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Abstract

The focus of this paper is on the possibility of formulating a consistent and unambiguous forward-simulation

model of planar rigid-body mechanical systems with isolated points of intermittent or sustained contact with rigid

constraining surfaces in the presence of dry friction. In particular, the analysis considers paradoxical ambiguities

associated with the coexistence of sustained contact and one or several alternative forward trajectories that

include phases of free-flight motion. Special attention is paid to the so-called Painlevé paradoxes where sustained

contact is possible even if the contact-independent contribution to the normal acceleration would cause contact

to cease. Here, through taking the infinite-stiffness limit of a compliant contact model, the ambiguity in the case

of a condition of sustained stick is resolved in favour of sustained contact, whereas the ambiguity in the case of

a condition of sustained slip is resolved by eliminating the possibility of reaching such a condition from an open

set of initial conditions. A more significant challenge to the goal of an unambiguous forward-simulation model is

afforded by the discovery of open sets of initial conditions and parameter values associated with the possibility

of a left accumulation point of impacts or reverse chatter – a transition to free flight through an infinite sequence

of impacts with impact times accumulating from the right on a limit point and with impact velocities diverging

exponentially away from the limit point, even where the contact-independent normal acceleration supports

sustained contact. In this case, the infinite-stiffness limit of the compliant formulation establishes that, under

a specific set of open conditions, the possibility of reverse chatter in the rigid-contact model is an irresolvable

ambiguity in the forward dynamics based at the terminal point of a phase of sustained slip. Indeed, as the

existence of a left-accumulation point of impacts is associated with a one-parameter family of possible forward

trajectories, the ambiguity is of infinite multiplicity. The conclusions of the theoretical analysis are illustrated

and validated through numerical analysis of an example single-rigid-body mechanical model.

1 Introduction

There has been much recent interest in non-smooth formulations of mechanical systems, which can undergo hard
impacts with rigid constraining surfaces in the presence of dry friction, see for example [14, 23, 4, 18, 22] and
references therein. Much progress has been made in understanding complex nonlinear dynamics of such systems
through the study of so-called discontinuity-induced bifurcations, changes in system response associated with degen-
erate interactions with system discontinuities, see e.g. [13, 2, 3, 24]. Unfortunately, where impact can occur in the
presence of friction, there are straightforward situations where even basic questions like existence and uniqueness
of solutions remain unresolved, despite their being a number of different formalisms, such as Filippov systems [6],
complementarity [8], hybrid systems [21], and differential inclusions [17].

This paper continues the study [15] in which the present authors investigated a framework for analysing the
dynamics of planar mechanical systems with isolated points of contact with rigid constraining surfaces in the
presence of friction. Emphasis was there placed on free-flight motions interrupted by brief collisional interactions
and on the investigation of an energetically consistent impact law, motivated by the work of Stronge [23] (see
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also [1]). In particular, [15] focused exclusively on the smoothness properties of the impact law and on possible
discontinuity-induced bifurcations of periodic impacting motions due to transitions across discontinuity boundaries
in the impact law.

In contrast, the focus of the present paper is on the possibility of formulating a consistent and unambiguous
forward-simulation model of the class of systems introduced in [15] under conditions that include sustained contact.
We emphasise the elimination, where possible, of ambiguities in the forward time history from given initial condi-
tions. This includes a discussion of the potential non-uniqueness of solutions found in rigid-contact models with
friction (cf. [9, 20]) due to the so-called Painlevé paradox associated with large coupling between the tangential
and normal degrees of freedom during contact [19, 7, 22, 11].

A more significant challenge to the goal of an unambiguous forward-simulation model is afforded by the possibil-
ity of reverse chatter (sometimes also referred to as a reverse Zeno phenomenon) – an infinite sequence of impacts
with impact times accumulating from the right on a limit point and with impact velocities diverging exponentially
away from the limit point. As we shall show in this paper, such phenomena cause to a two-fold, insurmountable
impediment to the ambition of an unambiguous formulation for all initial conditions. Indeed, not only does reverse
chatter offer a viable alternative to continued sustained contact but, more perversely, its existence is associated
with a one-parameter family of possible forward trajectories.

The rest of the paper is outlined as follows. Section 2 introduces the general mathematical framework for
a planar mechanical system with an isolated point of contact and provides the specific equations of motion for
a motivating example of a rigid rod in sustained or intermittent contact with a half-plane. Within the general
formulation, explicit evolution equations are derived for different modes of sustained motion – namely sustained
slip, sustained stick and sustained free flight. Results from [15] are recalled on explicit analytical expressions for
mappings that link incoming velocities to outgoing ones during an instantaneous impact event.

Section 3 considers the possibility of spontaneous transitions from one sustained mode to another without
reaching the boundary of the parameter region of existence of that mode. It is argued that such transitions are
not possible. In particular, any ambiguity associated with the Painlevé paradox in the cases of sustained slip and
sustained stick is here resolved through reference to a limiting behaviour of a family of compliant contact models.

The possible accumulation of impacts, in either forward or reverse time (associated with right- or left-accumulation
points, respectively), in the rigid-contact model is considered in Sec. 4. In the context of impact oscillators (see,
e.g., [5, 16]), forward-time accumulation of impacts is known to lead to non-uniqueness of dynamics in reverse time.
In this paper, we show that in the presence of friction, there exist open regions of initial conditions and parameters
for the rigid-contact model, for which an impacting sequence can accumulate in reverse time onto a condition of
instantaneous stick. While an ambiguity associated with the coexistence of reverse chatter and sustained stick is
eliminated due to the inherent stability of sustained stick found in Sec. 3, we argue that the rigid-contact model is
unable to unambiguously adjudicate between continued sustained contact at the conclusion of a phase of sustained
slip and a transition to free flight through a rapid sequence of impacts.

The ambiguity introduced through the possibility of reverse chatter at the conclusion of a phase of sustained
slip is revisited in Sec. 5 from the perspective of its realisability as a limiting behaviour in the forward simulation
of a class of compliant contact models. In particular, the theoretical analysis finds that reverse chatter is indeed
the correct limiting behaviour for open sets of initial conditions and parameter values associated with transitions
from sustained slip to stick or from sustained negative slip to positive slip, at least for a non-dissipative normal
compliance. This affirmative conclusion is subsequently extended by continuity to the case of small amounts of
dissipation. For larger amounts of dissipation, the conclusions are found to depend sensitively on the way that
damping is introduced.

The results from the previous sections are illustrated through numerical simulations of the model example in
Sec. 6. Finally, Sec. 7 discusses possible physical implications of the results and also their wider applicability to
alternative formulations of frictional contact problems.

2 Mechanical model

2.1 A Lagrangian formulation

Consider a multibody mechanism whose configuration relative to an inertial reference frame may be described in
terms of a column matrix q of generalised coordinates and (possibly) the time coordinate t. Suppose that contact
between the multibody mechanism and its environment is mediated through an isolated point P on the mechanism.

Let the row matrices Fc and Fa represent the generalised forces associated with contact interactions and all
other generalised forces acting on the mechanism, respectively, with respect to the generalised coordinates. There
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exist matrices β (q, t) and γ (q, t), such that v = β (q, t) · q̇ + γ (q, t) describes the velocity of the point P relative to
the inertial reference frame, and such that

Fc = λ · β (2.1)

for some row matrix λ. From Lagrange’s equations of motion, it follows that there exists a positive-definite,
symmetric matrix M (q, t), such that

q̈ = M−1 · βT · λT + . . . (2.2)

and
v̇ = m−1 · λT + . . . , (2.3)

where the omitted terms depend only on Fa, q, q̇, and t, and where

m−1 = β · M−1 · βT (2.4)

is again symmetric.
Restrict attention to motion constrained to a plane, such that

β =

(

βT

βN

)

, v =

(

vT

vN

)

, λ = (λT , λN ) , (2.5)

where the subscripts T and N refer to components tangential and normal to the common tangent direction at P ,
respectively. In terms of the notation

m−1 =

(

A B
B C

)

, (2.6)

it follows that
A > 0, C > 0, AC − B2 > 0 (2.7)

and thus that m−1 is positive definite, provided that β has full row rank.

2.2 A model example

As an example, consider the planar motion of a homogeneous rod of unit mass and twice unit length, for which
contact with the boundary of a stationary half-plane is mediated through the end point P (see Fig. 1).

¸N

¸T

X

Y

Sx

S

P

y

R
µ

(x; y)

Figure 1: Sketch of the model example.

Let Sx and Sy be the components of the net external force (excluding contact forces) acting at the centre of mass
of the rod. Similarly, let R denote the net external torque (excluding contact forces). In terms of the generalised
coordinates x, y, and θ and the generalised velocities

vT := ẋ, vN := ẏ, ω := θ̇, (2.8)

it follows that
ω̇ = 3R − 3 sin θλT − 3 cos θλN (2.9)
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and
v̇T = a + AλT + BλN and v̇N = b + BλT + CλN , (2.10)

where the contact-independent contributions to the tangential and normal acceleration of the point P are given by

a = Sx − 3R sin θ − ω2 cos θ and b = Sy − 3R cos θ + ω2 sin θ (2.11)

and where
A = 1 + 3 sin2 θ, B = 3 sin θ cos θ, C = 1 + 3 cos2 θ, (2.12)

such that AC − B2 = 4.
While the analysis in what follows is not restricted to this model system, it continues to assume that the

separation of the point of contact from its environment is described by the variable y, that the equations of motion
in the tangential and normal directions take the form (2.10), and that (2.7) holds.

2.3 A rigid-body contact model

For the moment, restrict attention to a Signorini-Coulomb model of rigid contact with friction, for which

λN y = 0, λT ∈ −µλNSign (vT ) , and λN , y ≥ 0, (2.13)

where µ ≥ 0 is an assumed coefficient of friction and where Sign (·) denotes the set-valued signum function.

¹

¡¹

¡¸T =¸N

vT

¸N

y

Figure 2: The Signorini-Coulomb model of rigid contact with friction.

Consider the rescaled variables

ṽN := vN , ṽT :=

√

C

A
vT , λ̃N := CλN , λ̃T :=

√
ACλT (2.14)

and let

ã :=

√

C

A
a +

d

dt

(
√

C

A

)

vT , b̃ := b, B̃ :=
B√
AC

and µ̃ :=

√

A

C
µ. (2.15)

From (2.7) it follows that 1 − B̃2 > 0. Dropping tildes, the equations of motion (2.10) then become

v̇T = a + λT + BλN and v̇N = b + BλT + λN , (2.16)

where, again, the Signorini-Coulomb condition takes the form (2.13).

2.4 Modes of sustained motion

For notational convenience, consider the rate constants (cf. [15]):

k±
T := B ∓ µ, k±

N := 1 ∓ µB, k0
T = 0, and k0

N := 1 − B2, (2.17)
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such that
k−

T > k+

T , k+

N > −k−
N , and k0

N > 0. (2.18)

Moreover,
k+

N < 0 or − k+

T < 0 ⇒ k−
N , k−

T > 0 (2.19)

and
k−

N < 0 or k−
T < 0 ⇒ k+

N ,−k+

T > 0. (2.20)

Finally, since
k+

Nk−
T − k−

Nk+

T = 2µk0
N , (2.21)

it follows that at most one of the four quantities k+

N , k−
N , −k+

T , and k−
T can be non-positive.

In the Signorini-Coulomb model, it is natural to consider three possible modes of sustained motion on open
(non-zero) intervals of time:

• A condition of sustained free flight will be said to occur on such a time interval if y > 0 (in which case
λT = λN = 0); in contrast, if y = 0 and λN > 0 we say that sustained contact occurs.

• During sustained contact, a condition of sustained positive (negative) slip occurs on an open interval of time
provided that, on this interval, vT > 0 (vT < 0) and, consequently, λT = −µλN (λT = µλN ). In this event,
(2.16) implies that for positive slip

(λT , λN ) =
(

λ+

T , λ+

N

)

:= − b

k+

N

(−µ, 1) . (2.22)

Similarly, for negative slip

(λT , λN ) =
(

λ−
T , λ−

N

)

:= − b

k−
N

(µ, 1) . (2.23)

By definition, λN > 0 during sustained contact. It follows that if k+

N > 0 (k−
N > 0), a condition of sustained

positive (negative) slip implies that b < 0, i.e., a negative contact-independent contribution to the vertical
acceleration of the point P , and vice versa. The Signorini-Coulomb model also allows for b > 0 during
sustained positive (negative) slip if and only if k+

N < 0 (k−
N < 0). In this case, any state during such a phase

of sustained contact could serve as the initial condition for a phase of sustained free flight, introducing a
potential ambiguity in the forward dynamics known as the Painlevé paradox with respect to positive (negative)
slip.

• Alternatively, during sustained contact, a condition of sustained stick will be said to exist for an open
interval of time provided that the coefficient of friction µ > 0 and, throughout this time interval, vT = 0 and
|λT | < µλN . In this case, it follows from (2.16) that

(λT , λN ) =
(

λ0
T , λ0

N

)

:=
1

k0
N

(bB − a, aB − b) (2.24)

and
ak+

N − bk+

T < 0 < ak−
N − bk−

T . (2.25)

Since k0
N > 0 and

aB − b =

(

ak−
N − bk−

T

)

−
(

ak+

N − bk+

T

)

2µ
> 0, (2.26)

the requirement that λN > 0 is trivially satisfied in sustained stick. On the other hand, (2.25) and the
equality

−2µk0
Nb =

(

ak−
N − bk−

T

)

k+

N −
(

ak+

N − bk+

T

)

k−
N (2.27)

imply that values of k±
N > 0 are compatible with sustained stick only if b < 0 and that values of b > 0 are

compatible with sustained stick only if k+

N < 0 or k−
N < 0, corresponding to the Painlevé paradox with respect

to stick.
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a

b

a

b

a

b

k+

T ; k+

N < 0 k+

T < 0 < k+

N

k+

T ; k+

N > 0

Figure 3: The region of values of a and b that satisfy the conditions (2.25) for sustained stick, given different
combinations of the signs of k+

N and k+

T with B ≥ 0.
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Given the sign constraints on k+

N , k−
N , −k+

T , and k−
T one can easily enumerate different qualitative arrangements

of the boundaries between stick and slip during sustained contact. Figure 3 shows the region of values of a and b
that satisfy conditions (2.25) for different combinations of the signs of k+

N and k+

T with B ≥ 0. Such parameter
values are said to lie in the friction cone. The remaining sign combinations with B < 0 may be obtained from this
figure by application of the reflection

(a, B) → (−a,−B) , (2.28)

which leaves the conditions (2.25) invariant.
Ambiguities in the forward dynamics from a given state that arise through the Painlevé paradoxes need to be

resolved in order to enable a well-posed formulation of the forward-time system evolution. In the rigid contact
model, the quantities λT and λN capture the aggregate influence at the contact interface of a variety of physical
phenomena, including local deformation, adhesion, and dissipation. The individual characteristics of these physical
phenomena are lost in the limit of the rigid contact model. In this limit, distinctly different dynamical behaviours
are effectively squeezed together, making it, at times, impossible to assert a unique future evolution from a given
initial condition or to evaluate the viability of a certain condition of motion as a reflection of a physically realisable
condition. A resolution of these ambiguities must therefore come from outside the rigid contact limit, for example
through a study of a general class of compliant, but stiff contact models. We return to this question in Sec. 3.

2.5 Impulsive contact

In addition to phases of sustained motion, the Signorini-Coulomb contact model naturally leads to the consideration
of impulsive changes in the generalised velocities associated with isolated collisional contact events. In our previous
paper [15], following the approach adopted by Stronge [23] and Batlle [1], such isolated impacts were represented
by changes in the contact point velocities assumed to occur on a time scale an order of magnitude shorter than
typical macroscopic time scales of the entire mechanism.

Specifically, assuming negligible changes in configuration and negligible contributions during the impact phase
from the contact-independent generalised forces, the total, effectively instantaneous change in the generalised
velocities during the impact phase is given by

∆q̇ = M−1

0 · βT
0 · m0 · ∆v, (2.29)

where the subscript 0 refers to evaluation at the moment of impact. In what follows, we shall refer to a relationship
that yields v0 7→ g (v0) = v0 + ∆v as an impact mapping and to (q0, q̇0) 7→ (q0, q̇0 + ∆q̇) as the resultant impact
law.

The results from [15] on the derivation of closed form expressions for the impact mapping for all possible
combinations of initial conditions and parameter values can be summarised as follows. Let r ∈ [0, 1] be an energetic
coefficient of restitution, such that r = 1 corresponds to the absence of dissipation in the normal interactions during
the impact phase, and consider the functions

gI :

(

vT

vN

)

7→
(

vT − (1 + r) kT

kN
vN

−rvN

)

, (2.30)

gII :

(

vT

vN

)

7→











k′

T

k′

N

(

kN

kT
vT − vN +

√

(

1 − k′

N

kN

)(

kN

kT
vT − vN

)2

+ r2 k′

N

kN
v2

N

)

√

(

1 − k′

N

kN

)(

kN

kT
vT − vN

)2

+ r2 k′

N

kN
v2

N











, (2.31)

gIII :

(

vT

vN

)

7→











k′

T

k′

N

(

kN

kT
vT − vN + r

√

(

1 − k′

N

kN

)(

kN

kT
vT − vN

)2

+
k′

N

kN
v2

N

)

r

√

(

1 − k′

N

kN

)(

kN

kT
vT − vN

)2

+
k′

N

kN
v2

N











. (2.32)

Then, given initial velocities vT,0 and vN,0, the particular impact mapping in question is obtained from the following
steps:

1. Follow the decision tree in Fig. 4 to arrive at region index between 1 and 10.

2. Locate the corresponding row in Table 1 and apply the corresponding map with the indicated values for kT ,
kN , k′

T , and k′
N .
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12

34 56 78 910

vT;0 > 0

k¡

NvT;0 ¡ (1 + r) k¡

T vN;0 > 0 k+

NvT;0 ¡ (1 + r) k+

T vN;0 > 0

k¡

NvT;0 ¡ k¡

T vN;0 > 0 k+

NvT;0 ¡ k+

T vN;0 > 0

k+

T > 0k+

T > 0 k¡

T > 0k¡

T > 0

Figure 4: Decision tree for determining the impact mapping for a given configuration and velocity state at the
onset of contact. To interpret this diagram, start at the parent node and follow the branch to the right when the
condition is fulfilled and the branch to the left when it is not. The leaf node region indices determine which impact
mapping to apply according to the corresponding row of Table 1.

Region kT kN k
′

T k′
N Impact mapping

1 k+

T k+

N ∗ ∗ gI

2 k−
T k−

N ∗ ∗ gI

3 k+

T k+

N k0
T k0

N gII

4 k−
T k−

N k0
T k0

N gII

5 k+

T k+

N k0
T k0

N gIII

6 k−
T k−

N k0
T k0

N gIII

7 k+

T k+

N k−
T k−

N gII

8 k−
T k−

N k+

T k+

N gII

9 k+

T k+

N k−
T k−

N gIII

10 k−
T k−

N k+

T k+

N gIII

Table 1: Values of the rate constants and the impact map type for the 10 different regions.
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It is straightforward to show that the impact law is C0 across the boundaries defined by the decision tree in
Fig. 4 (see also the graphical depiction in Fig. 5). Indeed, the main thrust of [15] was to determine the discontinuity-
induced bifurcations that occur due to the degree of non-smoothness of the impact law across these boundaries.

The combination of Signorini-Coulomb contact model and the above energetic impact model will be referred to
below as the Signorini-Coulomb-Stronge model.

3 Consistency of sustained motion

An instantaneous transition between two distinct conditions of sustained motion that does not correspond to the
violation of an associated condition of existence will be referred to in this section as a spontaneous transition.
The possibility of such a transition introduces an ambiguity in the forward simulation of the rigid contact model
that cannot be resolved within the existing formulation. Such ambiguities must, therefore, be eliminated either by
axiomatic dicta or by making reference to experimental observations or non-rigid contact models.

There is no ambiguity associated with a condition of sustained free-flight. As seen in Sec. 2.4 ambiguities are
present, however, in the Painlevé cases of b > 0, for which k+

N < 0 or k−
N < 0. To seek a resolution to these, we

first return to the non-Painlevé case of sustained stick in the rigid-contact limit.

3.1 A Filippov system

Suppose that the contact point with vT = 0 lies within the friction cone and b < 0 < k±
N . In this case, the values

of λT and λN in sustained stick can be obtained by a convex combination of the corresponding values in sustained
positive and negative slip. Specifically, it follows directly from (2.22), (2.23), and (2.24) that

(

λ0
T , λ0

N

)

= α+
(

λ+

T , λ+

N

)

+ α−
(

λ−
T , λ−

N

)

, (3.1)

where

α± = ∓ k±
N

2µbk0
N

(

ak∓
N − bk∓

T

)

. (3.2)

In particular,
α+ + α− = 1 (3.3)

and, provided that (2.25) holds,
α± > 0. (3.4)

Let a +,−, and 0 superscript denote quantities evaluated in sustained positive slip, sustained negative slip, and
sustained stick, respectively. It similarly follows that the vector field in sustained stick is a convex combination of
the vector fields in sustained positive and negative slip, respectively, i.e.,

v̇0
T = α+v̇+

T + α−v̇−T , (3.5)

v̇0
N = α+v̇+

N + α−v̇−N . (3.6)

Since

v̇+

T = a + λ+

T + Bλ+

N =
1

k+

N

(

ak+

N − bk+

T

)

< 0, (3.7)

v̇−T = a + λ−
T + Bλ−

N =
1

k−
N

(

ak−
N − bk−

T

)

> 0, (3.8)

provided that k±
N > 0, it follows that in this case, sustained stick (with vT = 0) is motion on an attractive sliding

manifold in a Filippov system [6], see also [13, 2], as long as contact is kept. The rigid-contact model thus excludes
the possibility of spontaneous transitions from sustained stick to sustained slip as long as the contact point lies
within the friction cone and b < 0 < k±

N .
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1
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1

3
5

6

12

34
56

(a)

(b) (c)

(d) (e)

k¡

N < 0

k¡

T < 0 k+

T > 0

vT

vN

vT

vN

vT

vN

vT

vN

vT

vN

k+

T < 0

k+

N > 0

k¡

T > 0

k¡

N > 0

k+

N < 0

Figure 5: The distinct regions in the (vT , vN )-plane for each of the five possible sign combinations for k±
N and k±

T .
Dashed lines represent the boundaries between the ten regions of initial conditions. Thick solid lines represent the
impulsive motion of individual trajectories during the impact mapping process, see [15] for more details.
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3.2 Consistency of stick in general

The argument in the previous section fails in the case that either k−
N < 0 or k+

N < 0. In this case, the vT = 0 surface
can no longer be described as a sliding manifold in the Filippov sense, since either α+ or α− will be negative. Nor
will the surface vT = 0 be attractive because one of v̇+

T or v̇−T will have changed sign. The consistency of stick in
the this case must therefore be treated by means other than those available within the rigid contact formulation.

To this end, consider a compliant contact model, permissive of small violations of the impenetrability condition
y = 0 but respectful of the Coulomb frictional constraints, for which λN (y, vN ) models a continuous restoring force
and λT ∈ −µλNSign (vT ). Suppose that (2.25) holds. For δλN ≪ 1, it follows that a state of sustained stick with
λN = λ0

N + δλN is robust to perturbations in the direction of positive or negative slip, respectively. Indeed, in the
event of a slight perturbation in the direction of positive slip, λT = −µλ0

N + O (δλN ) and

v̇T =
1

k0
N

(

ak+

N − bk+

T

)

+ O (δλN ) < 0. (3.9)

Similarly, in the event of a slight perturbation in the direction of negative slip, λT = µλ0
N + O (δλN ) and

v̇T =
1

k0
N

(

ak−
N − bk−

T

)

+ O (δλN ) > 0. (3.10)

Finally,
λ0

T = β+
(

−µλ0
N + O (δλN )

)

+ β−
(

µλ0
N + O (δλN )

)

, (3.11)

where

β± = ± ak∓
N − bk∓

T

2µ (aB − b)
+ O (δλN ) , (3.12)

β+ + β− = 1, and β± > 0. It follows that the surface vT = 0 is again an attracting sliding manifold of the
corresponding Filippov system.

It remains to show that flow along the sliding manifold is consistent with sustained δλN ≪ 1. Indeed, for
sustained stick, i.e., with v̇T = vT = 0, the equation of motion in the normal direction is given by

ÿ − k0
NλN (y, ẏ) = −k0

Nλ0
N , (3.13)

where the right-hand side is a function of the overall configuration of the mechanism. Now suppose that λN (y, vN)
increases rapidly with depth −y and is a dissipative function of the normal velocity ẏ = vN . Provided that changes
in λ0

N occur at a sufficiently slow timescale, it follows from k0
N > 0 that the dynamics in the normal direction

closely shadows the slow manifold given by λN (y, 0) = λ0
N , i.e., that a condition of sustained stick in the compliant

model with λN close to λ0
N is robust to small perturbations within the sliding manifold.

In the limit of the rigid contact model, these observations appear to justify the assertion that a condition of
sustained stick may terminate only if the contact point reaches the boundary of the friction cone. Together with
the result from the previous section, this eliminates the possibility of a spontaneous transition from sustained stick
to sustained slip when b < 0 or from sustained stick to either sustained slip or sustained free flight in the Painlevé
case with b > 0.

3.3 Consistency of slip

Without loss of generality, restrict attention to a case of positive slip in the compliant contact model, but with
λN = λ+

N + δλN for some δλN ≪ 1. In this case, the equation of motion in the normal direction is given by

ÿ − k+

NλN (y, ẏ) = −k+

Nλ+

N , (3.14)

where the right-hand side is a function of the overall configuration of the mechanism. In the non-Painlevé case
b < 0 < k+

N , the same argument as in the previous section implies the existence of an attractive slow manifold
given by λN (y, 0) = λ+

N and thus the robustness of positive slip against small perturbations.
In contrast, in the Painlevé case when k+

N < 0 < b, the slow manifold is unstable to perturbations. In particular
the assumption on the rapid increase of λ with depth means that a small increase in y causes a large decrease
in λN , which causes an exponential growth in y with rapid time constant. As y becomes positive, lift off would
occur since b > 0. In contrast, if a perturbation in the negative y direction is added, then y decreases rapidly
exponentially and an impact must occur. In the limit of the rigid contact model, the effective stiffness of the
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compliant model grows without bound, and so the time constant associated with this exponential growth tends
to infinity. These arguments imply that sustained positive slip in the Painlevé case is thus infinitely unstable and
cannot be sustained.

In the limit of the rigid contact model, these observations appear to justify the assertion that a condition
of sustained positive slip is only compatible with b < 0 < k+

N and may, in this case, terminate only when its
conditions of existence fail. The possibility of a spontaneous transition from sustained slip to sustained free flight
in the Painlevé case with b > 0 is eliminated since such a state of sustained slip could not be reached by the forward
time evolution of the mechanical system.

4 Chatter

A moment in time t∗, for which y = vN = 0 and b < 0 may conceivably serve as an accumulation point for an
infinite sequence of impacts that either precede (a right-accumulation point) or succeed (a left-accumulation point)
t∗. Right-accumulation points of impact in systems without friction have been referred to as points of chatter in
the literature, and have received extensive treatment in the case of single degree-of-freedom impact oscillators, see
e.g. [5, 16] and references therein. The possibility of a left-accumulation point of impacts, referred to henceforth
as a point of reverse chatter, introduces a paradoxical ambiguity, as such a point would be associated with a loss
of forwards-in-time uniqueness of trajectories. In this case, it would not be possible within the Signorini-Coulomb-
Stronge model to exclude a spontaneous transition from an initial condition with y = vN = 0 and b < 0 to free
flight through an infinite sequence of impacts with exponentially increasing impact velocities.

Consider as a reference the simple dynamical system given by

ẏ = v and v̇ = −1 (4.1)

and such that g : v 7→ −ev is applied whenever y = 0 and v < 0. Suppose that e < 1. Then, given initial conditions

y0 =
α (1 − α) (1 − e)2 T 2

2e
, v0 =

(eα + α − 1) (1 − e)T

2e
, for α ∈ [0, 1] (4.2)

at some time t0, there follows an initial free-flight phase of duration

v0 +
√

v2
0 + 2y0 = (1 − e)αT (4.3)

and a subsequent chatter phase of infinitely many impacts of total duration

2e

1 − e

√

v2
0 + 2y0 = T − (1 − e)αT. (4.4)

A right-accumulation point of impacts thus occurs at t∗ = t0 + T . Here, the phase α parametrises a family of
trajectories that reach y = v = 0 at t∗. Indeed, as y0 (α = 0) = y0 (α = 1) = 0 and v0 (α = 1) = −ev0 (α = 0), it
follows that as α varies from 0 to 1, the chatter sequence is shifted forward until the original trajectory is regained
with all impacts having been shifted one step. In the case that e > 1, the above analysis applies to the rescaled
system obtained from the time-reflection y 7→ y, v 7→ −v, t 7→ −t, for which g : v 7→ −e−1v. The existence of
reverse chatter starting from a particular time instant t∗ is then associated, not with a single forward trajectory,
but with a one-parameter family of trajectories that connect to this point. Thus, even if one can determine with
certainty that reverse chatter will occur, there remains a one-parameter uncertainty in the subsequent motion.

The reference dynamical system corresponds to a unit mass falling in a unit gravitational field, such that
collisions with a horizontal surface are modelled by a kinematic coefficient of restitution. In this interpretation,
only the case that e < 1 is physically relevant, since e > 1 corresponds to a non-physical increase in kinetic energy
at each collision. For reverse chatter to be physically realisable, therefore, a necessary condition is the inclusion
of an additional degree of freedom, such that a net increase in normal kinetic energy may be accompanied by a
decrease in tangential kinetic energy, which could then be replenished due to the imposed tangential acceleration
during the free-flight phase.

To investigate the existence of accumulation points in the Signorini-Coulomb-Stronge model, let vT,0 and
0 < −vN,0 ≪ 1 be given initial velocities at some time t0, such that y (t0) = 0 and b < 0. Denote by vT,1

and 0 < vN,1 ≪ 1 the tangential and normal velocities of the contact point subsequent to the application of the
corresponding impact mapping

g :

(

vT,0

vN,0

)

7→
(

vT,1

vN,1

)

, (4.5)
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where g takes one of the forms gI , gII of gIII given by (2.30)–(2.32) depending on the parameter region 1–10
indicated in Table 1 and Fig. 4. The subsequent free-flight phase with initial height y = 0 then returns to y = 0
after a short time-of-flight given by

tf = −2vN,1

b
+ O

(

v2
N,1

)

(4.6)

with tangential and normal velocities of the contact point equal to

vT,2 = vT,1 −
2a

b
vN,1 + O

(

v2
N,1

)

and vN,2 = −vN,1 + O
(

v2
N,1

)

(4.7)

collectively described by the free-flight map

h :

(

vT,1

vN,1

)

7→
(

vT,2

vN,2

)

. (4.8)

In the discussion below, we analyse the dynamics of the map

f := h ◦ g, (4.9)

with emphasis on the ratio

e :=
vN,2

vN,0

. (4.10)

In particular, if there exists an asymptotic ratio e 6= 1 between successive pre-impact values of the normal velocity
in the vicinity of a point in state space at a given time t∗, this time may be a right-accumulation point of impacts
if e < 1 and a left-accumulation point of impacts if e > 1.

4.1 Chatter in slip

Consider Fig. 5. In the limit as vN,0 → 0, vT,0 6= 0 is compatible with initial conditions in regions 1 and 2 for any
values of the rate constants; in region 5 provided that k+

N < 0 (panel (b) in Fig. 5); and in region 6 provided that
k−

N < 0 (panel (c) in Fig. 5). We exclude from consideration the latter two cases, since there vN,1 = O (vT,0) is not
small. In contrast, in regions 1 and 2,

vT,2 = vT,0 + O (vN,0) and vN,2 = rvN,0 + O
(

v2
N,0

)

, (4.11)

i.e., e = r ≤ 1. If r < 1, it follows that there exists a time t∗ ≈ t0 that is a right-accumulation point of impacts
such that, in the limit, vT ≈ vT,0. Reverse chatter is not possible in this case.

4.2 Chatter near stick

Suppose, instead, that vT,0 = −ρ0vN,0 for some constant ρ0 and consider again the limit as vN,0 → 0. For initial
conditions in regions 1 or 2, (4.5) and (4.8) give

e2 = r2 + O (vN,0) . (4.12)

Similarly, for initial conditions in regions 3, 4, 7, or 8, it holds that

e2 =
k′

N

kN

r2 +

(

1 − k′
N

kN

)(

1 +
kN

kT

ρ0

)2

+ O (vN,0) . (4.13)

Finally, for initial conditions in regions 5, 6, 9, or 10, we obtain

e2 = r2

(

k′
N

kN

+

(

1 − k′
N

kN

)(

1 +
kN

kT

ρ0

)2
)

+ O (vN,0) . (4.14)

In particular, the latter case implies that limvN,0→0 e2 = r2 at ρ0 = 0. Clearly, limvN,0→0 e2 = r2 in regions 1 and
2 showing again that reverse chatter is not possible in these cases. Similarly, reverse chatter is not possible for
B = 0, since in this case limvN,0→0 e2 = r2 everywhere.

For definiteness, suppose that B > 0, thus restricting attention to panels (a), (b), and (e) in Fig. 5. From (2.17)
it follows that

k−
T > 0, k−

N > 0, k−
N > k0

N , k−
N > k+

N (4.15)

and, moreover,
k+

T < 0 ⇔ k+

N < k0
N . (4.16)

In this case,
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1. e < r in regions 4 and 6 (panels (a) and (b) in Fig. 5) and in regions 8 and 10 (panel (c) in Fig. 5), since in
each of these regions e2 is a convex quadratic function of ρ0.

2. r < e < r
√

k0
N/k+

N in regions 3 and 5 with k+

T < 0 < k+

N (panel (a) in Fig. 5), since in each of these regions

e2 is a concave quadratic function of ρ0 and the maximum value is attained at the boundary between these
regions, where ρ0 = −k+

T /k+

N .

3. e > r and e is an increasing function of ρ0 in region 5 with k+

T , k+

N < 0 (panel (b) in Fig. 5), since in this
region e2 is a convex quadratic function of ρ0 and

lim
vN,0→0,ρ0↓0

de2

dρ0

= 2r2 k+

N − k0
N

k+

T

> 0. (4.17)

This conclusion also applies to the case where k+

T < 0 and k+

N = 0.

Note that
B > 0, r2 > k+

N/k0
N ⇒ k+

T < 0. (4.18)

For B > 0, it follows that e > 1 if and only if r2 > k+

N/k0
N ,

− k+

T (1 − r2)

r2(k0
N − k+

N )

[

1 +

√

r2k0
N − k+

N

r2(k0
N − k+

N )

]−1

< ρ0 (4.19)

(this boundary is in region 5) and, if k+

N > 0,

ρ0 < − k+

T

k+

N

(

1 +

√

r2k0
N − k+

N

k0
N − k+

N

)

(4.20)

(this boundary is in region 3). In the special case that r = 1, the latter two conditions are equivalent to 0 < ρ0

and, if k+

N > 0, ρ0 < −2k+

T /k+

N . Figure 6 shows the graphs of e as a function of ρ0 for panels (a), (b), and (e) of
Fig. 5, respectively, and for discrete values of the energetic coefficient of restitution r.

To arrive at necessary and sufficient conditions for the existence of reverse chatter, let

ρ2 := − vT,2

vN,2

(4.21)

and consider the map ρ0 7→ ρ2 (ρ0). From (4.5) and (4.8), it follows that limvN,0→0 ρ2 = −2a/b independently of ρ0

in regions 3 and 5. In the limit as vN,0 → 0, the ρ0 set defined by (4.19–4.20) is thus positively invariant provided
that it contains ρ0 = −2a/b. In this case, any initial condition in this set is mapped to ρ0 = −2a/b and remains
there for all subsequent iterates. It follows that, for B > 0, reverse chatter is possible if and only if b < 0,

− k+

T (1 − r2)

2r2(k0
N − k+

N )

[

1 +

√

r2k0
N − k+

N

r2(k0
N − k+

N )

]−1

<
a

−b
, (4.22)

ak+

N − bk+

T

2

(

1 +

√

r2k0
N − k+

N

k0
N − k+

N

)

< 0, (4.23)

and r2 > k+

N/k0
N , where the latter two inequalities are trivially satisfied when k+

N ≤ 0. In the special case that
r = 1, these conditions are equivalent to b < 0, k+

T < 0, and ak+

N − bk+

T < 0 < a. As an example, for each value of
r, the region to the right of the corresponding curve in Fig. 7(a) corresponds to values of a/(−b) and µ that allow
for reverse chatter in the case when B = 0.5. Similarly, the region above the corresponding curve in Fig. 7(b) for
r > 0 corresponds to values of θ and the unscaled coefficient of friction µ in the case of the model example that
allow for reverse chatter for suitably chosen values of a.

A similar analysis applied to the case B < 0 finally yields the following summary of necessary and sufficient
conditions for the possibility of reverse chatter in the rigid contact model, namely:

a. B > 0, r2 > k+

N/k0
N , and a and b values within the subset of

b < 0 and ak+

N − bk+

T < 0 < a, (4.24)

given by (4.22) and (4.23);
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Figure 6: Graphs of e as a function of ρ0 = −vT,0/vN,0 for panels (a), (b), and (e) of Fig. 5, respectively, and
for discrete values of the energetic coefficient of restitution r. (a) µ = 1, B = 1/2; (b) µ = 3, B = 1/2; and (c)
µ = 1/3, B = 1/2. Each panel includes the corresponding region labels.
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r = 1

r = 0
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Figure 7: (a) The region in a/(−b) and µ (for fixed B = 0.5 and varying r) for possible reverse chatter (region lies
to the right of the curve). The upper limit on a vanishes to infinity as µ approaches 1/B = 2 from below. (b) The
region in θ and unscaled µ for varying r, for which there exists values of a that allow for reverse chatter (region
lies above the curve) in the model example (2.8)–(2.11). In both cases, the shaded region corresponds to the case
when r = 0.7.

b. B < 0, r2 > k−
N/k0

N , and a and b values within the subset of

b < 0 and a < 0 < ak−
N − bk−

T , (4.25)

given by (4.22) and (4.23) with a, k+

N , and k+

T replaced by −a, k−
N , and −k−

T respectively.

4.3 Triggering reverse chatter

We have argued in Sec. 3 that spontaneous transitions from non-Painlevé slip are ruled out, as is the possibility
of Painlevé slip. Likewise, no spontaneous transitions from stick should occur. The onset of reverse chatter may
also be ruled out at the end of a free-flight phase, since then b < 0 ⇒ vN < 0, and at a right-accumulation point
of impacts, since there e < 1. This leaves the possibility of reverse chatter when reaching the border of one of the
sustained contact phases, which we shall refer to as being a triggered transition.

Since the conditions we have found for possible reverse chatter form a subset of the conditions for sustained
stick (2.25) with b < 0 (see also Fig. 3), it follows that e ≤ 1 at the boundary of sustained stick. This leaves
the possibility of triggering reverse chatter when reaching an interior point of the friction cone from a condition
of sustained slip. In particular, because of (2.25) the value of |vT | in slip is diminishing, so if the conditions for
possible reverse chatter are fulfilled and the system is in sustained slip with a small slipping velocity, slipping must
end shortly. When slipping ends there is the possibility of either going into sustained stick, or going into reverse
chatter.

We will now investigate what becomes of these ambiguities when the Signorini-Coulomb-Stronge model is
replaced by a compliant contact model.

5 Reverse chatter in a compliant model

In this section we investigate whether the phenomenon of reverse chatter found in the rigid-contact model is
compatible with a chatter-like behaviour found for any member of a large class of compliant contact models in
the limit that the effective stiffness grows without bound. The bulk of the analysis considers the possibility of
triggering reverse chatter in a compliant model, in which dissipation is absent in the normal force (corresponding
to the case r = 1 in the rigid limit). A few remarks concerning the dissipative case r < 1 are made at the end of
the section.
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5.1 A preliminary rescaling

Consider again a compliant contact model, permissive of small violations of the impenetrability condition y = 0
but respectful of the Coulomb frictional constraints, for which λN (y) models a continuous (and stiff) restoring
force and λT ∈ −µλNSign (vT ). Specifically, suppose that

λN (y) = −h
(

y/ε2
)

, (5.1)

where h is a fixed continuous function, such that

h (η) = 0 if η ≥ 0, h′ (η) > 0 if η < 0, and h (η) → −∞ when η → −∞. (5.2)

The effective stiffness is here controlled by the parameter ε, and the rigid limit is obtained as ε → 0. Since the
contact force λN is conservative in this model, it can only be used to describe non-dissipative impacts (r = 1) in
the rigid limit.

Suppose that b < 0 (which we have already seen is a necessary condition for any kind of chatter) and denote
by d a representative value of h′ (η). Consider the following additional rescaling to (2.14-2.15):

ỹ = −Cd

bε2
y, ṽN = −

√
Cd

bε
vN , ṽT = −

√
Cd

bε
vT , t̃ =

√
Cd

ε
t, (5.3)

and

h̃ (ỹ) = −C

b
h

(

− b

Cd
ỹ

)

. (5.4)

Provided that all rescaled variables remain O (1) over phases of motion of O (1) duration in the rescaled time
variable, it follows that a, b, B and C change by O (ε) from their initial values and may be considered constant in
a leading-order analysis.

Dropping tildes, it follows that ẏ = vN . From (2.16) we find to lowest order in ε that

v̇T = −a

b
and v̇N = −1 (5.5)

in free flight;

v̇T = −a

b
− k+

T h (y) and v̇N = −1 − k+

N h (y) ; (5.6)

in positive slip;

v̇T = −a

b
− k−

T h (y) and v̇N = −1 − k−
N h (y) ; (5.7)

in negative slip; and

v̇T = 0 and v̇N = −
(

1 − a

b
B
)

− k0
N h (y) , (5.8)

in stick, where sustained stick requires that

−a

b
− k+

T h (y) < 0 < −a

b
− k−

T h (y) . (5.9)

(recall the expressions for the rate constants k±
T,N and k0

T,N in (2.17)). From (5.2) it follows that the free-flight
equations with y > 0 are a special case of (5.6). In all cases, the (y, vN )-dynamics are independent of vT and
possess a first integral

E (y, vN ) :=
v2

N

2
+ V (y) . (5.10)

where the potential function V is defined below for the separate cases of positive slip and stick.

5.2 Necessary conditions

We begin by showing that a chatter-like behaviour is possible in the compliant model near the parameter region
identified in Sec. 4. Without loss of generality, restrict attention to the case when B > 0 from which it follows that
k−

T , k−
N > 0. Necessary conditions for reverse chatter in the Signorini-Coulomb-Stronge model are then

b < 0, k+

T < 0, ak+

N − bk+

T < 0 < a. (5.11)
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Assuming the inequalities (5.11) hold, let us consider what kinds of triggered transitions can occur in the compliant
model. Since −(a/b) − k−

T h (y) > −(a/b) > 0, the system will leave negative slip in finite time, and no transition
into negative slip is possible. Let y∗ < 0 be uniquely defined by

h (y∗) = − a

bk+

T

, (5.12)

such that the condition for sustained stick (17) reads

y < y∗. (5.13)

A transition from stick to positive slip occurs at points where vN > 0, vT = 0, and y = y∗. A transition from
positive or negative slip to stick occurs at points where y < y∗, vT = 0, and a transition from negative to positive
slip occurs at points where y > y∗, vT = 0.

Let

H(y) =

∫ y

y∗

h(η)dη. (5.14)

The potential function V (y) may then be chosen as

V+ (y) := y − y∗ + k+

N H(y) (5.15)

in positive slip and as

V0 (y) :=
(

1 − a

b
B
)

(y − y∗) + k0
N H(y). (5.16)

in stick. These choices ensure that V+ (y∗) = V0 (y∗) = 0, from which it follows that the two corresponding first
integrals E+ and E0 given by (5.10) are equal at a transition point between stick and positive slip.

With reference to Fig. 8, consider an initial condition p0 : (y∗, vN,0) with vN,0 > 0, so that E0 (p0) = E+ (p0) =
v2

N,0/2. Starting from p0, we shall monitor the value of the difference between the stick and slip potentials,

P (y) := V0 (y) − V+ (y) . (5.17)

Note in particular that
P (y∗) = P ′ (y∗) = 0, P ′′ (y) = −B k+

T h′ (y) ≥ 0, (5.18)

and P ′′ (y∗) > 0, since y∗ < 0. It follows that

P (y) > 0 if y 6= y∗. (5.19)

Under forward evolution through p0 there occurs a transition from stick to positive slip, so that we must now
solve (5.6) with the additional initial condition vT = 0. Since V ′

+ (y) = 1 for y ≥ 0, it is clear that the orbit
starting at p0 will first reach vN = 0 at a point ym (possibly > 0) that is a local maximum in y and for which
V+(ym) = v2

N,0/2. From this point, the trajectory in the (y, vN )-plane continues symmetrically with respect to the
y-axis through the point y = y∗, vN = −vN,0. Up to this time vT has been increasing from 0, but from now on it
will decrease.

Now, from the final inequality in (5.11) it follows that the quantity

−k+

T v̇N + k+

N v̇T =
ak+

N − bk+

T

−b
(5.20)

is negative in positive slip, i.e., that −k+

T vN +k+

NvT decreases linearly in time. Since −k+

T vN + k+

NvT

∣

∣

p0

= −k+

T vN,0,

it follows that for k+

N > 0 the positive slip orbit cannot reach y = y∗ (where vN = vN,0) again before vT reaches
0. Thus vT must reach zero and a transition to stick must occur at some point p1 : (y1, vN,1) for which y1 < y∗.
The same conclusion follows in the case that k+

N ≤ 0, since this implies that v̇N ≤ −1 and consequently that y
continues to decrease below y∗ at a rate ≤ −vN,0.

Now, since p1 lies on the positive slip orbit through the starting point,

v2
N,1

2
+ V+(y1) = E+ (p1) = E+ (p0) =

v2
N,0

2
. (5.21)
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Figure 8: (a) Time histories for y, vN , and vT and (b) the corresponding path in the (y, vN ) plane along the
trajectory based at p0 and terminating at p2 as described in the text. In both cases, h (y) = y for y < 0, a = 1,
b = −1, B = 0.5, µ = 1.5 and vN,0 = 2.
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Moreover,

E0 (p1) =
v2

N,1

2
+ V0(y1) ⇒ E0 (p1) − E+ (p1) = P (y1) > 0 (5.22)

and thus

E0 (p1) > E+ (p1) =
v2

N,0

2
. (5.23)

Consider now the evolution of the orbit in stick starting from p1. V0(y) is a convex function with a unique
minimum at y = y0, where y0 < 0 is uniquely defined by

h (y0) =
aB − b

bk0
N

. (5.24)

It follows that all stick orbits lie on closed integral curves in the (y, vN )-plane that surround the point (y0, 0)
(corresponding to the leading-order equilibrium state of the (y, vN )-dynamics in stick). Hence the trajectory must
again reach the line y = y∗ at a point p2 : (y∗, vN,2) where a further transition to positive slip occurs. From (5.23)
it follows that

v2
N,2

2
= E0 (p2) = E0 (p1) >

v2
N,0

2
, which implies that vN,2 > vN,0. (5.25)

Iterating this argument, we find there is an infinite sequence of points p2n : (y∗, vN,2n), n = 0, 1, . . ., at which
transitions take place between stick and positive slip. Moreover, the vN,2n-values constitute an increasing sequence.
We further see that this sequence cannot be bounded, since that would mean that the (y, vN)-orbit would have
stick parts over intervals of time that decreased to zero. That is, the orbit would converge to a periodic, all slip
orbit. But, since −k+

T vN + k+

NvT decreases linearly in time in slip, such a periodic orbit cannot exist.
To conclude, if a > 0, B > 0, k+

T < 0, and ak+

N − bk+

T < 0 and to leading order in ε, any transition from stick to
positive slip will lead to an infinite alternation of periods of stick and positive slip (including free flight), with an
amplitude that grows without bounds. This corresponds to a left-accumulation point of impacts in the rigid limit
as ε → 0.

From the assumptions on h it follows that, if ε is small enough, as vN,2n grows, we will pass through a region
where the portion of time spent in contact (y < 0) is small, while the unscaled velocities also remain small. This
is thus a region where the theory of Sec. 4 applies, and the quotient between successive vN,2n-values becomes
close to a fixed value e > 1. Given two such consecutive vN,2n values, say vN,2k and vN,2k+1, the forward motion
in the unscaled variables for a given ε = ε∗ and based at the first of these transitions is essentially identical to
that obtained for ε = ε∗/e and based at the second of these transitions. Thus we argue that we can converge
on a particular forward motion by taking a sequence of ε values with quotient converging to 1/e. By starting
with different ε values, we typically converge on different forward motions. This again supports the one-parameter
ambiguity in forward motion associated with reverse chattering.

5.3 Transitions from slip

As argued in Sec. 4.3, if the conditions for possible reverse chatter are fulfilled and the system is in a phase of
sustained slip with a small slipping velocity, then when slipping ends there is the possibility of either going into
sustained stick, or going into reverse chatter.

Specifically, suppose that we reach the end of positive slip at a moment where a > 0, b < 0, B > 0, k+

T < 0,
and ak+

N − bk+

T < 0. We note that this can only happen when k+

N > 0, since otherwise positive slip cannot
occur. Clearly ak−

N − bk−
T > 0, so a transition to stick is possible. On the other hand, the conditions for a

left-accumulation point of impacts are also fulfilled. Thus, either alternative represents a possible forward motion
within the Signorini-Coulomb-Stronge model with r = 1. For the compliant model, however, we will get a definite
answer.

To this end, suppose that the transition from positive slip to stick occurs at the point p+ : (y+, 0) (corresponding
to the leading-order equilibrium state of the (y, vN )-dynamics in positive slip), where y+ < 0 is uniquely defined
by

h (y+) = − 1

k+

N

. (5.26)

Here,

h (y0) − h (y+) = B
ak+

N − bk+

T

bk0
Nk+

N

> 0 and h (y∗) − h (y0) = −ak+

N − bk+

T

bk+

T k0
N

> 0, (5.27)
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imply that y+ < y0 < y∗. If the stick orbit starting at p+ intersects the line y = y∗ transversally, a transition
back to positive slip occurs. Then, as shown above, to leading order in ε, this must lead to chatter-like behaviour.
If, on the other hand, the stick orbit does not intersect the y = y∗ transition line transversally, the system stays
in stick, oscillating around the stick equilibrium point with constant amplitude. Since V0 (y∗) = 0, it follows that
V0(y+) > 0 corresponds to the case of chatter-like behaviour, whereas V0(y+) ≤ 0 corresponds to the case in which
stick persists. These two cases are illustrated in Fig. 9(a) and (b), respectively. For example, if h(y) = y for y < 0,
we find that

V0(y+) = −
(

2k+

N − k0
N

) (

ak+

N − bk+

T

)2

2b2(k+

N )2(k+

T )2
. (5.28)

In this case, and in the limit as ε → 0, reverse chatter thus occurs provided that

k+

N/k0
N < 1/2. (5.29)

Condition (5.29) is thus satisfied by values of µ, for which reverse chatter occurs in the rigid-body model (recall
the condition r2 > k+

N/k0
N ) with r = 1/

√
2 ≈ 0.7 (corresponding to the shaded regions in Fig. 7). On the other

hand, k+

N > 0 is satisfied by values of µ, for which reverse chatter occurs in the rigid-body model with r > 0 but
not r = 0.
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(y¡; 0)
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stick
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Figure 9: Illustrating the conditions on the relative positions of y0, y± and y∗ for deciding whether reverse chatter
or stick occurs. See text for details.

Suppose instead that we reach the end of negative slip (where there is no sign restriction on k+

N ) under the same
conditions and at a point p− : (y−, 0) (corresponding to the leading-order equilibrium state of the (y, vN)-dynamics
in negative slip), where y− < 0 is uniquely defined by

h (y−) = − 1

k−
N

. (5.30)
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Here,

h (y−) − h (y0) = −B
ak−

N − bk−
T

bk−
Nk0

N

> 0 (5.31)

implies that y0 < y−. If y− < y∗ there will be a transition from negative slip to stick, and the stick orbit will be
a closed orbit with y ≤ y− < y∗. In this case, there will never be a transition to positive slip, and the system
will keep oscillating around the stick equilibrium point with constant amplitude. If y− > y∗ there will first be a
transition from negative slip to positive slip. For the same reasons as outlined above, this positive slip orbit must
eventually lead to a transition to stick, and then to a transition to positive slip again, again resulting in chatter-like
behaviour. Since

h (y−) − h (y∗) =
ak−

N − bk+

T

bk−
Nk+

T

(5.32)

independently of the form of the function h, it follows that, in the limit as ε → 0, reverse chatter occurs provided
that

ak−
N − bk+

T > 0, (5.33)

and that the system continues in stick if this condition is violated. These two distinct cases are illustrated in
Fig. 9(c) and (d), respectively. It is straightforward to show that condition (5.33) only restricts the allowable
values of a but imposes no further constraint on µ.

To summarise, we have found that for a conservative normal force corresponding to r = 1, reverse chatter is
compatible with a limiting behaviour of the compliant model as ε → 0 triggered at the conclusion of slip under
conditions that are a subset of the conditions found for the Signorini-Coulomb-Stronge model in Sec. 4. Specifically,
the extra condition is (for a piecewise linear normal force) (5.29) when coming form positive slip, which also requires
k+

N > 0. Coming from negative slip, the extra condition is (5.33). As an example, the shaded regions in Fig. 10
correspond to values of a/(−b) and µ that allow for reverse chatter in the case when B = 0.5 (cf. the r = 1 curve
of Fig. 7 shown in light grey in Fig. 10).

¹

a

¡b

(a) (b)

¹

a

¡b

ak¡

N ¡ bk+

T = 0

Figure 10: The region (shaded) for triggering reverse chatter when coming from (a) positive slip (h taken as
piecewise linear) and (b) negative slip. In both cases, for B = 0.5.

5.4 The inclusion of damping

The case when r < 1 in the Stronge impact law corresponds to the presence of dissipation in the normal interactions.
In order to achieve the impact mapping expressions of Sec. 2.5 by taking the limit ε → 0 in a compliant model,
some form of damping must thus be introduced into the expression for the normal force. Typically such damping
enters in the form of a dependence of λN on the normal velocity vN and turns the first integrals of the previous
sections into decaying functions of time. Thus, in the cases where we have found that the undamped compliant
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system stays in the stick phase with constant amplitude after the end of slip, we would expect the inclusion of
damping to result in a convergent motion to the quasi-static stick equilibrium point at (y0, 0).

For the cases where the undamped compliant system analysis predicts a chatter-like behaviour with increasing
amplitude, things are not as clear. To yield r < 1 in the limit as ε → 0, the damping must be fully active at
the small (but finite) velocity scale considered in Sec. 4, but may not be so at the even smaller ε velocity scale
considered in the present section. Arguing by continuity, if the overall damping is small, corresponding to an
r-value close to unity in the rigid limit, and if e > 1 in the rigid model, we would expect the compliant system
with damping to also show reverse chatter in the limit as ε → 0.

In contrast, consider a rigid model with 0 < r < 1 in a case for which the analysis in Sec. 4 predicts e < 1,
but which would have e > 1 if r = 1 and all other parameters and initial conditions were held the same. Now, it
is perfectly consistent to produce a compliant model that approaches this case in the limit ε → 0 but for which
the damping is sufficiently small at the ε velocity scale, so that the results in the present section derived with a
conservative normal force still apply. This would give an initial growth in velocity through a rapid sequence of
passages between stick and slip in contact. On the other hand, at the intermediate scale where we may consider
the impacts to be hard and the damping sufficient to give the rigid value of r < 1, we would find the decay of
impact velocities since e < 1 in the rigid theory. The system must then settle on a periodic motion while still at
the ε scale, and the full system would be in a slow creeping mode where there is a very rapid ε scale oscillation
between stick, slip, and free flight. The forward dynamics of a model with such a behaviour is clearly going to
depend sensitively on the way in which dissipation is introduced into the compliant model.

6 Numerical results

Let us now illustrate the preceding analysis through numerical simulation of the example system introduced in
Sec. 2.2 and given by

ẋ = vT , (6.1)

ẏ = vN , (6.2)

θ̇ = ω, (6.3)

ω̇ = 3R − 3 sin θλT − 3 cos θλN , (6.4)

v̇T = a + AλT + BλN , (6.5)

v̇N = b + BλT + CλN , (6.6)

where
a = Sx − 3R sin θ − ω2 cos θ and b = Sy − 3R cos θ + ω2 sin θ (6.7)

and where
A = 1 + 3 sin2 θ, B = 3 sin θ cos θ, C = 1 + 3 cos2 θ,

in the original unscaled variables. First, we shall verify numerically that reverse chatter can indeed occur in a stiff
but compliant approximation to the Signorini-Coulomb model in the absence of dissipation in the normal force
(i.e., corresponding to r = 1 in the rigid limit). Second, we will illustrate the inherent ambiguity that results when
using a compliant formulation in order to approximate solutions that can lead to reverse chatter with r < 1. We
shall see that one can get different outcomes depending on the ratio between the damping and stiffness length
scales as one passes to the rigid limit via both scales tending to zero.

6.1 Pure elastic normal force impacts

Let
λN = −y/ε2 for y ≤ 0 (6.8)

and suppose, as before, that λT ∈ −µλNSign (vT ). Restrict attention to the case when R = 0, Sy = −1 and Sx is
constant, which corresponds to a gravitational force acting on the rod, with the stationary half-plane being tilted
clockwise an angle arctanSx from the horizontal.

Using Filippov’s convex method to solve for λT when in contact, for ε > 0 we thus have a well defined hybrid
system of differential equations for (x(t), y(t), θ(t), vT (t), vN (t), ω(t)). According to standard results there is thus
a unique forward evolution from all bounded initial conditions. As ε → 0, however, the system will be highly
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numerically stiff. All computations reported below were carried out using the original unscaled variables and were
performed using Matlab’s stiff ODE solver ode15s. We choose initial conditions such that

vN (0) = ω(0) = 0, vT (0) = v0, θ(0) = θ0, and y(0) = y±, (6.9)

where y± are the unscaled quasi-static equilibrium values of penetration in positive and negative slip respectively
(cf. (5.26) and (5.30)). At such initial points,

A = 1 + 3 sin2 θ0, B = 3 sin θ0 cos θ0, C = 1 + 3 cos2 θ0, a = Sx, b = −1, (6.10)

and these values will change only by a small amount when the end of slip is reached, provided that v0 is small.
For a first example, consider the initial conditions and parameters for an orbit in positive slip:

θ0 = 1.18, µ = 0.9, Sx = 0.5, ε = 10−6, v0 = 0.1, and y(0) = y+. (6.11)

In this case, the conditions
k+

T < 0, B > 0, b < 0, ak+

N − bk+

T < 0 < a (6.12)

for possible reverse chatter are fulfilled at the starting point. Moreover, since k+

N > 0, positive slip is stable.
Finally, the unscaled version of (5.29), AC − 2µAB + B2 < 0, is satisfied, so the system satisfies the theoretical
requirements for reverse chatter when positive slip ends at vT = 0, rather than a continuation in stick. The forward
simulation of the system from this point up to t = 2 is illustrated in Fig. 11(a). From the figure we see that at
the conclusion of an initial phase of positive slip, the system breaks contact through a large number (60 within
the simulated timespan) of “impacts” (short distinct intervals of time for which y < 0). In agreement with the
theoretical treatment in Sec. 5.2, during each impact, the tangential velocity vT returns to 0.
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Figure 11: (a) Simulation of reverse chatter in the rod system (6.1-6.6) with a compliant, stiff normal force (6.8)
and parameter values and initial conditions given by (6.9), (6.11) which correspond to positive slip. (b) Similar
results but with v0 = −0.1, Sx = 1, and y = y−.

Next, consider the initial conditions and parameters for an orbit in negative slip:

θ0 = 1.18, µ = 0.9, Sx = 0.5, ε = 10−6, v0 = −0.1, and y(0) = y−. (6.13)

The conditions (6.12) for possible reverse chatter in the rigid-contact model are again fulfilled at the starting point.
However, since ak−

N − bk+

T < 0, the extra condition (5.33) from Sec. 5 for reverse chatter is not fulfilled. This
prediction is confirmed by simulations (not depicted), for which sustained stick results upon reaching the point
vT = 0. However, after increasing the horizontal force Sx to 1, we find that ak−

N − bk+

T > 0 and reverse chatter
now follows after the end of negative slip. A simulation confirming this outcome is shown in Fig. 11(b).

To illustrate the influence of variations of ε, we have simulated the system with the same fixed initial conditions
(6.11) as in Fig. 11(a) (except for the unscaled quasi-static value y+, which depends on ε) for a range of ε values
between 10−5.5 and 10−5. The results are shown in figure 12(a). Note that the terminal tangential velocity has an
almost periodic dependence on log10 (ε), suggesting that there is no unique value of vT (t = 2) in the limit ε → 0.
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Figure 12(b) similarly shows the terminal values of y and θ, which very nearly lie on a closed curve, parametrised
by the values of ε. We note that the number of impacts in the time interval [0, 2] increases by 6 as ε is decreased
from ≈ 10−5 to ≈ 10−5.5. From the spacing between impacts we obtain an estimate of 1.23 for e. This agrees
closely with the theoretical value of e = 1.24, computed using the theory in Sec. 4, and supports the reasoning at
the end of Sec. 5.2.
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Figure 12: The effect of variations in ε for the simulation in Fig. 11(a). (a) Tangential velocity at the end of the
simulation vT (t = 2) versus log10(ε). (b) θ (t = 2) versus y (t = 2).

Consider a third set of parameter and initial condition values for an orbit in negative slip given by

θ0 = 1.18, µ = 1.5, Sx = 2, ε = 10−6, v0 = −0.1, and y(0) = y−. (6.14)

The conditions (6.12) for possible reverse chatter in the rigid-contact model are again fulfilled at this starting point.
Also in this case, ak−

N − bk+

T > 0, and reverse chatter is thus expected for the compliant model at the conclusion
of the initial phase of negative slip. This is confirmed by the simulations in Fig. 13. Since here k+

N < 0, the impact
mapping in region 5 of Fig. 5(b) predicts an initial decrease in the normal velocity following the onset of impact
until the end of positive slip. This is confirmed by the simulation results which exhibit an undershoot in each
impact, as the normal velocity first decreases from its value at the beginning of each impact, until stick is reached.
Finally, we see from Fig. 13(b) that although the increase in normal impact velocity between impacts is eventually
substantial (e = 1.88), the initial rate is much smaller than this.

6.2 Incorporation of damping

There are many ways in which damping can be introduced into a compliant model for the normal force, to give
the same effect as the restitution parameter r for impact velocities that are not too small. Here we choose to take

λN = −g (vN/εN) y/ε2 for y ≤ 0, (6.15)

for some smooth function g(v) that asymptotes to a value that is r2 lower as v → +∞ than as v → −∞, thus
introducing a velocity-dependent stiffness. In particular, in the limit εN → 0, we find that the normal force work
done in restitution is −r2 times that in compression, which is precisely the definition of the energetic coefficient of
restitution used in [15] to derive the rigid impact laws given in Sec. 2.5. Specifically, in what follows we choose

g(v) =
(1 + r2) − (1 − r2) tanh(v)

2
, (6.16)

Now, there is a subtlety in the choice of the relative size of εN and ε as both tend to zero. Specifically, on the ε
scale, for normal velocities larger than a few multiples of εN , the hard impact model is accurate, but for velocities
much smaller that εN , the damping is small. To illustrate this subtlety, we will take again the initial and parameter
values (6.14) and illustrate the effects of introduction of damping. Specifically, let us take r = 0.8. From Sec. 4,
this gives a value e = 1.50, so that if the normal velocity can grow out of the ε scale, it will continue to grow. On

25



Figure 13: (a) Similar to Fig. 11(a) but for initial and parameter values given by (6.14). (b) The same results plot
as y versus vN (note the difference in scale from (a)).

the other hand, we saw from Fig. 13 that the initial rate of increase in vN was quite small, so a small amount of
damping at the ε scale can make the system go into stick instead. If we take εN = 10−4 ≫ ε = 10−6, the damping
at the ε scale is small, and just as before, the system goes into reverse chatter (not depicted). Changing to εN to
10−6, however, gives a substantial damping at the ε scale, and now the simulations in Fig. 14 show that the system
settles into stick instead. However, increasing the horizontal force Sx to 12 (in which case e becomes a massive
3.68), is found once again to cause the system to go into reverse chatter. But even in this case, the initial rate of
increase in the normal velocity is quite small, and much smaller than e.

Figure 14: (a) Similar to Fig. 13(b) for initial and parameter values given by (6.14) and r = 0.8 and a damped
compliant model with εN = ε. (b) Similar results when Sx = 12.

7 Conclusion

The main achievements of this paper have been to show, through taking the infinite stiffness limit of a compliant
formulation, that within a Signorini-Coulomb model of rigid contact in the presence of dry friction:

1. There is no ambiguity in the forward dynamics starting from the interior of any set of conditions that define
sustained motion (stick, slip or free flight). Consequently, no spontaneous transitions occur between such
motions.
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2. Under certain open conditions on initial conditions and parameters, there is an irresolvable ambiguity in the
forward dynamics from the terminal point of a condition of sustained slip. This is associated with a possible
triggered transition to free flight through reverse chatter — a divergent sequence of exponentially growing
impact velocities. The latter introduces an infinite multiplicity of possible forward trajectories associated
with a one-parameter indeterminacy.

In order to reach the latter conclusion, the Signorini-Coulomb model has been complemented by an energetically
consistent rigid-body impact law due to Stronge [1, 23, 15] relating incoming velocities to outgoing ones during
an instantaneous collisional event. Specifically, by considering the composition of a brief free-flight phase and an
instantaneous impact, the analysis has documented open sets of initial conditions and parameter values, for which
the contact-independent contributions to the tangential acceleration over-compensate for energy losses associated
with collisional dissipation. This has been shown to imply the existence of solutions based at initial conditions
of zero tangential and normal velocity, that undergo a transition to free flight through a divergent sequence of
exponentially growing impact velocities, even with a downwards contact-independent normal acceleration.

The Stronge impact law is derived by decomposing the impact phase into distinct trajectory segments of positive
slip, negative slip, and stick during which the relative normal velocity is either negative (compression) or positive
(restitution). Within this formulation, the impact phase terminates when the normal work in restitution equals
−r2 times the normal work in compression, where r is the energetic coefficient of restitution. An alternative
formulation, related to the kinetic (Poisson) impact law is to have the impact phase terminate when the normal
impulse in restitution equals r times the normal impulse during compression, see e.g [10, 18]. Although not
presented here, such a formulation can be shown to lead to identical conclusions on regions of initial conditions
and parameter values where reverse chatter can occur in the case when r = 1 and qualitatively similar conclusions
for r < 1.

The apparent ambiguity in the Signorini-Coulomb-Stronge model between sustained contact and reverse chatter,
and the one-parameter indeterminacy of the latter, disappear when the rigid contact model is replaced with a
compliant contact model. For such compliant models, specific initial conditions and parameter values give rise to
unique forward trajectories with no possibility of accumulation points of impacts. However, as shown through an
asymptotic analysis in the effective normal compliance, chatter-like behaviour again occurs for open sets of initial
conditions and parameter values (a subset of those found in the rigid contact model), whereas sustained contact
results for other open sets. In the zero-compliance, rigid limit the regions of existence of these distinctly different
dynamic behaviours are squeezed together, making it impossible to assert a unique future evolution for the rigid-
contact model. The apparent ambiguity in the Signorini-Coulomb-Stronge (or Poisson) model is therefore of an
essential, irresolvable kind, an existential threat to the analysis of mechanical contact using rigid contact models.

Recall that the Painlevé paradoxes associated with sustained contact occur in cases where b > 0 while, simul-
taneously, λN > 0. In contrast, the reverse chatter ambiguity considered here occurs in the case where b < 0 and
is therefore a fundamentally different phenomenon from the classical Painlevé paradox. Indeed, whereas the latter
has here been uniquely resolved through the consideration of a compliant contact model, the ambiguity associated
with reverse chatter is reproduced and reinforced by the study of the compliant model. Also, while the classical
Painlevé ambiguity is between two distinct, smooth forward time histories, the reverse chatter scenario includes
accumulation points of impacts, a highly non-smooth and degenerate alternative.

A further comparison is afforded by the requirement that, for the Painleveé paradoxes in the case that B > 0, it
must hold that k+

N < 0, which implies that µ > B−1 > 1 in terms of the rescaled variables. In the model example,

this implies a minimum value of the unscaled µ of 4/3 for θ = arccsc
(√

5/2
)

. In contrast, for reverse chatter
triggered at the conclusion of a phase of negative slip, it must hold that µ > B in terms of the rescaled variables.
In the model example, this implies a lower bound of 0 for the unscaled µ, where the infimum is approached as
θ → 0 or π/2. For reverse chatter triggered at the conclusion of a phase of positive slip in the case of a linear
compliance, it must hold that µ >

(

1 + B2
)

/2B in terms of the rescaled variables. In the model example, this
implies a lower bound of the unscaled µ of ≈ 0.828 for θ ≈ 1.183.

Finally, we note that reverse chatter initiated with a given k+

N > 0 can only occur for r in some subset of (0, 1],
for values of a/ (−b) in some finite range, and for values of e below some upper bound. In contrast, in the case that
k+

N < 0, there is no restriction on the value of r, only a lower bound on a/ (−b) , and the possibility of arbitrarily
large values of e by choosing a sufficiently large. It follows that, in the case of reverse chatter triggered at the
conclusion of a phase of negative slip, there is no upper bound on the rate of divergence of impact velocities.

It is interesting to consider the physical implications and viability of reverse chatter. A good mental picture is
to think of the model rod as a piece of chalk being either “pushed” or “dragged” across a chalkboard (recall that
the constant acceleration Sy points into the board). Specifically, if the angle θ is between 0 and π/2, then the case
when Sx < 0 corresponds to the chalk being dragged, and Sx > 0 to it being pushed. In the numerical simulations
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in Sec. 6 Sx > 0 so that the chalk is being pushed. It is commonly observed that pushing a piece of chalk in this
sense is more difficult than dragging it, because under constant tangential force the slipping point of contact of
the chalk with the board can come to rest. The ambiguity associated with reverse chatter now corresponds to
two distinct possibilities from this point of rest; either the chalk subsequently pivots about the point of contact
mimicking the action of a pole vaulter, or the chalk enters into a sequence of tiny positive slip phases interrupted by
instantaneous impacts with exponentially increasing elapsed times during slip and exponentially increasing impact
velocities. The latter appears to accord with the everyday experience of a juddering motion of chalk that can occur
as it is pushed across a chalkboard with sufficient force. Note too from 7(b) that even though the coefficient of
restitution r may be small for chalk on a chalk board, this phenomenon can still occur provided the coefficient of
friction is sufficiently large. Moreover, the figure shows that the for a fixed r-value the phenomenon is most likely
to be triggered when axis of the chalk is close to perpendicular to the board (θ between 1 and π/2 radians), rather
than close to tangential.

Let us conclude by a consideration of open questions for further study. In particular, there would be value in
exhaustively investigating all possible triggered transitions associated with trajectories reaching the boundaries of
existence of distinct modes of sustained motion. A particularly interesting case is the example problem discussed
by Génot and Brogliato [7], where it is shown that open sets of trajectories reach, in finite time, a singular triggered
transition point where b = k+

N = 0. At such a point, the forward evolution again appears to lead to an ambiguity,
a detailed study of which will form the subject of future work by the present authors using similar methods to
those presented here. In a broader context, it would further be useful to understand possible discontinuity-induced
bifurcations that occur when the event sequence of triggered transitions changes for a distinguished trajectory
(such as a periodic orbit) as a parameter is varied. Finally, our analysis has been specific to the Coulomb friction
law with equal dynamic and static coefficients of friction and with no variation of this coefficient. Preliminary
calculations (not presented) show that similar conclusions on the occurrence of reverse chatter and the unavoidable
resulting ambiguity hold for more general dry friction characteristics. A detailed analysis is left for future work.
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Eur. J. Mech. A—Solids 21(5) 869–896 (2002).

[12] G. Lancioni, S. Lenci, and U. Galvanetto, Non-linear dynamics of a mechanical system with a frictional
unilateral constraint, Int. J. Non-Linear Mech. 44(6) 658–674 (2009).

[13] R.I. Leine and H. Nijmeijer, Dynamics and Bifurcations in Non-Smooth Mechanical Systems, Springer-Verlag,
New York (2004).

[14] R.I. Leine and N. van de Wouw, Stability and Convergence of Mechanical Systems with Unilateral Constraints,
Lecture Notes in Applied and Computational Mechanics Vol. 36, Springer-Verlag, Berlin (2008).

[15] A.B. Nordmark, H. Dankowicz and A.R. Champneys, Discontinuity-induced bifurcations in systems with
impacts and friction: discontinuities in the impact law, Int. J. Non-linear Mech. 44(10) 1011–1023 (2009).

[16] A.B. Nordmark and P.T. Piiroinen, Simulation and stability analysis of impacting systems with complete
chattering, Nonlinear Dynamics 58(1-2) 85–106 (2009).

[17] J.J. Moreau, Differential measures of vector functions and some evolution problems, C. R. Acad. Sci. Paris A
282 837–840 (1976).

[18] F. Pfeiffer and C. Glocker, Multibody dynamics with unilateral contacts, John Wiley, Chichester (1996).
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