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Single-frequency operation or locking in a lateral array of three laser oscillators is studied within
the composite-cavity-mode approach. We compute the regions of stable locking, which have a
non-trivial shape in the plane of coupling strength versus frequency detuning. The locking regions
depend drastically on the amount of amplitude-phase-coupling of the lasing field that is quantified
by the α parameter. For small α, locking is possible for arbitrary coupling, but only if the middle
laser has sufficient frequency detuning from the two outer lasers. In contrast, for larger α, locking is
only possible for weak to moderate coupling provided that all three lasers have similar frequencies.

PACS numbers: 02.30.Ks, 05.45.Gg, 02.30.Oz

I. INTRODUCTION

Compact sources of high-power coherent radiation are
strongly desired in fundamental science (e.g. for spectro-
scopy) and various applications, including material pro-
cessing (e.g. cutting, welding), medicine (e.g. laser sur-
gery), and entertainment (e.g. large-scale laser displays).
The commonly used broad-area semiconductor lasers suf-
fer from difficult to control spatio-temporal instabilities
and poor beam quality at high optical powers [1–3]. As
technological progress makes it feasible to produce more
sophisticated laser devices, lateral laser arrays emerged
as an interesting alternative for generating optical beams
that combine high power and quality [4–16]. While they
are more promising than broad-area lasers, laser arrays
too exhibit various instabilities and complex dynamical
behaviour. Often, additional optical elements, such as an
external mirror or a synchronising master laser, are used
in an attempt to stabilise laser arrays [4, 12, 15, 16], lead-
ing to involved optical designs. There has been important
previous work on stability of single-frequency operation
or locking in a coupled-laser device on its own [4, 7, 17–
19], but some basic questions still remain unexplored. In
particular, a better understanding of coupled-laser sta-
bility in dependence on key array parameters, such as
different widths of individual lasers, would be very desir-
able. In this respect, three laterally coupled lasers form
the simplest system with an underlying structure that is
also found in larger arrays. Hence, the study of the three-
laser array constitutes a first step towards understanding
the stability properties of large arrays.

In this paper we show that a linear array of three
nearest-neighbour coupled laser oscillators exhibits inter-
esting locking behaviour that is fundamentally different
from two-oscillator systems [20]. To this end, we con-
sider a spatio-temporal model composite cavity model as
in [17], where a array geometry with similar spatial mode
profiles has been considered to evaluate the influence of
spatial gain variation. Here, we present a bifurcation

analysis of such a model to unveil the complicated de-
pendence of stable locking on the relevant system para-
meters.

First of all, we determine the dependence of stable
locking in a three-laser array on the coupling strength
and on the detuning of the middle laser from two identical
outer lasers. One key finding is the strong dependence
of the type and extent of stable locking on the amount
of amplitude-phase coupling in the lasing field [21]. In
lasers the amplitude-phase coupling is quantified by
the well-known α parameter, also called the linewidth-
enhancement factor [22]. It has typical values of α ≈ 0
(e.g. for gas, crystal and quantum dot semiconductor
lasers) and 1 < α < 10 (e.g. for widely used bulk and
quantum well semiconductor lasers) [23].

Secondly, we study modifications to the locking re-
gion arising from different frequencies of outer lasers and
different distances between neighbouring lasers. Hence,
our results contribute to the better understanding of
amplitude-phase coupling effects on synchronization in
coupled (laser) oscillators which are also of technological
importance for the design of locked laser arrays.

This article is structured as follows. In Section II we
describe the laser system and the modelling approach.
Section III discusses the influence of the linewidth en-
hancement factor, for the symmetrical case where the
two outer laser are identical. In Section IV we consider
effects of breaking this symmetry. We finish with conclu-
sions in Section V.

II. COMPOSITE CAVITY MODEL

We consider a laser device consisting of three laser
stripes {A,B, C} oriented along the longitudinal z-
direction in which the laser beam is propagating, and
coupled in the lateral x-direction. To analyse spatio-
temporal instabilities in the laser array we decompose
the total electric field in terms of spatial composite-cavity
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FIG. 1: The three considered lateral composite-cavity-mode
profiles X1(x) to X3(x) for constant laser distance d = 5.0 µm,
fixed lateral widths wA = wC = 4.0 µm of lasers A and B and
different lateral width of the middle laser, namely ∆BA =
−0.05 µm in (a)–(c), ∆BA = 0 µm in (d)–(f), and ∆BA =
0.05 µm in (g)–(j).

mode profiles Xj(x) of the entire array [24, 25],

E(x, t) =
1
2

∑

j

Ej(t)Xj(x) + c.c. , (1)

where the Ej(t) are the complex-valued time-dependent
field amplitudes. Following Refs. [17, 26] we focus on
the x-direction only. Hence, the composite-cavity mode
profiles Xj(x) are solutions of the Helmholz equation,

[
∂2X

∂x2
+ n2(x)

Ω2
j

c2
− k2

z

]
X(x) = 0 . (2)

and appropriate boundary conditions. Here, kz = 5π ×
106 m−1 is the z-component of the total wavevector, Ωj

is the composite-cavity mode frequency, and n(x) reflects
the refractive index variation in the x-direction. In par-
ticular, we assume

n(x) =
{

ng = 3.6 in the passive gaps between lasers,
ns = 3.61 in the active laser sections.

The boundary conditions require that the electric field
and its first derivative are continuous at each refractive
index step and that they vanish at infinity. As in Ref. [26]
we use sine functions in the active section and exponen-
tial functions in the passive section. Such solutions of the
Helmholz equation (2) satisfy the orthogonality relation

∫ ∞

−∞
n2(x)Xj(x)Xj′(x)dx = δjj′N , (3)

where δjj′ is the Kronecker delta and N = n2
b

2 (3w0 +2d0)
a normalization constant with nb = 3.6, w0 = 4µm, and
d0 = 4µm.

The time evolutions of the complex-valued electric field
amplitude Ej(t) associated with the composite-cavity
mode Xj(x) and the carrier density Ns(t) in laser stripe s
are governed by:

dEj

dt
=− i(Ωj − νj)Ej − γEj + γ

∑

j′

{ ∑
s

Ks
jj′

× [
(1 + βNs)− iαβ(1 + Ns)

]}
Ej′ ,

dNs

dt
=Λ− (Ns + 1)

−
∑

j,j′
Ks

jj′(1 + βNs)Re[EjE
∗
j′ ] .

(4)

Here the index j = {1, 2, 3} refers to the three composite-
cavity modes that are considered [Fig. 1], s = {A,B, C}
refers to the three lasers, and the star denotes complex
conjugation; see Ref. [24, 26] for details of the derivation.
Most importantly, coupling between lasers occurs via the
evanescent electric field in the lateral x-direction and de-
pends on the laser distance ds′s (or the width of the pass-
ive gap between the lasers) and the laser-width mismatch
in the x-direction ∆s′s = ws′ − ws. Note that Eqs. (4)
depend on the coupling parameters ds′s and ∆s′s impli-
citly via composite-mode frequencies Ωj and the mode
overlap integrals

Ks
jj′ =

ns

N
∫

s

Xj(x)Xj′(x)dx

over the respective active region s. We use typical
semiconductor laser parameters, namely the confinement
factor Γ = 0.1, the differential gain ξ = 2.5× 10−20 m−2,
the carrier density at transparency Nts = 2.0×1024 m−3,
the electric field decay rate γE = 2.0× 1011 s−1, and the
carrier decay rate γN = 1.0×109 s−1. This gives the nor-
malised decay rate γ = 100 and gain coefficient β ≈ 5.2.
Each laser is pumped at 4 times threshold, that is, Λ = 4.

Here, we define locking as a single-frequency solution
of Eqs. (4),

Ej(t) = |E0
j |e−i(ω0t+ϕ0

j ) , Ns(t) = N0
s , (5)

where all nonzero complex-valued modal amplitudes have
constant intensities Ij = |E0

j |2, the same optical fre-
quency ω0, a constant phase-shift ϕ0

j , and each laser has
a constant carrier density N0

s . Simultaneous numerical
continuation [27] of the composite-cavity mode profiles
Xj(x) and the locking solutions (5) unveils the stability
diagram in the parameter plane of the laser distances and
the width differences of the active laser sections.

III. IDENTICAL OUTER LASERS

Guided by the geometry of the system we first dis-
cuss the case where the two outer lasers are identical
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FIG. 2: Stability diagram of the locked solution (5) in
the (d, ∆BA)-plane for the modal intensities Ij = |E0

j |2.
Light shading indicates phase-locking of two composite-cavity
modes and dark shading indicates phase-locking of three
composite-cavity modes. The locking boundary is composed
of curves of saddle-node (S), Hopf (H), and transcritial (Tr)
bifurcations. The black dots indicate codimension-two saddle-
node Hopf (SH), transcritical Hopf (TH) and double Hopf
(HH) bifurcations.

wA = wC = 4.0 µm and the distance between the middle
laser and each outer laser is the same d = dBA = dCB .
Such a setup is invariant under the interchange of the
two outer lasers, which is mathematically a Z2-symmetry.
Figure 1 shows the three composite-cavity mode profiles
that arise in this symmetric configuration. Symmetric
modes have identical electric field in the two outer lasers;
see mode 1 in Fig. 1 (a), (d), and (g) and mode 3 in
Fig. 1 (c), (f), and (i). Anti-symmetric modes have an
electric field of opposite sign in the two outer lasers; see
mode 2 in Fig. 1 (b), (e), and (h). The anti-symmetric
mode 2 is insensitive to changes of the width wB . On
the other hand, the symmetric modes do depend on
wB . Namely, mode 1 is dominant in the outer lasers
if ∆BA < 0, and it is dominant in the middle laser if
∆BA > 0 [Fig. 1 (a) and (g)]; the symmetric mode 3
exhibits the opposite behaviour [Fig. 1 (c) and (i)]; also
compare with Ref. [17].

Figure 2 shows the complete bifurcation diagram of the
stable locked solution (5). The shaded regions of stable
locking are bounded by saddle-node (S), Hopf (H), and
transcritical (Tr) bifurcation curves, which correspond
to different locking-unlocking transitions. Light shading
indicates that only the two symmetric composite-cavity
modes contribute to the locked solution (5), while in
the dark shaded region all three modes contribute. Spe-
cial bifurcation points (black dots) mark the switch-over
between different bifurcation curves or types of the lock-
ing boundary. A comparison between panels (a) and (b)
of Fig. 2 shows a dramatic difference between the type
and extend of stable locking regions for different values of
α. This is illustrated further in Fig. 3 by showing modal
intensities Ij = |E0

j |2 of the locked solutions (5), and
the phase difference between the total electric field (1)
in lasers A and B φAB and in lasers A and C φAC along
one-dimensional cross sections for fixed d.

For α = 0 [Fig. 2(a)] we do not find stable locking
near the central value of ∆BA = 0 µm where the middle
laser has the same frequency as the two outer lasers.
Rather, locking occurs stably within two bands where the
middle laser is sufficiently detuned (positively or negat-
ively) from the two outer lasers. Furthermore, there are
four different locking regions. The upper light shaded
locking region in Fig. 2(a) is dominated by mode 3 with
a relatively small contribution of mode 1 [Fig. 3 (a1)-
(a3)]. The lower light shaded locking region is dominated
by mode 1 with a relative small contribution of mode 3
[Fig. 3 (a1)-(a3)]. In both cases the intensity in the two
outer lasers is identical. Furthermore, the phase differ-
ence φAB between the fields in lasers A and B is close to
zero if ∆BA < 0 and close to π if ∆BA > 0 [Fig. 3 (a4)].
The phase difference φAC between lasers A and C is al-
ways zero [Fig. 3 (a5)]. In other words, the middle laser is
in phase with the outer lasers (φAB ' 0 and φAC ' 0) if
∆BA < 0 and out of phase with the outer lasers (φAB ' π
and φAC ' 0) if ∆BA > 0. The transcritical bifurca-
tion (Tr) indicates when mode 2 moves above its lasing
threshold so that three composite-cavity modes are phase
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FIG. 3: Modal intensities Ij = |E0
j |2 of the locked solu-

tions (5) [(a1)–(a3) and (b1)–(b3)], and the phase difference
between the total electric field (1) in lasers A and B φAB [(a4)
and (b4)] and in lasers A and C φAC [(a5) and (b5)]. Panels
(a1)–(a5) are for α = 0 and d = 3 µm and panels (b1)–(b5)
are for α = 1.5 and d = 5.5 µm. Stable solution branches
(shading and thick curves) and unstable solution branches
(thin curves) meet at saddle-node (+) and transcritical (¦)
bifurcations, and they change stability at Hopf (∗) bifurca-
tions; compare with Fig. 2.

locked to a single frequency in the dark-shaded region
[Fig. 3 (a1)-(a3)]. Since mode 2 is anti-symmetric, the
total intensity in the two outer lasers now differs. Fur-
thermore, for the three-mode locked state we find that
φAB 6= 0, π and φAC 6= 0 [Fig. 3(a4) and (a5)].

In contrast, for α = 1.5 (a typical value for quantum-
well semiconductor lasers [23]) there is only a single stable
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FIG. 4: Stability diagram of the locked solution (5) in
the (d, α)-plane for the modal intensities Ij = |E0

j |2 and
α = 1.5. indicates phase-locking composite-cavity modes
and dark shading indicates phase-locking of three composite-
cavity modes. The locking boundary is composed of curves
of saddle-node (S), Hopf (H), and transcritial (Tr) bifurca-
tions. The black dots indicate codimension-two transcritical
Hopf (TH) and double Hopf (HH) bifurcations. Labeling and
colour coding is as in Fig. 2.

locking region, which is located around the line ∆BA = 0
where wB ∼ wA,C [Fig. 2(b)]. The locked solution is
no longer dominated by a single composite cavity mode,
but is a coherent superposition of modes 1 and 3, which
have comparable amplitudes [Fig. 3 (b1)-(b3)]. For the
phase difference between lasers A and B we find that
φAB ' π if ∆BA = 0, meaning that the middle laser is
out of phase with the outer lasers. Furthermore, φAB in-
creases (decreases) slightly as ∆BA increases (decreases).
In particular, unlike in the case of α = 0, no stable locked
solution is found where all three lasers oscillate in-phase.
The important difference is that for α > 0 the refract-
ive index depends on the carrier density (index effect),
which is what gives rise to the amplitude-phase coupling.
As the middle laser typically equilibrates at a different
carrier density compared to the two outer lasers, it can
vary its optical width — defined as the product of the
physical width and the refractive index. We find that for
α = 1.5 stable locking occurs for a sufficiently large differ-
ence in the optical width between the inner and the two
outer lasers, even though the physical widths wA,B,C re-
main identical. This interesting effect due to amplitude-
phase coupling can be interpreted as stable locking via
“self-detuning” of the middle laser. As can be seen from
Fig. 2(c) for α = 3, there are no qualitative changes in
the locking region for higher values of α.

To summarise the effect of the linewidth enhancement
factor α we show in Fig. 4 the different locking regions
in the (d, α)-plane for a small width difference ∆BA =
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0.02µm. We find the characteristics of the locking regions
from Fig. 2(a) to be typical for α < 0.5, whereas a locking
region as in Fig. 2(b) and (c) is typical for α > 0.5. In
Fig. 4, the transition between the two cases from Fig. 2
is marked by the transcritical bifurcation (Tr). Details
of this transition in the (d, ∆BA)-plane involve several
qualitative changes (codimension-three bifurcations) at
intermediate values of α which are beyond the scope of
this paper. Finally, from Fig. 4 we can see that for α >
0.5 there is a single locking region bounded by a Hopf
bifurcation on one side and a saddle-node bifurcation on
the other side. As α increases this locking region shifts
to larger d (weaker coupling) but it does not undergo any
additional qualitative changes.

IV. BREAKING THE SYMMETRY

In Section III we discussed the Z2-symmetric situation
with identical outer lasers. In Fig. 5 we present the ef-
fects of two different symmetry-breaking perturbations
for α = 1.5. In Fig. 5(a) we introduce a small mismatch
between the two outer lasers ∆CA = wC−wA = 0.02 µm.
As a result, the locking region shrinks in size and van-
ishes for d > 6.2µm. Furthermore, it is now bounded
towards increasing d by a saddle-node bifurcation and
towards decreasing d by a Hopf bifurcation. In addi-
tion we find a Hopf bifurcation at large d, which ends
in codimension-two Bogdanov-Takens (BT) points. In
Fig. 5(b) we keep the two neighbouring lasers B and
C identical wB = wC = 4µm and at a constant dis-
tance dCB = 5µm, and explore the locking region in
the (dAB , ∆BA)-plane. In this case, locking at large dis-
tance dBA remains, is bounded by saddle-node bifurca-
tions, but requires positive width difference ∆BC . To-
wards decreasing dBA the locking region is bounded by
saddle-node and Hopf bifurcations with several changes
in the type of the locking boundary, which are indicated
by codimension-two Bogdanov-Takens (BT) and saddle-
node Hopf (SH) points.

As a consequence of the broken symmetry in the array,
the stable locking region is modified: it changes its shape
and shifts slightly towards positive ∆BA in the (d, ∆BA)-
plane, and the locking region may be finite towards lar-
ger values of d. Furthermore, the transcritical locking
boundaries from Fig. 2(b) unfold into saddle-node lock-
ing boundaries [28] in Fig. 5. Another difference from
the symmetric case is that all three modes have non-zero
intensity and contribute to locking as is shown in Fig. 6.
Finally, none of the lasers are in-phase: the phase differ-
ence between the total electric field (1) of laser A and B
is in the range of −π < φAB < 0 and the phase difference
between of laser A and C is in the range of 0 < φAC < π.
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FIG. 5: Stability diagram of the locked solution (5) for the
modal intensities Ij = |E0

j |2 and α = 1.5. Panel (a) shows
the (d, ∆BA)-plane for ∆AC = 0.02µm, and panel (b) shows
the (dBA, ∆BC)-plane for wA = wB = 4µm and dBC = 5µm.
Labeling and colour coding is as in Fig. 2. Comparison with
Fig. 2(b) reveals effects of non-identical outer lasers and non-
equal distances between the neighbouring lasers.

V. CONCLUSION

We studied stable locking (single frequency opera-
tion) of three laterally coupled laser oscillators by means
of performing a bifurcation analysis of a mathematical
model given as a field expansion in terms of three spatial
composite-cavity modes. For the case where the outer
lasers are identical we calculated the locking region in
the plane of the distance between the lasers and the
width of the middle laser. These two parameters spe-
cify the coupling between the lasers and the detuning of
the middle laser from the two outer lasers, respectively.
We concentrated on the importance of the amplitude-
phase coupling parameter α and showed that the locking
characteristics is very different for low values of α, as
opposed to larger values. Namely, for small amplitude-
phase coupling (α ∼ 0), stable locking occurs for arbit-
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individual composite-cavity modes.

rary coupling, but only within two sidebands where the
middle laser has a different lateral width so that it is
sufficiently detuned from the two outer lasers. Further-
more, we identified coupling conditions where the middle
laser is in-phase and out-of-phase with the outer lasers.
For strong amplitude-phase coupling (α ∼ 1.5), on the
other hand, locking occurs only for up to moderate/weak
coupling and within a single band around where all three
lasers have comparable lateral widths. Furthermore, we
discussed modifications to locking that arise from per-
turbations to the symmetrical case of two identical outer
lasers and equal distances between neighbouring lasers.
The effects uncovered here of amplitude-phase coupling
and symmetry breaking in the array show that locked
laser arrays would require a careful manufacturing of lat-
eral widths and distances with critical dependence on
the type of the laser that is used. In particular, the lack
of stable locking solution where all three lasers are in-
phase for α > 0.5 may explain some of the great diffi-
culties that are encountered in obtaining in-phase semi-
conductor laser arrays.
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