a positive

feedback process. However, on a slower time scale, calcium also inactivates the

IPR, thus, giving slower negative feedback. It is well known from many models [11]

that fast positive feedback followed by slower negative feedback can generate oscil-

lations. However, the biochemistry of calcium oscillations is far more complex than

merely feedback on the IPR. Indeed, calcium itself affects the rates of production
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and degradation of IP3, leading again to positive and negative feedback on the re-

lease of calcium. This second feedback loop is incorporated in Class II models and

is the principal mechanism underlying oscillations in some cell types [16].

However in real cells, both Class I and Class II mechanisms will usually occur,

in which case one has to use a Hybrid model that includes both mechanisms. One

of the important current questions in the study of calcium dynamics is whether, in

each cell type, both mechanisms are equally important, or whether one mechanism,

Class I or Class II, dominates and hence drives the oscillations.

One possible way to distinguish between Class I and Class II mechanisms was

introduced in [16]. There it was shown that, in a variety of Class I models, an

exogenous pulse of IP3 causes a temporary increase in oscillation frequency, while

in Class II models, an identical pulse of IP3 causes a phase lag, with the next peak

occurring after a delay. These types of response are illustrated in Fig. 1(a) and (c),

respectively, with time series of the concentrations of calcium and IP3 generated

from the Atri model (1).

The model predictions were tested in two cell types, namely, in mouse pancreatic

acinar cells and mouse airway smooth muscle cells [16]. The authors concluded that

calcium oscillations generated by cholecystokinin in pancreatic acinar cells are the

result of a Class II mechanism, while calcium oscillations generated by methacholine

in mouse airwave smooth muscle are the result of a Class I mechanism.

Unfortunately, the story is not as simple as presented in [16]. As reported in [6],

under certain conditions a Class I model can respond to an IP3 pulse by exhibiting

a small number of faster oscillations, followed by a long delay, before recovering

to the initial oscillatory pattern. This is a highly non-intuitive result: in Class I

models the oscillation frequency is an increasing function of the IP3 concentration

(assuming that transients have died away), and thus a temporary increase in the

IP3 concentration might be expected to lead to a temporary increase in oscillation

frequency, not to a long delay. Although this is usually what happens, sometimes

the pulse in IP3 causes the response described above, i.e., a small number of faster

oscillations, followed by a long delay before oscillations appear again. A specific

example of such a response can be seen in Fig. 1(b). We term this response an

anomalous delay. The occurrence of anomalous delays under certain circumstances

creates problems for the interpretation of the experimental results. If a Class I model

can sometimes respond like a Class II model, then how can the two model types be

distinguished using pulses of IP3?
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Figure 1: Responses of the Atri model (1) with ε = 0.01 to IP3 pulses. The IP3 pulse is
applied at the time indicated by the arrow, with the explicit form of the pulse given by (2),
assuming that any transients have died out before the time trace is started. Each panel
shows the time series of the concentrations C of calcium (red curve) and P of IP3 (black
curve). (a) Class I: α = 0, τ̂ = 0.48 (τ = 2 s) for ν̂ = 0.40 (ν = 0.96) and other parameter
values as in Table 1. (b) Class I: as in panel (a) except with ν̂ = 0.233 (ν = 0.56). (c)
Class II: α = 1, τ̂ = 0 (τ = 0) for ν̂ = 0.417 (ν = 1.00).

1.1 Multiple time scales in a representative model

A first step towards a better understanding of the model dynamics is presented

in our recent work [9]. Based on geometric singular perturbation theory (GSPT)

[4, 8, 10, 17, 18], we showed in that paper that the intrinsic dynamics of a model of

intracellular calcium dynamics is mainly controlled by distinct time scales describing

the (slow or fast) evolution of the model variables relative to each other. This

inherent multiple time-scale structure provides us with a simple necessary condition

for Class I and Class II dynamics by calculating a dimensionless quantity ε � 1

representing the ratio of the different time scales involved.

This is most easily illustrated using a representative model, the Atri model [1, 6],
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which we will use as an example throughout this paper, and which has the following

dimensionless form [9]:

ε
dC

dt1
= J̄release − J̄serca + ε (J̄in − J̄pm) = f(C,Ct, r, P, ε),

dCt
dt1

= J̄in − J̄pm = g1(C),

dr

dt1
=

1

τ̂

(
k2

2

k2
2 +Q2

cC
2
− r
)

= g2(C, r),

dP

dt1
= ν̂

(
1− α

1 + QcC
k4

)
− β̂ P = g3(C,P ),

(1)

with dimensionless fluxes

J̄release =
kflux γ

Vp

(
µ0 + µ1

(
P

P + kµ
Qp

))
r

(
b+ V1

C

C + k1
Qc

)
(Ct − (1 + 1/γ)C),

J̄serca =
Ve
Vp

C

C + ke
Qc

,

J̄pm =
C2

C2 +
k2
p

Q2
c

,

J̄in =
α1

Vp
+
α2

Vp

Qpν̂

β̂
.

The four variables are the non-dimensionalised calcium concentration C in the cy-

toplasm (reference scale is Qc = 1.0µM), the non-dimensionalised total calcium

concentration Ct in the cell (again, reference scale is Qc = 1.0µM), the non-

dimensionalised IP3 concentration P in the cytoplasm (reference scale is Qp =

10.0µM), and the fraction r of IP3 receptors (IPR) that have not been inactivated

by calcium. The values of the parameters used in (1) are the same as those in [4]

and given in Table 1; we work here with the dimensionless parameters τ̂ = τδVp/Qc,

ν̂ = νQc/(QpδVp), β̂ = βQc/(δVp) and ε = δ � 1 which is the singular perturbation

parameter. The parameter ν̂ is a scaled version of the maximal rate ν of IP3 forma-

tion. Experimentally, ν is relatively easily manipulated as it is directly related to

the concentration of agonist applied to the cell. We use ν̂ as the primary bifurcation

parameter, but also report our results in terms of ν for ease of comparison with

earlier work on the Atri model [6].

With the choice of model parameter values as given in Table 1, the dynamics

of C is significantly faster than the dynamics of Ct, as is consistent with previous

theoretical and experimental work [15]. As argued in [9], the parameters β̂ and ν̂
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parameter value parameter value parameter value

b 0.111 k2 0.7 µM kflux 6.0µM s−1

δ 0.01 k4 1.1 µM Vp 24.0µM s−1

γ 5.405 kp 0.4 µM Ve 20.0µM s−1

µ0 0.567 ke 0.06µM α1 1.0µM s−1

µ1 0.433 k1 1.1 µM α2 0.2 s−1

V1 0.889 kµ 4.0 µM β 0.8 s−1

Table 1: Values of parameters for the Atri model (1), which are the same as the values
used in [6]. All substrate concentrations are concentrations per liter cytosol, i.e., µM ≡
µM/(liter cytosol).

are O(1) in the parameter domain of interest, so P is a slow variable compared with

C. The dynamics of r, the inactivation of the IP3 receptor, is of order O(1/τ̂). If

τ̂ = O(1) then r is a slow variable. On the other hand, if τ̂ = O(ε) or less then r is

a fast variable.

These two cases have an interpretation in terms of the Class I and Class II

models as discussed before. Class I models require a slow negative feedback on the

IP3 receptor, which is modelled by r. Therefore, τ̂ = O(1) is a necessary condition

and we define a Class I model as (1) with α = 0, i.e., no calcium feedback on the

IP3 production, and τ̂ = O(1). This leads to a model with one fast (C) and three

slow variables (Ct, r, and P ). Note that the dynamics of the third slow variable

P is decoupled from the others. On the other hand, Class II models abolish the

slow negative feedback on the IP3 receptor via a fast (instantaneous) response to

calcium concentration in the r-dynamics but include calcium feedback on the IP3

production. Hence, we define a Class II model as (1) with α 6= 0 and 0 < τ̂ � 1,

which leads to a model with two fast (C, r) and two slow variables (Ct, P ). The

Hybrid Atri model is then defined as (1) with α 6= 0 and τ̂ = O(1) or less, and may

have either two or three slow variables, depending on the order of τ̂ .

In all these cases (Class I, Class II or Hybrid) the Atri model (1) has at least two

slow variables which makes our geometric singular perturbation analysis presented in

[9] significantly different from the presentation in [6] where they only identified one

slow variable (Ct). In particular, we were able to explain mixed-mode oscillations

(MMOs) [3] observed in Class I and Class II via canard theory [4, 5, 18] and we also

identified the necessary time-scale criterion for the r-dynamics to distinguish Class I

and Class II models.
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1.2 The focus of this work

In this paper, we go a step further with our analysis and consider the response to

a pulse of IP3 in Class I, Class II and Hybrid forms of the Atri model. We use

GSPT to investigate the mechanisms underlying the different pulse responses and,

in particular, to explain the anomalous delays seen in, for example, Fig. 1(b). In

our numerical simulations, we follow [6] and model the pulsing process using the

time-dependent function

S(t1) = M̂ H(t1 − t0)H(t0 + ∆− t1), (2)

which is added to the right-hand side of the equation for P in (1). Here, M̂ denotes

the pulse magnitude and H is the Heaviside function

H(x) =

{
0 if x < 0,

1 if x ≥ 0.

The pulse is applied at time t0 and has duration ∆; we used M̂ = 8.333̇, t0 = 12 and

∆ = 0.72 throughout, which are the values used in [6], after non-dimensionalisation.

We want to point out that the results obtained in [9] for the Class I model are not

sufficient to predict the pulsed dynamics for the Class I model or the dynamics of

the Hybrid model in the case τ̂ = O(1); in these two cases, a model reduction to two

slow variables is not possible and we must study the full four-dimensional system

with three slow variables to understand rigorously the observed pulsing behaviour.

Section 2 presents the analysis of the Class I Atri model. Although this system

has three slow variables, we show that it has geometric structures similar to the

folded singularities found in systems with two slow variables. These results provide

the first application of recent work of Wechselberger [14], which extends canard

theory to systems with three (or more) slow variables. We identify a one-dimensional

set of folded singularities, which consists of segments of folded saddles, folded nodes

and folded foci. It is this mix of different types of folded singularities that creates

distinct possibilities for anomalous delays observed in certain parameter regimes of

the pulsed Class I Atri model; this would be impossible to occur if there are only two

slow variables in the model. In particular, we identify two major types of anomalous

delays that are predominantly caused by either folded-saddle or folded-node type

singularities.

The analysis for the Class II model is done in Section 3. We show in Section 4

that the Hybrid model can exhibit dynamics similar to either the Class I or Class II

models, and that the presence or absence of anomalous delays in this case can be
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understood just as in the Class I and Class II cases.

The relation between earlier work on pulse responses reported in [6] and the

results presented here is discussed in detail in Section 5, where we also summarise

our results.

2 Dynamics of the Class I Atri model

The Class I Atri model, for which α = 0 and τ̂ = O(1) in (1), has one fast variable,

namely C, and three slow variables, namely Ct, r and P . Since α = 0, the Ṗ -equation

decouples from the other variables and P evolves monotonically to its equilibrium

value P = ν̂/β̂. If one is primarily interested in the long term dynamics of the Class I

Atri model, then it suffices to study the three-dimensional slice {P = ν̂/β̂} of the

(C,Ct, r, P )-space, because all orbits will eventually evolve to this submanifold of

phase space. This approach was taken in [9] to study the unpulsed dynamics and we

give a brief summary in Section 2.1 including basic concepts from GSPT [4, 5, 18, 19].

In order to understand the transient response to pulsing of IP3, analysis of the

full four-dimensional system is necessary. We present these new results about the

pulsed Class I Atri model in Section 2.2, where we also describe two mechanisms

that explain the anomalous delays sometimes seen in this case.

We use τ̂ = 0.48 (τ = 2.0) throughout for the numerical illustrations of the

Class I Atri model. Qualitatively similar results are obtained for other choices of τ̂

that are O(1).

2.1 Class I dynamics in the absence of pulsing

If we restrict our attention to the slice {P = ν̂/β̂}, then the Class I Atri model

becomes a system with one fast and two slow variables. The dynamics of such a

three-dimensional system can be analyzed using established methods from GSPT

[4, 5, 18]. However, we prefer to summarise the results in [9] about the unpulsed

Class I Atri model in the context of the full four-dimensional phase space, because

this facilitates the extension to the pulsed case.

The dynamics of singularly perturbed systems such as the Atri model (1) fre-

quently consists of a mix of slow and fast motions, with the prototypical example

being a relaxation oscillation (RO), i.e., a periodic motion consisting of long periods

of small changes interspersed with short periods of large changes in the (fast) state

variables. As ε→ 0, the corresponding trajectory converges during slow motions to

solutions of the singular limit system of (1) which is a differential algebraic system

called the reduced problem. Here, the algebraic constraint f(C,Ct, r, P, 0) = 0 defines

8
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Figure 2: An example of an attracting RO for the Class I Atri model with ε = 0.01 and
ν̂ = 0.317 (ν = 0.76). The slow and fast segments of the RO (black curve) can be explained
using the critical manifold, as explained in the text. (a) Using (Ct, r, C) coordinates, with
P fixed at the equilibrium value, P = ν̂/β̂ = 0.95. The pink surface is the intersection of
the critical manifold with the slice, and the blue curves are the intersections of the fold
surfaces with the slice. The blue dot marks the folded-focus singularity that occurs for
this value of P . (b) Projection onto (P, r, C) coordinates. The blue surfaces are the fold
surfaces F±; on these surfaces the Ct-coordinate appears as a colour gradient (dark to
light as Ct increases). The green and dark-blue curve is the locus of folded singularities;
blue indicates a folded focus, green indicates a folded node, consistent with the colour
coding of singularities in Fig. 3. The black curve is the RO shown in panel (a). (c) An
enlargement of panel (a) showing the passage of the RO past the folded-focus singularity.
(d) The time series for C corresponding to the RO in panel (a).

a three-dimensional (hyper)surface S0 which is the phase space for the three slow

variables (Ct, r, P ). As described in [9], S0 is given as a graph over (C, r, p)-space as

can partially be seen in Fig. 2(a) which shows S0 for ν̂ = 0.317 (ν = 0.76) restricted

to the slice {P = ν̂/β̂} in (C, r, Ct)-space. The critical manifold is S-shaped and this

is also the case for other values of P . Hence, there are two fold surfaces, F±, in the

full four-dimensional space, as shown in Fig. 2(b) in projection onto (C,P, r)-space.

The colour gradient on these surfaces indicates the value of Ct, ranging from 2.1

(light) to 3.5 (dark). The fold surfaces separate S0 into three, three-dimensional

sheets, S±a and Sr; the outer two sheets, S±a , are attracting and the inner sheet, Sr,
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is repelling.

During fast motions, the trajectory of an RO converges to solutions of the layer

problem, which is obtained by first switching to the fast time scale t2 = t1/ε in

(1) and then taking the singular limit ε → 0. This gives a simple one-dimensional

system for the evolution of the fast variable C while the slow variables (Ct, r, P )

are constant. Note that the three-dimensional manifold S0, the phase space of the

reduced problem, is a manifold of equilibria for the layer problem and defines the

interface between the two sub-systems. Motion towards or away from S0 in the layer

problem is along one-dimensional fast fibres.

The switching between slow and fast motion happens at the fold surfaces F±.

Starting from F− at relatively low C-values, near the blue dot in Fig. 2(a), the RO

makes an almost vertical jump away from S0, with a corresponding sharp peak in

the time series in Fig. 2(d). As soon as the orbit reaches the attracting sheet S+
a of

S0, the motion becomes slow again and follows S0 back to the other fold surface F+,

after which another near-vertical jump occurs to the other attracting sheet S−a of S0.

In Fig. 2(b) we cannot see the attracting sheets S±a , but we can clearly distinguish

the near-vertical jumps in the fast C-direction. Observe how the orbit passes the

upper fold surface F+ in Fig. 2(a) on its way to S+
a . This is not a true intersection

but appears to be so only due to the projection of four-dimensional phase space. A

similar observation can be made at the lower fold surface F− in Fig. 2(b).

Figure 2 clearly shows the power of singular perturbation theory, namely the

ability to concatenate solution segments of the lower-dimensional limiting problems,

the one-dimensional layer and the three-dimensional reduced problem, to obtain an

approximate solution of the full four-dimensional model. Here, the layer problem

is particularly simple, since it is only one dimensional, and so we focus solely on

analysing the three-dimensional reduced problem. By definition, the reduced vector

field has to be in the tangent bundle of the critical manifold S0. As described before,

S0 is given as a graph over (C, r, p)-space. Hence we would like to study the reduced

flow in the single (C, r, p)-chart which covers the whole manifold. Taking the total

time derivative of f(C,Ct, r, P, 0) = 0 defines a vector field for C that is constrained

to the tangent bundle of S and leads to the reduced problem projected onto the

base (C, r, P ), 

−fC
dC

dt1
= fCtg1 + frg2 + fPg3,

dr

dt1
= −g2,

dP

dt1
= −g3,

(3)
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where (C,Ct, r, P ) ∈ S0 and fC = ∂f/∂C, fCt = ∂f/∂Ct, etc. This system is

singular along the fold surfaces F±, where fC = 0. To understand the reduced flow

completely, we rescale time by the factor −fC which gives the desingularized problem
Ċ = fCtg1 + frg2 + fPg3,

ṙ = −fCg2,

Ṗ = −fCg3 ,

(4)

where the overdot denotes, for convenience, differentiation with respect to the new

rescaled time. The reduced flow is equivalent to the desingularized flow up to a time

parametrization change on the repelling sheet Sr where fC > 0, i.e., one only has

to reverse the direction of the desingularized flow on Sr to obtain the corresponding

reduced flow. We distinguish two types of singularities in the desingularized problem

(4):

• Ordinary singularities are defined by g1 = g2 = g3 = 0 away from the fold

surface, i.e., fC 6= 0.

• Folded singularities are defined by fC = 0 and fCtg1 + frg2 + fPg3 = 0, and

represent a one-dimensional sub-manifold of singularities on the fold-surface

fC = 0.

Ordinary singularities correspond generically to isolated equilibrium points of the

reduced problem (3). Here we have a single equilibrium which is a stable node on the

lower sheet of Sa for 0 < ν̂ < 0.144 (0 < ν < 0.345), a saddle on the middle sheet Sr

for 0.144 < ν̂ < 3.34 (0.345 < ν < 8.02), and again a stable node but on the upper

sheet Sa for ν̂ > 3.34 (ν > 8.02). GSPT predicts that, for sufficiently small ε > 0,

these hyperbolic equilibria (away from the fold-surfaces) persist as true equilibria

of the full system. In the case of a stable node, this equilibrium corresponds to the

only stable attractor of the system.

In the case of the (unstable) saddle equilibria, there exist stable attractors other

than equilibria and the folded singularities become important objects in determining

these attractors. It turns out that, at the values of ν̂ of interest, only one of the

two fold surfaces of S0 contains such folded singularities, namely, the fold surface

F− with the lowest C-values, as indicated in Fig. 2(b). These folded singularities

all have one zero eigenvalue since there is a curve of folded singularities. The corre-

sponding eigenvector of each of these folded singularities is tangent to the curve of

folded singularities. The other two eigenvalues vary as we move along the curve of

folded singularities. Following the general canard theory developed in [19] and by
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Figure 3: Classification of folded singularities on the fold surface F− of S0 in the Class I
Atri model for a range of values of ν̂. For each ν̂, there exists a curve of folded singularities
parametrised by P . The type of the folded singularities are indicated by the colours red,
green and blue, for folded saddle, folded node and folded focus, respectively. The grey
shaded region consists only of folded singularities with r > 1, which is unphysical. The
equilibrium value of P = ν̂/β̂ (black dashed line) indicates at which folded singularity the
attractor passes the fold surface. The white dashed lines indicate the values of ν̂ used for
Figs. 6, 7 and 9 (from right to left).

analogy with canard theory for the case of two slow variables, we classify these sin-

gularities according to the signs of their non-zero eigenvalues. A folded singularity

with two negative real eigenvalues (and one zero eigenvalue) is called a folded node, a

singularity with two real eigenvalues of opposite sign is called a folded saddle, and a

singularity with a complex conjugate pair of eigenvalues with non-zero real part is a

folded focus. Figure 3 shows the types of folded singularities seen in the Class I Atri

model for a range of ν̂-values by assigning a colour to the P -coordinate associated

with each singularity; we colour folded saddles red, folded nodes green and folded

foci blue.

Note that folded singularities do not correspond to equilibria of the reduced flow

(3). In the case of a folded saddle or folded node, the role of the folded singularity

is to provide a mechanism by which orbits of the reduced flow on the outer sheet

S−a may reach the folded singularity in finite time and then cross to the repelling

inner sheet Sr. For ε 6= 0, this leads in the case of a folded node to local oscillatory

behaviour as shown in Fig. 4(c); see, e.g., [19] for theoretical background.

The dynamics of the full (i.e., nonsingular) unpulsed Class I system can now be

understood in terms of these geometric structures. Since we are not interested in

transient behaviour in the unpulsed case, the relevant folded singularity is that which

occurs at the equilibrium value of P for the ν̂ value of interest; this ν̂-dependent

line of singularities is indicated by the dashed black line in Fig. 3. We find that
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Figure 4: An example of an attracting MMO for the Class I Atri model with ε = 0.01 and
ν̂ = 0.167 (ν = 0.40). (a) Using (Ct, r, C) coordinates, with P fixed at the equilibrium
value, P = ν̂/β̂ = 0.50. The pink surface is the intersection of the critical manifold with
the slice, with the light pink section indicating the funnel region of the folded node (green
dot) that occurs for this value of P . The blue curves are the intersections of the fold
surfaces with the slice. (b) Projection onto (P, r, C) coordinates. The blue surfaces are
the fold surfaces F±; on these surfaces the Ct-coordinate appears as a colour gradient
(dark to light as Ct increases). The red, green and dark-blue curve is the locus of folded
singularities; red indicates a folded saddle, blue indicates a folded focus, green indicates a
folded node, consistent with the colour coding of singularities in Fig. 3. The black curve
is the MMO shown in panel (a). (c) An enlargement of panel (a) showing the passage of
the MMO past the folded-node singularity. (d) The time series for C corresponding to the
MMO in panel (a).

the singularity at P = ν̂/β̂ is a folded saddle for ν̂ ∈ [0.0, 0.144] (ν ∈ [0.0, 0.345]),

a folded node for ν̂ ∈ [0.144, 0.259] (ν ∈ [0.345, 0.623]), and a folded focus for

ν̂ > 0.259 (ν > 0.623).

GSPT predicts that, for sufficiently small ε > 0, the attractor in the region with

ν̂ < 0.144 (ν < 0.345) and ν̂ > 3.34 (ν > 8.02) is the stable node equilibrium (as

explained above). In the case 3.34 > ν̂ > 0.259, we have a saddle on the repelling

inner sheet Sr and a folded focus on F−. GSPT predicts in this case a stable RO

as the attractor. The equilibrium value P = ν̂/β̂ for the case shown in Fig. 2 lies in

the blue region of Fig. 3 and the enlargement in Fig. 2(c) shows that the periodic
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orbit is, indeed, an RO.

In the case 0.114 < ν̂ < 0.259, there is a saddle on the repelling inner sheet Sr

and a folded node on F−. GSPT predicts here either MMO or RO in the full system,

depending on the global return mechanism [4, 5]. Specifically, we expect that the

attractor will be an MMO periodic orbit, provided the passage near the folded node

leads to a global return into the funnel region of the folded node; this is precisely

what happens for the case shown in Fig. 4. Detailed calculations shown in Fig. 7 of

[9] provide ε-dependent boundaries of the MMO regime. In the case ε = 0.01, this

is given by 0.158 < ν̂ < 0.259 (0.38 < ν < 0.63). For larger values of ν̂ the return is

outside the funnel and the attractor will be a periodic orbit of ordinary RO type.

The type of attractor that occurs in the Class I Atri model without pulsing is

qualitatively the same for any sufficiently small value of ε, i.e., the attractor is either

a stable node, an MMO or an RO, with the boundaries of the intervals of ν̂ on which

each type of attractor occurs being only slightly changed by the size of ε.

2.2 Class I dynamics with pulsing

The insight gained from the analysis of the unpulsed Class I model yields an expla-

nation for the different types of transient responses seen in the pulsed Atri Class I

model. Note that the long term behaviour of the pulsed model is just as for the

unpulsed model, i.e., equilibria, MMOs or ROs may be observed, depending on the

sizes of ν̂ and ε.

The effect of a pulse of IP3 is to send an orbit rapidly to a high value of P , with

the precise location after the pulse depending on the pulse size and on the position

of the orbit immediately before the pulse. Since the evolution of P is independent of

the other variables in the Class I model, the P component of the orbit will then relax

to its equilibrium value, but during this relaxation the other variables will evolve in

a more complicated way. Figure 5 shows three different possibilities, corresponding

to three representative values of ν̂. The pulse response in Fig. 5(a), for ν̂ = 0.4

(ν = 0.96), exhibits a small transient increase in frequency of oscillation followed

by smooth re-establishment of the attracting RO. This is accompanied by a small

decrease in oscillation amplitude, which is not significant. Figure 5(b) shows the

response for ν̂ = 0.317 (ν = 0.76). Here we observe MMO-like behaviour that

causes relatively long delays between peaks during the transient part, but then the

orbit settles back to the expected RO for this ν̂-value. The response in Fig. 5(c) for

ν̂ = 0.233 (ν = 0.56) is expected to relax to an MMO, but we observe a very long

delay before the oscillation restarts.

The full three-dimensional critical manifold S0 plays an important role in our
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Figure 5: Time series of the C-coordinate for the pulsed Class I Atri model with ε = 0.01.
Panels (a), (c) and (e) show the responses for ν̂ = 0.400 (ν = 0.96), ν̂ = 0.317 (ν = 0.76)
and ν̂ = 0.233 (ν = 0.56), respectively; these values correspond to the white dashed
vertical lines in Fig. 3. Enlargements of the transient behaviour after the pulse is applied
at t1 = 12 (and once P has decayed to P = 5) are shown in panels (b), (d) and (f). The
time intervals shown in the enlargements correspond to the orbit segments plotted in the
phase portraits shown in Figs. 6, 7 and 9.

explanation of the pulse response of the Class I Atri model, as do the two-dimensional

fold surfaces and the curves of folded singularities. We already introduced these

structures in the previous section and refer, in particular, to Fig. 3, where the three

cases corresponding to Fig. 5 are indicated by white dashed vertical lines at the

respective ν̂-values. Since P is no longer fixed for the pulsed Class I Atri model, we

always show in the figures that follow two projections, namely, onto (C, r, Ct)-space

and onto (C,P, r)-space. In each projection we also plot the two fold surfaces F±

with the curve of folded singularities of S0. The fourth missing coordinate in each
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Figure 6: RO-like transient behaviour for the pulsed Class I Atri model with ν̂ = 0.4
(ν = 0.96) and ε = 0.01. Panels (a) and (b) show projections onto (Ct, r, C)-space and
(P, r, C)-space, respectively. The two fold surfaces are shown, with a colour gradient
indicating the value of the missing fourth coordinate; P ranges from 5 (pink) to 0 (cyan)
in panel (a) and Ct ranges from 2.2 (dark) to 3.5 (light) in panel (b). The curves of folded
singularities are also shown, with the colour indicating the type of folded singularity as in
Fig. 3. The corresponding time series for the orbit is shown in Fig. 5(a).

projection is indicated by a colour gradient on the fold surfaces. We use dark (low)

to light (high) for Ct, as before, and pink (high) to cyan (low) for P .

After the pulse, the orbit typically will not be near S0 and the first behaviour

observed is, therefore, typically a fast transition to an attracting sheet of S0, after

which the evolution is (approximately) dictated by the slow flow on S0 until the orbit

meets a fold surface. This typically occurs at a regular jump point, so that the orbit

continues with a fast jump to the other attracting sheet of S0. As a consequence we

observe a large RO in the transient dynamics.

We observe a series of such transient oscillations in the time series in Fig. 5(a),

where ν̂ = 0.4 (ν = 0.96). The corresponding phase portrait is shown in Fig. 6;

panel (a) shows the projection onto (C, r, Ct)-space and panel (b) onto (P, r, C)-

space. Note that the curve of folded singularities consists only of folded foci (blue)

for this ν̂-value; see Fig. 3. Fold points in a neighborhood of a folded focus are

regular jump points. Hence, each time the fold-surface is reached near such a folded

focus a regular fast jump happens. By identifying the near-vertical transitions from

the fold surface F− in Fig. 6, we can identify the sequence of jump points on this

fold surface. Both for the transient and the long term dynamics, we see that the

orbit interacts with the fold surface F− at regular jump points and the oscillations

are all of RO type. We remark that the decrease in oscillation amplitude that is

observed to accompany the increase in frequency after the pulsing in Fig. 5(a) is

a consequence of the two fold surfaces F± being closer together at higher values

of P . A similar comment applies to the other times series in Fig. 5, although the
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Figure 7: MMO-like transient behaviour for the pulsed Class I Atri model with ν̂ = 0.317
(ν = 0.76) and ε = 0.01. Panels (a) and (b) show projections onto (Ct, r, C)-space and
(P, r, C)-space, respectively. The two fold surfaces and folded singularities are shown with
colouring as in Fig. 6. The corresponding time series for the orbit is shown in Fig. 5(c).

phenomenon is less easily seen in those cases.

2.2.1 Anomalous delay due to interaction with a folded node

The time series in Fig. 5(c), where ν̂ = 0.317 (ν = 0.76), shows oscillations im-

mediately after the pulsing similar to the case shown in Fig. 5(a), but the initial

increase in frequency is followed by a relatively long delay before the orbit returns

to its unpulsed oscillation, which is of RO-type for this ν̂-value. Note the small-

amplitude oscillations visible in the enlargement in Fig. 5(d) before the third and

fourth spikes. As indicated in Fig. 3, the folded singularities on S0 are no longer all

folded foci; for high P -values the singularities are folded nodes and the associated

funnel region on S0 forms a three-dimensional sectorial trap that the orbit is likely

to meet as P decreases from a high value after pulsing. Passage through a folded

node leads to MMO-like oscillations in the transient orbit; the orbit has a quiescent

period as it moves through the funnel region on S−a towards the curve of folded-node

singularities on F−, then small oscillations occur near F− followed by a fast jump

towards S+
a . The transient orbit may return to the three-dimensional funnel region

and again pass through another folded node at a smaller value of P , until P has

decreased to values where the funnel ceases to exist because the folded singularities

are of folded-focus type.

Figure 7 shows two projections of the phase portrait for the case with ν̂ = 0.317

(ν = 0.76). The MMO-like transient behaviour occurs each time the orbit reaches

the fold surface F− at a (green) folded node. We observe that the pulsed orbit first

crosses the fold surface F− at a jump point, but after the fast jump the orbit falls

into the funnel region for the segment of folded-node singularities and the second
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Figure 8: The enlargement of segments of the pulsed orbit plotted in Fig. 7(b) near
the second (a) and third (b) crossing of the fold surface shows the interaction with the
curve of folded nodes. The second column shows a projection along the vector direction
associated with the zero eigenvalue of the folded node, such that the fold surface is almost
one dimensional.

crossing of the fold surface F− is at a folded node.

Panels (a) and (b) in Fig. 8 show a close-up of the passage through the folded-

node segment at this second crossing; panel (a) is an enlargement near the folded

node in the same projection as Fig. 7(b), and panel (b) shows the projection along

the vector v1 associated with the zero eigenvalue of the folded node involved in this

second crossing. The coordinate axes are aligned with the vector v2 that is tangent

to the fold surface but orthogonal to v1, and with two additional vectors n1 and n2

normal to the fold surface. The projection in Fig. 8(b) shows oscillating behaviour

that is reminiscent of a passage through a folded node for a three-dimensional system

with two slow variables [4, 5, 18].

The third crossing of the fold surface by the orbit in Fig. 7(b) is also at a folded

node, and a close-up for this crossing is shown in Fig. 8(c), with an enlargement in

Fig. 8(d). After this third crossing, P has decreased so much that the type of folded

singularities changes to folded foci (blue segment) and the transient orbit (as well

as the long term behaviour) thereafter looks like an RO.
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Figure 9: Dynamics of the pulsed Class I Atri model with ν̂ = 0.233 (ν = 0.56) and
ε = 0.01, showing one orbit after pulsing (black curve). (a) Projection onto (Ct, r, C)
coordinates. At the equilibrium value of P , the folded singularity is a folded node. (b)
Projection onto (P, r, C) coordinates. All surfaces and curves as in Fig. 6. A time series
for the orbit is shown in Fig. 5(c).

The pulse response of the model at this value of ν̂ can therefore be characterised

as being a few RO-type oscillations of greater frequency and smaller amplitude

than the attracting RO, followed by a number of MMO-like oscillations (each in-

cluding a delay then some small-amplitude oscillations then a fast jump) before

re-establishment of the RO. We note that the number and amplitude of the ROs

immediately after the pulsing and before the delay, as well as the length of the delay

and the number of small-amplitude oscillations during the transient may depend on

factors such as the location in phase space of the orbit immediately before pulsing,

the length and magnitude of the applied pulse and on the exact ν̂ value, but the

underlying mechanism described here is robust.

We have, thus, identified a mechanism causing anomalous delays in the pulse

response of the Class I Atri model: a ‘delay’ before resumption of ROs can occur as

the transient orbit after a pulse passes through the funnel region associated with a

segment of folded-node singularities on the stable sheet S−a of the critical manifold.

Note that the trapping region of the folded-node segment, the funnel, causes a

delay effect because orbits on S−a slow down as they move to and along the weak

eigendirection of the folded nodes. Furthermore, orbits have to make a certain

number of small-amplitude oscillations near the folded nodes before they ultimately

get ‘ejected’ from the funnel.

19



050.97 0.98
0.1

0.11

0.12

C

Pr

1
Figure 10: Enlargement of Fig. 9, showing the stable (dark-blue) and unstable (dark-red)
manifolds of the curve of folded saddles, as well as the pulsed orbit (black) as it passes
through this region. The stable and unstable manifolds and the fold surface (light blue)
all intersect at the curve of folded singularities (shown in light red and green).

2.2.2 Anomalous delay due to interaction with a segment of folded sad-

dles

The anomalous delay seen in the pulse response of the Class I Atri model, as shown

in the time series in Fig. 5(c), is caused by a second different mechanism, namely

by passage near a segment of folded-saddle singularities. We have found that a one-

dimensional family of folded saddles can also provide a trapping region for the slow

flow. Such a trapping region is bounded by the two-dimensional families of stable

and unstable manifolds of the folded saddles. Unlike the funnel region for a segment

of folded nodes, the families of (un)stable manifolds each form two-dimensional

surfaces on S−a that prevent orbits from reaching the fold-surface F− and ultimately

force solutions away from F− on S−a . The unstable manifolds are often compact

on S−a , because they can bend back and connect to folded nodes in a neighbouring

segment. This offers an escape from the trapping region, because solutions will leave

a neighbourhood of the folded saddles along the unstable eigendirection of the folded

saddles, until P eventually gets small enough that the folded singularities change to

folded-node type. As soon as the orbit escapes from its ‘trap’, a jump is observed

in the transient orbit.

An example of this type of behaviour is shown in Fig. 9, for the case ν̂ = 0.233.

Both projections show that the pulsed orbit passes near F−, lingering very close to

the segment of folded saddles. Fig. 10 shows an enlargement of part of Fig. 9(b), but

projected onto (P, r, C)-space, so that F− appears horizontal. This figure also shows

the two-dimensional surfaces formed by the one-dimensional stable (blue) and one-

dimensional unstable (red) manifolds of the segment of folded saddles. The pulsed
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orbit enters this region near the surface of stable manifolds. As it comes close to the

fold surface F− and the curve of folded saddles, it is pushed away along the surface

of unstable manifolds and remains trapped on S−a until it reaches the segment of

folded nodes. Note that, for this model at least, passage near a segment of folded

saddles followed by a segment of folded nodes produces a more lengthy delay than

passage through a segment of folded nodes only.

3 Dynamics of the Class II model

A Class II model is defined as (1) with α 6= 0 and 0 < τ̂ � 1. Hence, the r-dynamics

is considered fast which leads to a model with two fast (C, r) and two slow variables

(Ct, P ). As explained in [9], it is possible to make a quasi-steady-state approximation

of the r-variable by letting τ̂ → 0 and setting

r(C) =
k2

2

k2
2 + C2

,

in which case system (1) effectively becomes three dimensional, with one fast variable

and two slow variables:
εĊ = J̄release − J̄serca + ε(J̄in − J̄pm) =: f̃(C,Ct, P, ε),

Ċt = J̄in − J̄pm = g1(C),

Ṗ = ν̂
(

1− 1
1+C/k4

)
− β̂P =: g3(C,P ).

(5)

Standard techniques from GSPT were used in [9] to analyze this system, and the

main results from that paper are summarised in the following section.

3.1 Class II dynamics in the absence of pulsing

The constraint f̃(C,Ct, P, 0) = 0 defines the critical manifold, S0, of system (5).

The constraint equation can be solved for Ct as a function of C and P ; the resultant

surface is plotted in Fig. 11. An important feature of S0 is that it has two fold

curves (relative to C) for P < 0.45, with the folds merging in a cusp at P ≈ 0.45.

In the region P < 0.45, the manifold is S-shaped, with the outer sheets S±a of S0

(corresponding to larger and smaller values of C) being attracting and the inner sheet

Sr (corresponding to intermediate values of C) being repelling. For P > 0.45 the

single sheet Sa of S0 is attracting. As usual, the critical manifold can be thought of

as organising the dynamics of (5) in the sense that, for sufficiently small ε, solutions

of (5) will alternate between spending relatively long periods of time near S0 and
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Figure 11: The critical manifold for the Class II Atri model (5) and the attracting RO
that occurs when ε = 0.001 and ν̂ = 0.417 (ν = 1.0). (a) The critical manifold is shown
in pink, and has two fold curves for P < 0.45 (blue curves). These curves merge in a cusp
point at P ≈ 0.45. The black curve shows the attracting RO. (b) An enlargement of panel
(a) from a different view point, illustrating the S-shape of the critical manifold.

making fast jumps between different sheets of S0.

As discussed in [9], for most values of ν̂ in the interval [0.311, 0.629], solutions are

attracted to an RO like that shown in Fig. 11. This is the case even though there are

folded-node singularities on the fold curves of S0, because the global dynamics forces

orbits away from the regions near the folded singularities. For ε sufficiently small

there can be a very small interval of ν̂ near ν̂ = 0.629 where orbits are attracted

to a folded node and MMOs are observed, but this is of no further interest here.

Outside the interval [0.311, 0.629], solutions are attracted to a stable node.

For the purposes of understanding the response of the Class II model to IP3

pulses, a little more detail about the folded-node singularities is helpful. This detail

does not affect the long term behaviour of solutions to this model but does have

implications for the transient behaviour immediately after a pulse, as discussed in

the next section. Figure 12 shows some features of the critical manifold for two

representative choices of ν̂. For ν̂ ∈ [0.311, 0.446] the strong canard for the folded

node on the lower fold curve bends around and joins again to the fold curve, meaning

that the folded node is inaccessible unless an orbit starts in the funnel region which

is bounded by the strong canard and the fold curve. This situation is illustrated

in Fig. 12(a). In contrast, for ν̂ ∈ [0.446, 0.629] the strong canard does not meet

the lower fold curve except at the folded node, and the associated funnel region is

open. In this case the funnel region attracts the flow from the upper right part of

the phase space; see Fig. 12(b).
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Figure 12: Dynamics on the critical manifold for the Class II Atri model (5), for two values
of ν̂: (a) ν̂ = 0.417 (ν = 1.0); (b) ν̂ = 0.542 (ν = 1.3). The critical manifold is pink and
the fold curves are blue. The green dots show the location of folded-node singularities
and the purple curves emanating from the folded nodes are the associated strong canards.
The light-pink region is the funnel region for the folded node. In (a), the funnel region
is bounded by the lower fold curve and the strong canard. In (b), the funnel region is an
open region of the critical manifold.

3.2 Class II dynamics with pulsing

Due to the three-dimensional nature of the Class II system, any delays such as that

seen in Fig. 1(c) must be explained by a completely different mechanism than those

used for the Class I model. Nevertheless, we can still use the geometric structures

found in the analysis of the unpulsed Class II system. An IP3 pulse applied to this

model moves an orbit rapidly to higher values of P (i.e., past the cusp). For small

ε, orbits will first move quickly towards the critical manifold then follow the slow

flow on the critical manifold until a fold curve is encountered, after which the orbit

could make a fast jump. Since there are no folds in the critical manifold for large

P there can be no fast jumps and hence no oscillations initially. Eventually, the

value of P will decrease sufficiently that the orbit returns to the folded section of

the critical manifold and then eventually to the attracting RO which occurs for low

values of P . This explains the observed delay in the onset of oscillations after the

pulse – until P is small enough there can be no oscillations.

The details of the evolution once P is small enough for the critical manifold to

be folded (P < 0.45) depend on details of the folded singularities described above.

For ν̂ < 0.446 (ν < 1.07), the funnel region (when it exists at all) is completely

bounded by the fold curve and strong canard, and so a transient orbit cannot enter

the region. Instead the pulsed orbit goes below the funnel region and settles down

to the RO. On the other hand, if the funnel region is open (0.446 < ν̂ < 0.629,

i.e., 1.07 < ν < 1.51) then a pulsed orbit will typically return to the attractor via

the funnel of the folded node. This results in small oscillations in the transient
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Figure 13: Dynamics for the Class II Atri model (5) with ν̂ = 0.542 (ν = 1.3) and ε = 0.01.
(a) All curves and surfaces are as in Fig. 12, except that the black curve shows a trajectory
after the application of an IP3 pulse. After the pulse, the trajectory passes the cusp point
on the fold curves, then passes through the funnel region towards the folded node, resulting
in a delay followed by characteristic small oscillations before re-establishment of the RO.
(b) Time series for the orbit shown in (a). The red curve shows C and is plotted against
the left vertical axis. The black curve is P and is plotted against the right vertical axis.

orbit before RO are established again. Figure 13 confirms this prediction in the case

ν̂ = 0.542 (ν = 1.30).

4 Dynamics of the Hybrid model

The Hybrid Atri model is obtained by setting α 6= 0 and τ 6= 0 in equations (1).

This system may have either two fast and two slow variables or one fast and three

slow variables, depending on the relative size of τ̂ . A comprehensive analysis of the

Hybrid Atri model was not presented in [9], either for unpulsed or pulsed versions

of the model, since GSPT relevant to systems with three slow variables had not

been developed when [9] was written. In this section we argue that when τ̂ = O(1)

the dynamics of the Hybrid model has many qualitative features of the pure Class I

model. As a consequence, the pulse response of the Hybrid model is, for these values

of τ̂ , similar to the pulses response of the Class I model. In particular, the delay

sometimes seen after pulsing of the Hybrid model when τ̂ = O(1) can be attributed

to the existence of segments of folded saddles and folded nodes in the singular limit

of the Hybrid model. If, on the other hand, τ̂ � 1, the Hybrid model behaves like a

Class II model in both the pulsed and unpulsed dynamics. There is an intermediate

range of values of τ̂ where the Hybrid model is in transition between Class I and Class

II forms. In this transition regime, GSPT based on the assumption of there being

just two distinct time scales in the model is unable to give clear predictions about

the behaviour in the model, and numerical investigations indicate that features of
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Figure 14: Partial bifurcation set for the Hybrid Atri model, equations (1) with ε = 0.01
and various α and τ̂ . The locations of Hopf bifurcations (HB) are marked, and the shaded
region indicates the values of α and τ̂ for which MMOs are observed. A sharp transition
in the slope of the Hopf bifurcation curves occurs at τ̂ ≈ 0.05 at about the same value of
τ̂ where MMOs cease to exist. This value of τ̂ corresponds to the Hybrid model making
a transition from having three slow variables (τ̂ = O(1)) to having two slow variables
(τ̂ = O(10−2)).

both Class I and Class II dynamics can be observed.

4.1 Hybrid model without pulsing

Analysis of the time scales of the Atri model presented in [9] showed that the Hybrid

Atri model might be expected to behave like a Class I model if τ̂ = O(1), and like

a Class II model if τ̂ = O(10−2). Numerical evidence for a transition regime is

contained in Fig. 14, which shows a partial bifurcation set for the Hybrid Atri model

in the case that ε = 0.01. Oscillations are possible only in the region in between the

two curves of Hopf bifurcations, denoted HB1 and HB2 in Fig. 14. These oscillations

are of RO type, except in the shaded region, where MMOs exist. A clear transition

regime can be seen as τ̂ decreases in Fig. 14. Specifically, at τ̂ ≈ 0.05 the distance

between HB1 and HB2 changes suddenly and the MMO regime terminates.

A detailed investigation of the case α = 1, τ̂ = 0.48 (τ = 2.0) and ε = 0.01,

which is a representative parameter choice for which the Hybrid model has three slow

variables, provides evidence that there are many features in common between this

model and the pure Class I model discussed in the previous section. In the Hybrid

model, P does not evolve independently of other variables, with the consequence

that the long term dynamics does not lie in fixed-P slices of phase space (as was

the case for Class I), but otherwise phase-space plots look rather similar to Figs 2,

4, and 6–9, as will be shown below.
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Figure 15: The types of folded singularity seen in the Hybrid Atri model, equations (1)
with α = 1, τ̂ = 0.48 (τ = 2.0) and ε = 0, for a range of values of ν̂. The meanings of the
colours are as in Fig. 3. The white dashed lines indicate the values of ν̂ used for Figs. 18,
19 and 20. The black dashed curves (labelled Posc) for ν̂ > 0.125 indicate the maximum
and minimum values of P for the attracting closed orbit (MMO or RO) at each value of
ν̂. For ν̂ < 0.125 the attracting orbit is an equilibrium solution with P value given by the
dashed black line. The inset shows an enlargement of the indicated region.

Techniques from GSPT can be applied to the Hybrid model, just as for the

Class I model in Section 2. In particular, the three-dimensional critical manifold and

the different types of folded singularities that exist can be computed, and singular

MMOs can be constructed for a range of values of ν̂ where folded-node singularities

occur. Figure 15 shows the types of folded singularity seen in the Hybrid system for

various values of ν̂. While the boundaries of the regions of existence of the various

types of folded singularities have shifted compared with the Class I case shown in

Fig. 3, the similarities are clear. Note that in Class I, the variable P evolves to a

single equilibrium value, even if the other variables oscillate as part of an MMO or

RO, whereas in the Hybrid model P oscillates slightly when there is an MMO or

RO. The range of values of P that occur along the singular closed orbit for each

value of ν̂ is indicated by the dashed black curves labelled Posc in Fig. 15.

The geometric structures present in the singular limit perturb in the non-singular

case just as they did for Class I. Thus, for instance, intervals of ν̂ for which singular

MMOs or ROs occur in the singular limit persist in the non-singular system, with

the boundaries of these intervals shifted in an appropriate ε-dependent way, just as

shown above for Class I.

Figure 16 gives an example of Class I-like behaviour of the Hybrid model, for

the choice ν̂ = 0.167 (ν = 0.40); for this choice of parameters there is an attracting

MMO. There are clear similarities between Fig. 16 and Fig. 4, consistent with our

claim that the Hybrid Atri model behaves like a Class I model when τ̂ = O(1).
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Figure 16: An example of an attracting MMO for the Hybrid Atri model with ε = 0.01,
ν̂ = 0.167 (ν = 0.40) and τ̂ = 0.48 (τ = 2.0). Colour coding of surfaces and curves is
as in Fig. 6. (a) A projection onto (Ct, r, C) coordinates. (b) The same MMO as in (a)
projected onto (P, r, C) coordinates; compare with Fig. 4(b). (c) An enlargement of panel
(a) showing the passage of the MMO past the folded-node singularity. (d) The time series
for C corresponding to the MMO in (a); compare with Fig. 4(d).
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The dynamics of the unpulsed Hybrid model in the case that τ̂ = O(10−2) or

less is qualitatively like the dynamics for the pure Class II model, but the argument

is simpler than for the Class I case: the quasi-steady-state approximation used to

reduce the Class II model to a system of three equations in [9] works equally well

for the Hybrid model when τ̂ = O(10−2) or less and so our description of the Class

II model dynamics in Section 3 is valid also for the Hybrid model in this regime.

When τ̂ is of an order intermediate between O(1) and O(10−2), then methods

of analysis based on the assumption of there being two distinct time scales in the

model are no longer appropriate. Result derived for systems with three time scales

may be relevant for this transition regime [5, 12] but we do not undertake this kind

of analysis here.

4.2 Hybrid model with pulsing

Since the long term dynamics of the Hybrid model can be qualitatively like the

dynamics in either the Class I or Class II models, depending on the size of τ̂ , it is

no surprise that the Hybrid model may respond to a pulse of IP3 in similar ways

to the Class I and II models. In particular, we may encounter the same types of

anomalous delays as for Class I. Let us illustrate this again using the Hybrid model

with τ̂ = 0.48 (τ = 2) and ε = 0.01. Figure 17 shows three different possibilities,

corresponding to three representative values of ν̂; compare with the pulsed responses

for the Class I model in Fig. 5.

Figure 18 shows a pulsed orbit in phase space for the Hybrid model when τ̂ = 0.48

(τ = 2) and ν̂ = 0.583 (ν = 1.4), with the associated time series being plotted in

Fig. 17(a). In this case, the unpulsed model is in the Class I regime and we can locate

a three-dimensional critical manifold containing a curve of folded singularities. The

folded singularities consist of folded foci only and the pulsed orbit meets the fold

surface F− at jump points only. The pulse response for this value of ν̂ is therefore

qualitatively similar to that seen in the Class I model with ν̂ = 0.400 (see Figs 6

and 5(a)).

Figure 19 shows a pulsed orbit for the Hybrid model when ν̂ = 0.500 (ν = 1.2),

with the associated time series being plotted in Fig. 17(b). In this case, the first four

passages through the fold surface F− occur at jump points, the next passage is at

a folded node, and the orbit eventually settles down to an RO. The pulse response

for this value of ν̂ is thus qualitatively similar to the case for the Class I model with

ν̂ = 0.317; see Figs 7 and 5(b).

Figure 20 shows a pulsed orbit for the Hybrid model when ν̂ = 0.167 (ν = 0.4),

with the associated time series being plotted in Fig. 17(c). In this case, the pulsed
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Figure 17: Time series of the C-coordinate for the pulsed Hybrid Atri model with α = 1.0,
τ̂ = 0.48 (τ = 2.0) and ε = 0.01. Panels (a), (c) and (e) show the responses for ν̂ = 0.583
(ν = 1.4), ν̂ = 0.500 (ν = 1.2) and ν̂ = 0.167 (ν = 0.40) respectively. These values
correspond to the white dashed vertical lines in Fig. 15. Enlargements of the transient
behaviour after the pulse is applied at t1 = 12 are shown in panels (b), (d) and (f). The
time intervals shown in the enlargements correspond to the orbit segments plotted in the
phase portraits shown in Figs 18, 19 and 20.
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Figure 18: RO-like transient behaviour for the pulsed Hybrid Atri model with ν̂ = 0.583
(ν = 1.4), α = 1.0, τ̂ = 0.48 (τ = 2.0) and ε = 0.01. Panels (a) and (b) show projections
onto (Ct, r, C)-space and (P, r, C)-space, respectively. All surfaces and curves are as in
Fig. 6. All intersections of the orbit with the fold surface occur at jump points. A time
series for the orbit is shown in Fig. 17(a).
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Figure 19: MMO-like transient behaviour for the pulsed Hybrid Atri model with ν̂ = 0.50
(ν = 1.2), α = 1.0, τ̂ = 0.48 (τ = 2.0) and ε = 0.01. Panels (a) and (b) show projections
onto (Ct, r, C)-space and (P, r, C)-space, respectively. All surfaces and curves are as in
Fig. 6. The first four passages through the fold surface are at jump points, the next
passage is at a folded node, and the orbit is eventually attracted to an RO (crossing the
fold surface at a jump point). A time series for the orbit is shown in Fig. 17(b).
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Figure 20: Dynamics for the pulsed Hybrid model with ν̂ = 0.167 (ν = 0.4), α = 1.0,
τ̂ = 0.48 (τ = 2.0) and ε = 0.01. Panels (a) and (b) show projection onto (Ct, r, C)-
space and (C, r, P )-space, respectively. All surfaces and curves as in Fig. 6. The first two
passages through the fold surface occur at jump points, then the orbit has a period of
drifting along the curve of folded saddles. Eventually the orbit settles down to a MMO,
corresponding to passage near a folded node. A time series for the orbit is shown in
Fig. 17(c).

orbit makes two passages through the fold surface F− at jump points, then spends

an extended period of time drifting near the segment of folded saddles, then enters

the funnel region for the folded nodes, and eventually settles down to an MMO. The

pulse response for this value of ν̂ is thus like the case for the Class I model with

ν̂ = 0.233; see Figs 9 and 5(c).

Hence, we see that the Hybrid Atri model with α = 1.0 and τ̂ = 0.48 (τ = 2.0)

responds to pulses of IP3 in a qualitatively similar way to the Class I Atri model.

Similar results are found for any τ̂ greater than about 0.2.

As argued above, when the Hybrid model is in the Class II regime, i.e., when

τ̂ � 1, the model can be reduced to a three-dimensional model and we find in

numerical experiments that pulsing has a similar effect to that seen in the pure

Class II model. Specifically, after pulsing there is a delay before re-establishment of

oscillations because the pulse pushes the orbit into a region of the phase space where

the associated critical manifold has no folds. Oscillations are only re-established once

the variable P has decayed enough that the critical manifold is folded.

We have derived no clear theoretical predictions about the response to pulsing

for the Hybrid model in the transition regime between the Class I and Class II

regimes, but preliminary numerics show that in this case the pulse response has

characteristics of both Class I and Class II behaviour. The transition regime is

being investigated further and will be reported on elsewhere.
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5 Discussion

In this paper, we have used geometric singular perturbation theory (GSPT) to inves-

tigate the response of a representative model (the Atri model) of oscillatory calcium

dynamics to an exogenous pulse of IP3. Previous work on this model [6] identified a

so-called anomalous delay in the transient response of certain versions of the model,

specifically in the Class I and Hybrid versions of the model for a range of values

of the main bifurcation parameter ν̂, and gave a heuristic explanation for the phe-

nomenon based on a fast-slow decomposition with one slow variable. However, as

we have shown, a full analysis of pulsing in the Atri model requires recognition that

the model may have two or three slow variables.

Making use of the recent results of Wechselberger [19], which extend canard

theory to systems with three or more slow variables, we have shown that the delays

sometimes seen in the pulsed Class I and Hybrid versions of the Atri model are

associated with the existence of a curve of folded singularities, either folded saddles

or folded nodes, in the singular limit of the model. In the parameter regime of

interest, the Atri model has periodic attractors, typically of either mixed-mode

oscillation (MMO) or relaxation oscillation (RO) type. The effect of pulsing with

IP3 is to move the orbit rapidly away from the periodic attractor to a region of phase

space where P is large. The way in which the orbit returns through phase space

to the vicinity of the periodic attractor produces the characteristic pulse response

of the model, and is heavily influenced by the dynamics of the singular limit of the

model of interest, as summarised below.

In the Class I version of the Atri model, P evolves independently of the other

variables. After pulsing, P decays monotonically to an equilibrium value while the

other variables can oscillate. For sufficiently small values of the singular perturbation

parameter ε, the transient orbit will alternate between periods when it closely follows

the critical manifold of the singular limit system and fast jumps between different

sheets of the critical manifold. At larger values of ν̂ where the critical manifold

either has no folded singularities or the folded singularities are of folded-focus type,

then transient and long term oscillations are of RO type; while the transient orbit

might display small changes in frequency or amplitude of oscillation after pulsing,

no significant delays are observed in the associated time series. However, at smaller

values of ν̂ when the singular limit has folded singularities of folded-node or folded-

saddle type, there may be relatively long periods in the transient orbit where there

are no oscillations. Sometimes the transient orbit displays MMO-like behaviour

including delays and small-amplitude oscillations (when it passes near a segment of

folded nodes) and sometimes there is a more lengthy delay (when the orbit passes
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near a segment of folded saddles) followed by MMO-like transients (near a segment

of folded nodes).

Delays are also observed in the pulse response of the Class II Atri model, but

in this case they are caused by a completely different mechanism. We showed that,

in the parameter regime of interest, the two-dimensional critical manifold for the

singular limit of the Class II Atri model has a cusp; for smaller values of P the

critical manifold is S-shaped, which means that ROs (and sometimes MMOs) can

occur, but at higher values of P the folds merge in a cusp so that the critical manifold

is not folded and oscillations do not occur. The effect of pulsing in this case is to

send the orbit into the part of phase space where the manifold is not folded. Until

the variable P has decayed sufficiently so that the orbit has passed the cusp region

and once again gets close to the folded part of the critical manifold, there can be

no oscillations. This results in the observed delay in the onset of oscillations after

pulsing in the Class II model.

We have argued that the Hybrid Atri model has three regimes: a Class I regime

when τ̂ = O(1), a Class II regime when τ̂ = O(10−2) or less, and a transition regime

for intermediate sizes of τ̂ . The form of the pulse response of the Hybrid model is

then determined by these regimes: the pulse response is Class I-like if the unpulsed

model is in the Class I regime, and is Class II-like if the unpulsed model is in the

Class II regime. Features of both the Class I and Class II pulse responses can be

seen in the Hybrid model in the transition regime.

A crucial step in understanding the dynamics of the Class I Atri model and of the

Hybrid model in the Class I regime was the ability to apply singular perturbation

theory to systems with three slow variables. The examples in this paper are the first

application of the results in [19] that extend canard theory to the case of three (or

more) slow variables. Based on what is seen in systems with two slow variables, it is

perhaps not surprising that the presence of folded-node singularities in the singular

limit of the Atri model can result in complicated (MMO-like) dynamics. More

surprising is the important role played by folded saddles; we found that passage

near a segment of folded saddles can result in an extended quiescent period in the

time series of a pulsed solution. This trapping region created by the (un)stable

manifolds of the folded saddles is only terminated due to a transition in the type of

folded singularities – here to folded nodes – and the release is observed as a transient

calcium spike due to a jump near a folded node. We note that a passage near a

single folded singularity would not produce this effect; this is something that can

only occur in systems with three or more slow variables.

A major difference between our analysis of the Atri model and that presented in
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[6] is that we have determined that the model can have two or three slow variables,

whereas just one slow variable (ct in the notation of [6]) was used in [6]. As a

consequence, some features of the dynamics (such as MMOs) were not identified in

[6]. Analysis of the pulse responses for Class I and Hybrid models in [6] implicitly

had two slow variables, since p and ct were treated as parameters, and an association

between the location of certain bifurcations of the (two-dimensional) fast subsystem

and the transient behaviour of the pulsed orbits was reported. We believe that our

use of a singular limit in which there are either three slow variables (for Class I

and some Hybrid cases) or two slow variables (for Class II and some Hybrid cases)

leads to a clearer explanation of the observed phenomena, including the long term

dynamics and the response to pulsing.

The original motivation for studying the response of the Atri model to a pulse of

IP3 was a desire to understand the dynamics behind an experimental protocol pro-

posed in [16]. In the models studied in [16], it seemed that there was a clear difference

in the response of different types of model to an IP3 pulse: Class I models responded

with a temporary increase in oscillation frequency while Class II models responded

with a phase lag (delay) before re-establishment of oscillations. Thus it was thought

that the experimental protocol could be used to determine whether the calcium

oscillations in a particular cell type were predominantly determined by Class I or

Class II mechanisms. The anomalous delays that are sometimes observed when the

Class I Atri model is pulsed have muddled the presumed differences between the re-

sponse types. In this paper we have identified the mathematical mechanisms behind

the varying types of pulse responses; the next steps are to look at other intracellular

calcium models, e.g. [7, 13, 14], to determine whether these mechanisms are present,

and then to revisit the experimental protocol to see if it can be modified so that

its interpretation is unambiguous. Work along these lines is ongoing and will be

reported elsewhere.

Finally, we note that identification of the time scales present in the Atri model

suggests a mathematical basis for determining whether Class I or Class II mecha-

nisms will drive the oscillations in a Hybrid model that includes both. We conjecture

that the dominant mechanism is determined by the relative speed of the receptor

dynamics (represented by the variable r in our model); slow receptor dynamics will

result in Class I mechanisms being dominant and fast receptor dynamics will result

in Class II mechanisms being dominant. This insight into the behaviour of Hybrid

models has been confirmed in this paper for the Atri model but results for other

models will be reported elsewhere.
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