
 Engel, J., & Kocak, T. (2006). K-ary n-cube based off-chip communications
architecture for high-speed packet processors. 1903 - 1906.
10.1109/MWSCAS.2005.1594497

Link to published version (if available):
10.1109/MWSCAS.2005.1594497

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/MWSCAS.2005.1594497
http://research-information.bristol.ac.uk/en/publications/kary-ncube-based-offchip-communications-architecture-for-highspeed-packet-processors(2fb1e415-9696-4b84-b8ab-2bc8fcb91f85).html
http://research-information.bristol.ac.uk/en/publications/kary-ncube-based-offchip-communications-architecture-for-highspeed-packet-processors(2fb1e415-9696-4b84-b8ab-2bc8fcb91f85).html

K-ary n-cube Based Off-Chip Communications
Architecture for High-Speed Packet Processors

Jacob Engel and Taskin Kocak
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816

e-mail: {jengel, tkocak}@cs.ucf.edu

Abstract— A k-ary n-cube interconnect architecture is pro-
posed, as an off-chip communications architecture for line cards,
to increase the throughput of the currently used memory system.
The k-ary n-cube architecture allows multiple packet processing
elements on a line card to access multiple memory modules.
The main advantage of the proposed architecture is that it can
sustain current line rates and higher while distributing the load
among multiple memories. Moreover, the proposed interconnect
can scale to adopt more memories and/or processors and as
a result increasing the line card processing power. Our results
portray that k-ary n-cube sustained higher incoming traffic load
while keeping latency lower than its shared-bus competitor.

I. INTRODUCTION

In this paper, we present an off-chip k-ary n-cube in-
terconnect that provides an effective solution, under certain
constraints, to the increasing demand for memory bandwidth
on line cards. Memory bandwidth is affected by two major
factors: higher line rates and increase in deep packet inspec-
tion operations. Network line rates are constantly increasing,
currently reaching 40 Gb/sec. Line cards are required to
perform multiple functions to support new services which
increases the traffic overhead to incoming line rates by 40%-
100%. Moreover, there exist an unstoppable expansion in
lookup tables which requires more memory space and more
parameters to examine within each packet.

In most line card architectures there exist a direct inter-
connect, such as busses or switches, that connects different
processing elements to memory modules. The heart of the
line card is the network processor which performs different
operations in order to analyze the flow of incoming packets.
The nature of packet processing requires frequent read/write
operations to memories which are distributed around the NPU.

As line-rate data and NPU processing power increase,
memory access time becomes the main system bottleneck
(it requires a minimum of 8 ns processing time at 40 Gbps
line-rate) during data store/retrieve operations. The growing
demand for memory bandwidth contrasts the notion of di-
rect interconnect methodologies and replaced it with indirect,
packet-based networks such as mesh, torus or k-ary n-cubes.

A shared bus cannot scale well as the number of modules
(processing elements or memories) connected to it increases.
In addition, it requires an arbitration mechanism that becomes
distributed (rather than centralized) as the number of modules
connected to the bus grows.

Solutions to the memory bandwidth bottleneck are limited
by area on the line card and NPU I/O pins. Pin constraints
bound the bus size that can be interfaced with the NPU.
Hence, only a packet-based network-on-board can provide the
required performance improvement between the NPU and off-
chip memory modules.

II. K-ARY n-CUBE INTERCONNECT ARCHITECTURE

A k-ary n-cube network consists of N = kn nodes, where n
represents the dimension of the network and k represents the
number of nodes in each dimension of the structure. Each node
is connected to all of its nearest neighbors via bi-directional
channels. The address/location of a node can be represented
as a vector consists of two bit-vector fields. One bit vector
represents the location of the node within its plane. This vector
can repeat its value within other planes. The second vector
represents the node dimension location. For example, node m
can have an address vector with mi being the node’s location
in its dimension.

The k-ary n-cube architecture shown in Fig. 1 is a packet-
based multiple path interconnect that allows network packets
to be shared by different processor and memory modules on
the network line card. Memories are distributed around pro-
cessing elements, such as traffic manager, QoS co-processor,
classification processor, to allow data sharing among modules
and direct processor memory storage. If a link goes down, not
only should the fault be limited to the link, the additional links
from the intermediate nodes should ensure the connectivity
continues.

A. Routing mechanism

The routing algorithm routes a packet from a source de-
vice s = {s1, s2, ..., sm} to a destination module d =
{d1, d2, ..., dn}, by choosing a direction to travel in each of
the three dimensions to balance the channel load. A memory
packet sent by a processing element (PE) will always attempt
to take the shortest path as long as packets are admissible
(accepted by ideal nodes). If a node is oversubscribed (i.e.,
all ports are occupied), packets in transit will take a different
route using the traffic controller (TC) in each corner (node).
The architecture path diversity offers alternative paths between
source and destination modules.

19030-7803-9197-7/05/$20.00 © 2005 IEEE.

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

Fig. 1. k-ary n-cube architecture on the line card

In wormhole routing, the header flit is sent first. While the
header propagates through the interconnect, it sets the node
switches in a certain position corresponding to the traffic load
on the node’s channels. The rest of the packets comprising
the message are transmitted in a pipeline manner following
the message header. The main advantage in using wormhole
routing in this k-ary n-cube structure is that it diminishes the
latency as the size of the message increases while increasing
its throughput. The major part of the latency is hidden in the
transfer of the first packet. The rest of the packets follow it
and introduce only wire transfer delay. As the message size
increases, the ratio of consecutive latencies decreases.

Before a node forwards a packet to one of its adjacent
nodes, it polls the status of each node. The traffic controller
at each node has a “sensor status” flag which determines if
the node is currently processing a packet (i.e., busy), or if the
node is idle and ready to accept a new packet (i.e., not busy).
Depending on its direction preferences (some nodes may get
higher preference than others if they are located closer to the
packet’s destination), TC will chose an admissible node to
forward the packet. If at least one adjacent node is available
to forward a packet, it will require only one clock cycle to do
so.

III. PERFORMANCE EVALUATION

We use standard performance metrics such as latency to
evaluate the k-ary n-cube interconnect performance. Latency is
defined as the time it takes for a complete message to reach its
destination. The load or offered-load is the number of packets
injected into the interconnect network per second and depends
on the processing elements which are generating them.

The k-ary n-cube architecture and performance measures are
based on the following assumptions:

• Messages are uniformly distributed among modules.
• Nodes are generating traffic independently of each other.
• It takes only one propagation delay cycle for a flit to

move from one node to another.

• Each physical channel consists of five virtual channels.

A. Latency of packet-switched multiprocessor shared-bus

Bus Performance, in terms of latency and throughput, of a
shared bus is affected by the following factors:

• Number of processors or memories connected to it (as the
number of modules connected to the shared-bus increases,
performance degrades)

• The shared-bus length (average is between 5-12 inches).
• Shared-bus width (increasing width results in higher

cost).

Most shared bus systems do not have more than 30 processors
/ memories. Communication protocol is trivial and is based
on simple connection oriented mechanism. In addition, shared
bus systems require arbitration mechanism to send/receive
data from multiple modules. Bus arbitration adds delay to the
overall system latency. Some systems use multiple buses to
reduce the effect of the factors mentioned above. Although
the bandwidth of the multiple bus architecture is higher than
that using a single shared bus, the system is more costly
and requires complex bus arbitration logic. As a result of
the shared bus disadvantages many multi processor-memory
systems include multiple shared buses and/or other type of
interconnects.

The system illustrated in Fig. 2 describes a multiple-
processor (multiple-memory) packet-based shared bus. A
processor-memory communication is only allowed when the
bus is not in use by other devices.

Fig. 2. Shared-bus multiple processor with arbitration

A processor wishes to communicate with a memory receives
permission to send data from the arbiter. The data is transferred
using flits. The bus width determines the flit size. When
multiple processors wish to use the bus it can cause contention.
Therefore, the bus is being monitored by the arbiter and only
the arbiter grants processors access to the bus. Bus of this type
fabricated on a PCB line card has an average length between
5 inches to 12 inches. The bus length is an important factor
in determining the packet propagation delay through the bus
(not including queuing, arbitration or transfer time).

Lshared−bus =
M

w
∗ Tw ∗ l + Wq (1)

Equ. 1 represents the latency of a shared bus. The first com-
ponent embodies the delay associated with message propaga-
tion from source to destination through the bus. M

w represents
the number of flits to send, Tw (=254 psec) is the time it

1904

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

takes for a packet to propagate in 1 inch [7]. l represents
the bus length. The second latency component, Wq, is due to
queuing within each module and signifies the average waiting
time between message transmissions of the same module.
Each module can transmit a message in its turn. Messages
are queued in each source until released.

Both arbitration latency and average wait in queue com-
ponents provide the queuing latency. For example, in FCFS
scheme the queuing latency is equal to (N-1)*r [6]. N sym-
bolizes the number of modules (processors and/or memories)
connected to the bus. The value of r varies in each system
depending on the queuing model which represents the bus type
and communicating modules connected to it. The (N-1) term
represents the number of turns (bus cycles) a device must wait
before it can receive bus access again. A packet-based multiple
processors shared bus can be modelled as M/D/1 queue. M/D/1
queue model has a Poisson input (random bus access requests
by processors) to a single-server queue with constant service
times (this is the bus throughput), unlimited capacity and FIFO
queue discipline. Arrival rate, λ, is the rate in which processor
requires memory access and depends on the incoming line rate.
The arrival rate we use represent an aggregate arrival rate, mg ,
which includes the amount of traffic (in flits) generated by a
node per cycle per second. Note that,

PE∑
i=1

λi < µ (2)

The sum of all arrival rates cannot exceed the service rate of
the system. Moreover, λ is used in our model as an aggregate
value of all issued communications by PEs to the shared-bus.
Service rate, µ, is the rate in which the bus can service a
packet once a processor granted access to the bus. This rate is
determined by the bus throughput (bits per second). µ includes
the arbitration cycles which each module is required to wait
before receiving access to the bus. That is,

µ =
1

(N − 1) ∗ r
(3)

where,

r =
M

w
∗ Tw ∗ l (4)

The average waiting time of a message in its generating
node queue is denoted by the following equation

Wq =
ρ

2 ∗ µ ∗ (1 − ρ)
(5)

B. K-ary n-cube latency equation

The latency model for k-ary n-cubes was initially modeled
by M. O. Khaoua in [1] and was developed also in [3][4][5].
Under uniform traffic pattern, a message passes on average k̄
hops across the network

k̄ =
(k − 1)

2
(6)

The average distance of this message is

d̄ = n ∗ k̄ (7)

The mean message latency consists of two parts, the delay
due to message transmission and the time a message spends
if blocking occurs. For an average of d̄ hops from source to
destination, latency can be expressed as

Latencyk−ary,n−cube = M + d̄ +
d̄∑

i=1

Bi + Wej (8)

The first term, M, is the message length in flits. Bi is
the average blocking time seen by a message at any ith

hop, where (1 ≤ i ≤ d̄). Wej represents the mean waiting
time between message transmission at the ejection node. In
this equation, it is assumed that channel to channel transfer
time is 1 unit cycle. V virtual channels are used per physical
channel in the model introduced by [2][9]. Although virtual
channels are divided into two types adaptive and deterministic,
there is no distinction between them when computing virtual
channels occupancy probabilities [8]. A message is blocked
at any ith hop channel when all virtual channels are busy. If
Wb denote the average waiting time due to blocking and Pb

represents the probability of blocking then the mean blocking
time expression is

Bi = Pbi
∗ Wb (9)

The blocking probability, Pb, is determined by calculating
the probability that all virtual channels are busy. Virtual
channels analysis and analytical model is discussed in [1].
Since multiple virtual channels share the bandwidth of the
same physical channel, a multiplexer is required to select
which virtual channel will use the physical channel. This
multiplexer functions in a TDM manner and adds the following
component to the latency equation

V̄ =

V∑
i=0

i2 ∗ Pi

V∑
i=0

i ∗ Pi

(10)

The mean waiting time at any node within the message’s path
is given as

Wb =
mc ∗ S2 ∗ (1 + (S−M)2

S2)
2 ∗ (1 − mc ∗ S)

(11)

where, the latency of the k-ary n-cube network, S, is measured
in cycles and mc is the traffic rate on a given channel and is
expressed as

mc =
mg ∗ d̄

n
(12)

The mean waiting time of a message at any ejection channel
is given as

1905

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

Wej =
mg ∗ M2

2 ∗ (1 − mg ∗ M)
(13)

The mean waiting time in a source node is determined by
modeling the injection channel at the source node as an M/G/1
queue gives

Ws =
mg

V ∗ S2 ∗ (1 + (S−M)2

S2)
2 ∗ (1 − mg

V ∗ S)
(14)

The term mg

V denotes the mean arrival rate.
The overall message latency is composed of the sum of the

mean network latency, S, and the mean waiting time at the
source node, Ws, multiplied by the multiplexing factor V̄ to
account for the virtual channels multiplexing that takes place
over the physical channel. Thus,

Lmsg = (S + Ws) ∗ V̄ (15)

C. Performance results k-ary n-cube interconnect vs. shared-
bus

Performance of k-ary n-cube is compared against a shared-
bus. Since line cards contain multiple network processing
elements and can reach 64 co-processors (including memory
modules), we chose two combinations of k-ary n-cubes which
comprised of 64 nodes and evaluate their performance. Both
shared-bus and the k-ary n-cube have 32 bits channel width.
Fig. 3 compares the latency of 8-ary 2-cube network with
4-ary 3-cube network while traffic load increases. Moreover,
performance for both types of k-ary n-cubes were analytically
computed using 32-flits and 64-flits messages.

0 0.0005 0.001 0.0015 0.002 0.0025 0.003
0

500

1000

1500

Traffic (messages/cycle)

La
te

nc
y

(c
yc

le
s)

8−ary 2−cube 64 flits
4−ary 3−cube 64 flits
8−ary 2−cube 32 flits
4−ary 3−cube 32 flits

Fig. 3. Latency comparison between 4-ary 3-cube and 8-ary 2-cube

Fig. 3 depicts that 4-ary 3-cube network was superior to 8-
ary 2-cube network with respect to load vs. latency for both 32
and 64 flits message. Once the better k-ary n-cube was chosen
we compared its performance against a shared-bus (Fig. 4).

Fig. 4 portrays latency comparison results for shared bus
vs. 4-ary 3-cube network. In both interconnects the channel

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Traffic (messages/cycle)

La
te

nc
y

(s
ec

on
ds

)

4−ary 3−cube
shared−bus

Fig. 4. Latency comparison between 4-ary 3-cube and shared-bus

width is 32-bits. 4-ary 3-cube network was able to sustain
much higher traffic rate while keeping lower latency than its
competitor the shared-bus. Moreover, the 4-ary 3-cube network
maintained its exceptional latency for both low as well as high
traffic loads.

IV. CONCLUSION

We presented a k-ary n-cube interconnect as an off-chip
solution for line cards. Results show that the k-ary n-cube
interconnect had superior performance over commonly used
share-bus and it can adapt to higher line rates while maintain-
ing low latency. The k-ary n-cube interconnect can be easily
scalable to accommodate more processors/memories in order
to increase its processing power or if line rates exceed the
current rates and require a change in network size.

REFERENCES

[1] M. O. Khaoua, “A Performance Model for Duato’s Fully Adaptive
Routing Algorithm in k-Ary n-Cubes”, IEEE Transactions on Com-
puters, vol. 48, no. 12, pp. 1297-1304, 1999.

[2] W. J. Dally, “Virtual-Channel Flow Control”, IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 2, pp. 194-199, 1992.

[3] J. Kim and C. R. Das, “Hypercube Communication Delay with
Wormhole Routing”, IEEE Transactions on Computers, vol. 43, no.
7, pp. 806-813, 1994.

[4] A. Agarwal, “Limits on Interconnection Network Performance”, IEEE
Transactions on Parallel and Distributed Systems, vol. 2, no. 4, pp.
398-412, 1991.

[5] W. A. Najjar, A. Lagman, S. Sur and P. K. Srimani, “Analytical
Models of Adaptive Routing Strategies”, Department of Computer
Science, Colorado State University, August 10, 1994.

[6] W. L. Bain and S. R. Ahuja, “Performance Analysis of High-Speed
Digital Buses for Multiprocessing Systems”, Proceedings of the 8th
annual symposium on Computer Architecture, pp. 107-133, 1981.

[7] Y. Zhang, “Microstrip-multilayer delay line on printed-circuit board”,
Technical Report, University of Nebraska, Lincoln, April, 2003.

[8] H. S. Azad and M. O. Khaoua, “A Simple Mathematical Model of
Adaptive Routing in Wormhole k-ary n-cubes”, Proceedings of the
2002 ACM symposium on Applied computing, pp. 835-839, 2002.

[9] Y. M. Boura and C. R. Das, “Modeling Virtual Channel Flow in
Hypercubes”, Proceedings of the First IEEE Symposium on High
Performance Computer Architecture , pp. 166-175, 1995.

1906

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

