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Abstract.
A trajectory of a system with two clearly separated time scales generally

consists of fast segments (or jumps) followed by slow segments where the
trajectory follows an attracting part of a slow manifold. The switch back to
fast dynamics typically occurs when the trajectory passes a fold with respect to
a fast direction. A special role is played by trajectories known as canard orbits,
which do not jump at a fold but, instead, follow a repelling slow manifold for some
time. We concentrate here on the case of a slow-fast system with two slow and one
fast variable, where canard orbits arise geometrically as intersection curves of two-
dimensional attracting and repelling slow manifolds. Canard orbits are intimately
related to the dynamics near special points known as folded singularities, which
in turn have been shown to explain small-amplitude oscillations that can be found
as part of so-called mixed-mode oscillations.

In this paper we present a numerical method to detect and then follow
branches of canard orbits in a system parameter. More specifically, we define
well-posed two-point boundary value problems that represent orbit segments on
the slow manifolds, and we continue their solution families with the package
AUTO. In this way, we are able to deal effectively with the numerical challenge
of strong attraction to and strong repulsion from the slow manifolds. Canard
orbits are detected as the transverse intersection points of the curves along
which attracting and repelling slow manifolds intersect a suitable section (near
a folded node). These intersection points correspond to a unique pair of orbits
segments, one on the attracting and one on the repelling slow manifold. After
concatenation of the respective pairs of orbits segements, all detected canard orbits
are represented as solutions of a single boundary value problem, which allows us
to continue them in system parameters. We demonstrate with two examples
— the self-coupled FitzHugh-Nagumo system and a three-dimensional reduced
Hodgkin-Huxley model – that branches of canard orbits can be computed reliably.
Furthermore, our computations illustrate that the continuation of canard orbits
allows one to find and investigate new types of dynamics, such as the interaction
between canard orbits and a saddle periodic orbit that is generated in a singular
Hopf bifurcation.

‡ presently at: Center for Applied Mathematics, Cornell University, Ithaca, NY, USA
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1. Introduction

In many systems of ordinary differential equations one finds that different variables
evolve on quite different time scales. Such multiple time-scale systems arise in
applications as diverse as chemical reaction dynamics [37, 44, 48, 49], cell modeling
[35, 41, 52, 53], electronic circuits [26, 59, 60], and laser systems [11, 20, 22, 23]. A
sufficiently large difference between different time scales induces a natural separation
of the variables. In the simplest case there are only two time scales and one also speaks
of a slow-fast system. The analysis of the planar case of a slow-fast system goes back to
the work of Van der Pol in the 1920s [59]. In the famous equation for a radio circuit that
bears his name today he discovered a peculiar type of dynamics: periodic orbits that
are composed of slow and fast segments of the dynamics, which he named relaxation
oscillations [60]. What is more, Benôıt et al. [5] discovered so-called canard orbits,
which have the counter-intuitive property that they closely follow for some time at least
one repelling segment of the fast nullcline, or critical manifold, of the system. In planar
slow-fast systems canard orbits exist only in intervals of system parameters that are
exponentially small in the time-scale parameter ε. This effect explains the extremely
rapid transition from O(ε)-amplitude oscillations to relaxation oscillations with O(1)-
amplitude in the Van der Pol and related planar slow-fast systems. This phenomenon
was later referred to as a canard explosion in the context of two-dimensional models
of chemical reactions [12], where it occurs frequently.

More generally, the existence of canard orbits is due to the interaction of the
attracting and repelling slow manifolds, which are locally invariant perturbations of
the attracting and repelling sheets of the critical manifold. The extreme sensitivity
of the canard phenomenon in planar systems stems from the fact that the attracting
and repelling slow manifolds are both of dimension one. However, as soon as these
manifolds have sufficiently large dimensions, their intersections and, hence, canard
orbits, are structurally stable and exist in parameter intervals that are no longer
exponentially small.

This paper is concerned with the detection and continuation in parameters of
isolated structurally stable canard orbits. More specifically, we consider a slow-fast
dynamical system in R3 with two slow and one fast variables, of the general form

ẋ = g1(x, y, z, ε), (1)

ẏ = g2(x, y, z, ε), (2)

εż = f(x, y, z, ε). (3)

Here g1, g2, and f are sufficiently smooth functions, and ε > 0 is a small parameter
that separates the time scales. There is now a well-established theory about slow-fast
dynamical systems of this form (see, for example, [6, 7, 8, 28, 29, 56, 61]) and, here,
we summarise the main results as needed here. As long as ε is nonzero, system (1)–(3)
is equivalent to

x′ = εg1(x, y, z, ε), (4)

y′ = εg2(x, y, z, ε), (5)

z′ = f(x, y, z, ε), (6)

by means of the time rescaling τ = t/ε.
Since one is interested in the dynamics for small 0 < ε ¿ 1, it is natural to

consider what can be learned from the limits for ε = 0 of both systems. A central
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object in this context is the critical manifold S, which is given by the nullcline of the
fast variable z, that is, by

S :=
{
(x, y, z) ∈ R3; f(x, y, z, 0) = 0

}
. (7)

Setting ε = 0 in system (1)–(3) yields two differential equations for the slow variables
x and y, which are constrained by equation (3) to lie on the critical manifold S; this
limit is referred to as the slow subsystem (or the reduced system). The limit ε = 0
in (4)–(6), on the other hand, yields a differential equation for the fast variable z.
This system is referred to as the fast subsystem (or layer system), and the two slow
variables x and y enter it as parameters (since their derivatives are zero for ε = 0).
Note that S is a surface of equilibria of the fast subsystem.

The critical manifold S associated with (1)–(3) is a two-dimensional surface in
R3 that consists of attracting and repelling sheets Sa and Sr, which generically meet
at folds with respect to the fast flow direction z. The locus of fold points F on S is
given by

F :=
{

(x, y, z) ∈ S; fz(x, y, z, 0) =
∂f

∂z
(x, y, z, 0) = 0

}
. (8)

Note that, generically, F is a smooth curve that may have isolated cusp points with
respect to the z-direction. From now on we consider the dynamics locally near a curve
of regular fold points, that is, away from any cusp points that may be present. A point
on S may either be attracted to F or repelled from F under the slow flow on the critical
manifold S. Where F is attracting on S, the resulting behaviour is a jump on a fast
time scale away from the fold; this is the three-dimensional analogue of the jumps
associated with fast segments of relaxation oscillations in planar slow-fast system. On
the other hand, where F is repelling on S, no jump occurs. The transition between
these two cases takes place at special points on F that are called folded singularities.
The behaviour near a folded singularity is best understood by considering the slow
subsystem near F , which can be expressed by

ẏ = g2, (9)

fz ż = − (fxg1 + fyg2), (10)

where x is uniquely determined by the algebraic condition (7). (If S happens to be
a graph over the (x, z)-plane only then the roles of x and y need to be exchanged.)
The slow flow (9)–(10) is singular along the fold curve F . It can be desingularized by
applying the time rescaling given by multiplication of the right-hand side with −fz to
yield

ẏ = − fzg2, (11)

ż = fxg1 + fyg2. (12)

An equilibrium of (11)–(12) that lies on the fold F is called a folded equilibrium; one
distinguishes between folded nodes, folded saddles, folded foci and folded saddle-nodes
[2, 7, 8, 56, 29, 61]. We remark that a folded singularity is generally not an equilibrium
of the slow flow. There has been a lot of interest in folded singularities because they
are closely associated with canard orbits. Note that the time rescaling reverses the
orientation of orbits on Sr. (This follows the convention that the flow of (11)–(12)
and that of the full system (1)–(3) have the same direction near Sa.) Hence, a folded
singularity is a point on the fold F through which trajectories of the slow flow (9)–(10)
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may cross form the attracting sheet Sa to the repelling sheet Sr. Any such trajectory
is called a singular canard [7, 49, 56, 61].

The main question is what dynamics ensues in a neighbourhood of a folded
singularity for nonzero ε. Away from the fold curve F the critical manifold S is
normally hyperbolic. Hence, Fenichel theory [24] applies and guarantees the existence
of attracting and repelling slow manifolds Sa

ε and Sr
ε as smooth perturbations of the

attracting and repelling sheets Sa and Sr, respectively. The task is now to determine
how Sa

ε and Sr
ε intersect and give rise to canard ortbits. More specifically, the question

is how canard orbits of system (1)–(3) arise from the slow dynamics on S near a
folded singularity. Normal hyperbolicity does not hold at F and, as a consequence,
Fenichel theory does not give any information about the interaction between Sa

ε and
Sr

ε . The theory of folded-node singularities [7, 8, 29, 56, 61] addresses this problem
and describes how the singular situation near F perturbs for ε > 0.

We concentrate here on the case of a folded singularity of node type. It has been
shown by the study of a normal form [2, 7, 56, 57, 61] that near a folded node the two-
dimensional slow manifolds Sa

ε and Sr
ε intersect transversally along one-dimensional

curves, which are the canard orbits of the full system (1)–(3). An important quantity
is the eigenvalue ratio µ (which we define such that µ ≥ 1) of the desingularized
reduced system (11)–(12) evaluated at the folded node. There are two intersection
curves that persist for all µ > 1, called the strong primary canard γs and the weak
primary canard γw. They converge as ε → 0 to two singular canard orbits, the strong
singular canard γ̂s and the weak singular canard γ̂w, which correspond to the strongly
and weakly attracting directions of the folded node (as an equilibrium of (11)–(12)),
respectively. As µ increases, the number of intersection curves of Sa

ε and Sr
ε and, hence,

the number of canard orbits, increases; such additional canard orbits are known as
secondary canards [61].

Canard orbits near a folded node occur in a robust way as the generic transverse
intersection curves of the two-dimensional surfaces Sa

ε and Sr
ε . As such, they

exist in large regions of parameter space, where they can contribute to the overall
observed dynamics in a significant way. In particular, in connection with a return
mechanism back to a neighbourhood of the folded node, (secondary) canard orbits
have been shown to act as organizing centres for mixed-mode oscillations (MMOs)
[14, 28, 35, 40, 41, 53, 54]. This type of oscillation is characterized by a pattern
of large-amplitude oscillations interspersed with small oscillations. MMOs have
been found in numerous fields of applications, most notably in chemical reactions
[37, 48, 49, 43, 44, 45] and in the dynamics of cells [35, 41, 46, 52, 53, 54, 58]; see
also [13]. In fact, the wish to understand the phenomenon of MMOs has been an
important reason for the recent interest in folded singularities.

When one wants to develop the theory of canard orbits further, or apply it to a
given system aring in an application, then there is a need to compute and visualize slow
manifolds and canard orbits. However, from the numerical point of view there are a
number of challenges. First of all, slow-fast systems exhibit strong sensitivity of orbits
on initial conditions; this effect becomes more and more pronounced the smaller ε,
and it can generally not be avoided when one is interested in phenomena that are due
to the slow-fast nature of the system. As a result, the initial value problem is often ill
defined, meaning that orbits cannot be computed reliably with numerical integration
(simulation of the governing equations). This effect is extreme near canard orbits, that
is, where an orbit closely follows a part of a repelling sheet Sr

ε . In this situation, even
the tiniest perturbations (below machine precision) may make the difference between
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whether the orbit finally jumps away from Sr
ε in one direction of the fast flow or the

other. This effect explains the well-known fact that (most of) the canard orbits in the
Van der Pol system cannot be found by numerical integration [25, 27, 30].

In this paper we present a method that allows one to identify canard orbits and
then follow or continue them in parameters. Our method is based on the numerical
continuation of solution families of suitably defined and well-posed two-point boundary
value problems (BVPs). This general approach has proved very fruitful for the
computation of invariant manifolds in general, and for numerical computations in
slow-fast systems in particular; see [38] for a recent overview. Note that the solution of
a two-point BVP corresponds to an orbit segment of the underlying flow. Importantly,
it can be found entirely without numerical integration, for example, with the method
of collocation [9].

More specifically, we compute in a first step pieces of interest of attracting and
repelling slow manifolds Sa

ε and Sr
ε , typically near a folded-node singularity where

they are known to interact. The basic idea is to allow one end point to vary along a
line on the critical manifold S that is far away from the fold curve F , while the other
end point is restricted to lie in a plane Σfn through the folded node and transverse to
the flow. The computations are performed with the collocation boundary solver and
the pseudo-arclength continuation routines of the package AUTO [18]; details and the
necessary boundary conditions are presented in section 2. We have used this general
approach to visualize and study the interaction of Sa

ε and Sr
ε in the normal form of

a folded node [15], near a folded node in the self-coupled FitzHugh-Nagumo system
[16], and near a slow passage through a Hopf bifurcation [17]. The emphasis here is
on the detection and continuation of canard orbits. Canard orbits can be identified as
transverse intersection points of the one-dimensional curves Sa

ε ∩ Σfn and Sr
ε ∩ Σfn in

the section Σfn. As a result, each canard orbit is represented by two orbit segments,
one on Sa

ε and one on Sr
ε and both ending in Σfn. We concatenate these two orbits

segments and represent the canard orbit as the solution of a single two-point BVP;
see section 2. This procedure allows us to continue any detected canard orbit in
parameters, without the need to recompute the slow manifolds Sa

ε and Sr
ε .

Overall, we obtain a numerically reliable and efficient method that produces
numerical one-parameter bifurcation diagrams consisting of branches of canard orbits
in dependence on chosen system parameters. Its performance is demonstrated with
two examples of neuronal systems with folded nodes. In section 3 we consider the self-
coupled FitzHugh-Nagumo system [16], where we continue secondary canard orbits
in the time-scale parameter ε towards the limit of ε = 0. We find that all detected
secondary canards of the full system converge in the limit ε = 0 to the strong singular
canard γ̂s. This agrees with the theory and demonstrates the accuracy of our method.
In section 4 we consider a three-dimensional reduced Hodgkin-Huxley model [33],
which is a more realistic model of a neuronal system that is known to exhibit MMOs.
We first perform a numerical bifurcation study, which reveals a complicated structure
of isolas of MMO periodic orbits with different numbers of small oscillations. Canard
orbits are then detected near a folded node of the system. We compute branches of
canard orbits as a function of the time-scale parameter ε, as well as an applied current
I of the model. In both cases we find interactions between canard orbits and other
objects that have not been observed before, and this highlights the potential benefits
of canard continuation as an numerical tool. The paper finishes with a discussion
of possible research directions where the continuation of canard solutions may be of
benefit.
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2. BVP setup for detection and continuation of canard orbits

Our approach is to find canard orbits as structurally stable intersection curves of
relevant parts of an attracting and a repelling slow manifold. The first step is to
compute the slow manifolds of system (1)–(3) as a family of two-point boundary value
problems; see also [15]. Once a canard orbit has been detected in this way, it can be
represented and continued as the solution of a BVP in its own right. Although we
present our method here for three-dimensional systems, the BVPs used are well posed
in general, meaning that one-dimensional canard orbits can be found in this way also
in slow-fast systems with higher-dimensional phase spaces.

As is common in the field of numerical continuation of BVPs, we write the vector
field under consideration in the rescaled form

u̇ = Tg(u). (13)

A solution of (13) is an orbit segment u that connects u(0) to u(1). Hence, u on
[0, 1] corresponds to an orbit segment with integration time T in the original system
u̇ = g(u). The actual integration time T is a free parameter in (13) that is solved
for as part of the BVP. In the case we are considering here, u = (x, y, z) and g is the
right-hand side of system (1)–(3).

The goal is now to specify appropriate boundary conditions to obtain a well-posed
two-point BVP, whose (one-parameter family of) solutions are orbit segments that lie
(in good approximation) on a relevant part of the required invariant manifold; see [38]
for an general overview of this type of numerical methods. The boundary conditions
that we use for the computations of slow manifolds and canard orbits are inspired by
Fenichel theory. Namely, we require that one end point of each orbit segment lies on
a line far away from the fold on the attracting or the repelling sheets of the critical
manifold, respectively. Hence, the error at this end point is of size O(ε) and it initially
decays quickly along the orbit segment due to the very strong contraction to the slow
manifold (in forward or backward time). The other end point is taken in a suitably
chosen section (that is, a two-dimensional plane) transverse to the fold near the folded
node, where the interesting dynamics of system (1)–(3) takes place.

For the computation of the attracting slow manifold Sa
ε we are looking for orbit

segments ua of (13) subject to the boundary conditions

ua(0) ∈ La ⊂ Sa, (14)
ua(1) ∈ Σa, (15)

where Σa is a suitably chosen section. Similarly, we compute the repelling slow
manifold Sr

ε as the family of orbit segments ur that satisfy

ur(0) ∈ Σr, (16)
ur(1) ∈ Lr ⊂ Sr, (17)

where Σr is a suitably chosen section. For our purposes of locating canard orbits
we choose Σa = Σr; see below. The BVPs defined by (14)–(15) and (16)–(17),
respectively, have a one-parameter family of solutions, which can be computed by
numerical continuation, for example with the package AUTO [18]. As with all
boundary value problems, an important issue is to find a first solution. In some
situations, explicit solutions may be known from which such a first solution may be
constructed; see [15] for an example. However, in general no explicit solution is known
and a first solution must be found in a different way. We use a homotopy method
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introduced in [16] to generate an initial orbit segment; the main idea is to continue
intermediate orbit segments via two auxiliary BVPs — the first to obtain an orbit
segment from a point on the fold curve F to the section, and the second to move the
end point on F along the critical manifold to a suitable distance from F ; see [16] for
details.

The choice of the sections Σa and Σr depends on the purpose of the computation.
If the end sections Σa and Σr are different and chosen to lie past the folded node one
may obtain insight into how Sa

ε and Sr
ε intersect as surfaces in a neighbourhood of the

folded singularity; see [15, 16, 17] for examples of such visualizations. In this paper we
want to detect and then continue canard orbits. Therefore, we choose Σa = Σr = Σfn,
where Σfn is a plane transverse to the fold curve F and such that it contains the folded
node. Canard orbits correspond to intersection points of the two curves Sa

ε ∩Σfn and
Sr

ε ∩ Σfn, which are traced out in good approximation by ua(1) and ur(0) satisfying
the boundary conditions (14)–(15) and (16)–(17), respectively. A canard orbit can
therefore be detected numerically as a pair of orbit segments ua and ur that satisfy
ua(1) = ur(0). In reality, it suffices to identify pairs of orbit segments such that
|ua(1) − ur(0)| is sufficiently small. This procedure has been used in [15, 16, 17] to
draw canard orbits together with slow manifolds for fixed values of the parameters of
the system under consideration.

The focus here is on the continuation of the detected canard orbits themselves
without the need to recompute the slow manifolds at each step. In principle, they could
be continued as a pair of orbit segments that meet in a specified section. However,
this has a number of disadvantages in terms of numerical stability. Namely, it may be
nessecary to continue the section (and possibly the folded node). Furthermore, there
may be the need for different discretizations of two orbit segments, especially when
their lengths or shapes change differently during a calculation. Therefore, we define
and continue a canard orbit as the unique solution uc of a single BVP. To this end,
we concatenate ua and ur at Σfn, which involves rescaling the total integration time
back to [0, 1] so that T = T c = T a + T r in (13). Then, provided |ua(1) − ur(0)| is
small enough, a simple Newton step in AUTO converges to an orbit segment uc of
(13) subject to the boundary conditions

uc(0) ∈ La ⊂ Sa, (18)
uc(1) ∈ Lr ⊂ Sr; (19)

see already figure 1 panel (c). The two boundary conditions (18) and (19) effectively
force the orbit segments to follow the attracting sheet Sa of the critical manifold to
near the fold curve F , and then to follow the repelling sheet Sr up to a prescribed
distance from F .

Canard orbits of (1)–(3) correspond to transverse intersections between slow
manifolds, which persist for nearby values of any system parameter. Hence, the two-
point boundary value problem given by (13) subject to boundary conditions (18)
and (19) is well posed. It has isolated solutions that can be continued with AUTO
to compute branches of canard orbits. In the next sections, we demonstrate this
method by detecting and continuing canard orbits in two neuronal slow-fast systems
— the self-coupled FitzHugh-Nagumo system and a three-dimensional reduction of
the Hodgkin-Huxley equations. In these calculations we use for the AUTO collocation
BVP solver interpolating polynomials of degree 3 throughout (NCOL = 4); the number
of mesh intervals NTST was chosen between 200 and 800, depending on the particular
calculation.
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3. Canard orbits in the self-coupled FitzHugh-Nagumo system

The self-coupled FitzHugh-Nagumo system [19] models a single neuron that is subject
to synaptic coupling from itself; it is given by

v′ = h− v3 − v + 1
2

− γsv, (20)

h′ = − ε(2h + 2.6v), (21)

s′ = βH(v)(1− s)− εδs; (22)

see also [16]. The variables v, h, and s represent the membrane voltage potential
of the neuron, the inactivation of the sodium channels and the synaptic coupling,
respectively. The self-coupling term −γsv in (20)–(22) is introduced to mimic the
dynamics of a synchronous network of neurons, where γ is the coupling strength; the
synapse activates at a rate given by β and decays at a rate given by δ. The non-
smoothness of the Heaviside function H(v) in (22) induces a separation of the phase
space according to the sign of v and also introduces a change in the timescale of the
synapse s. Indeed, in the active phase, where v > 0, s is a fast variable, whereas it
evolves slowly in the silent phase where v < 0.

Drover et al. [19] reported a substantial decrease of the firing rate of the neuron
(under constant current injection) when the self-coupling is activated (γ > 0) even
though the synapse is excitatory. Indeed, the time series of the voltage potential
for (20)–(22) exhibit consecutive action potentials that are separated by a number
of small-amplitude (subthreshold) oscillations. These oscillations are an example of
MMOs. Wechselberger [61] related this phenomenon to the presence of a folded-
node singularity, which gives rise to canard orbits that organise the small-amplitude
oscillations. The associated slow manifolds and canard orbits occur for v < 0 when
H(v) = 0, so that they can be studied in the silent-phase system given by

v′ = h− v3 − v + 1
2

− γsv, (23)

h′ = − ε(2h + 2.6v), (24)

s′ = − εδs. (25)

Note that (23)–(25) is a smooth slow-fast dynamical system in R3 with two slow
variables of the form (4)–(6). Its critical manifold

S =
{

(v, h, s) ∈ R3

∣∣∣∣ h =
v3 + (2γs− 1)v + 1

2

}
, (26)

is folded with respect to the fast variable v along the curve

F =
{

(v, h, s) ∈ R3

∣∣∣∣ h =
1
2
− v3, s =

1− 3v2

2γ

}
. (27)

The surface S has a cusp at (v, h, s) = (0, 1
2 , 1

2γ ) ∈ F and it is divided by the fold curve
F into an attracting sheet Sa and a repelling sheet Sr. Note that the cusp point does
not play a role for the dynamics, because it does not lie in the region where v < 0.

We now fix the parameters γ and δ of (23)–(23) at γ = 0.5 and δ = 0.565;
furthermore, we initially set ε = 0.015. Then there is a folded-node singularity on
F at pfn ≈ (−0.4900, 0.6176, 0.2797), that is, in the relevant region where v < 0. To
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Figure 1. Panel (a) shows the slow manifolds Sa
ε and Sr

ε of (23)–(23) computed
up to the section Σfn; also shown are six secondary canards ξ3 to ξ8. Panel (b)
shows the intersection curves of Sa

ε and Sr
ε in Σfn that are used to detect canard

orbits.

detect canard orbits near this point we compute Sa
ε and Sr

ε as solutions to the BVPs
given by (14)–(15) and (16)–(17), respectively, for the specific choices

La := S ∩ {h = −6.0}, (28)
Lr := S ∩ {v = 0.0}, (29)
Σfn := {(v, h, s) ∈ R3 | s = 0.2797}. (30)

Initial orbit segments that satisfy the boundary conditions have been found with the
homotopy method from [16].

The result of this computation is shown in figure 1. Panel (a) shows the computed
parts of the attracting slow manifold Sa

ε and the repelling slow manifold Sr
ε . Their

intersection curves in Σfn are shown in panel (b), where canard orbits ξ3–ξ8 have been
identified as points of transverse intersections. These canard orbits are also shown in
panel (a) together with Sa

ε and Sr
ε ; their index corresponds to the number of rotations

(corresponding to small-amplitude oscillations) that each canard makes in the vicinity
of the folded node before escaping the region of negative v. We remark that there
is a maximal number of canard orbits that can be determined from the eigenvalue
ratio µ of the folded node in the desingularized reduced flow. As the number of their
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Figure 2. The canard orbit ξ6 is represented in panel (a) by the two orbit
segments ua and ur that match up in Σfn, and in panel (b) by the single orbit
segment uc from La ⊂ Sa to Lr ⊂ Sr.

rotations increases, canard orbits are increasingly closer to each other and accumulate
onto the weak primary canard γw. Therefore, it becomes more and more difficult to
detect canard orbits with large numbers of small oscillations; see also [15]. The six
canard orbits ξ3–ξ8 in figure 1 have been identified reliably.

Figure 2(a) shows the two orbit segments ua and ur with ua(1) ≈ ur(0) that
have been detected as a good approximation of the canard orbit ξ6. The single orbit
segment uc that represents ξ6 as a solution of the BVP defined directly by (18) and
(19) is shown in figure 2(b).

The canard orbit ξ6, and indeed all detected canard orbits ξ3–ξ8 represented in the
same way, can now be continued in system parameters. Figure 3 presents the results of
a continuation with AUTO of ξ3–ξ8 in the time-scale parameter ε, where NTST = 200
mesh intervals were used. Panel (a) shows the AUTO L2-norm of the orbit segments
representing the canard orbits as a function of ε. From the detected canard orbits for
ε = 0.015 the branches were computed for both increasing as well as decreasing ε. We
first discuss the continuation for decreasing ε, where the canard orbits maintain the
same number of small oscillations but move much closer to one another and to the
strong singular canard γ̂s. This convergence process is illustrated in figure 3(b)–(d),
where ξ3–ξ8 are shown in projection onto the (s, v)-plane for ε = 0.015, ε = 10−4 and
ε2 = 10−6, respectively. Note that the singular canards γ̂s and γ̂w and the folded
node pfn are the same in all three panels (since they correspond to the limiting case
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Figure 3. Continuation of the canard orbits ξ3–ξ8 in ε. Panel (a) shows the
branches ξ3–ξ8 represented by their AUTO L2-norm as a function of ε; the black
dots on the branch ξ3 correspond to the specific canard orbits that are shown in
figure 4. Panels (b)–(d) show all six canard orbits ξ3–ξ8 in projection onto the
(s, v)-plane for the values of ε as indicated; also shown are the strong singular
canard bγs and the weak singular canard bγw, which intersect at the folded node
pfn. See also the accompanying animation dko a1.gif.

ε = 0). For ε = 10−6 in panel (d) all canards are so close together that they can hardly
be distinguished from one another and from γ̂s. Our computations are in agreement
with what is known from the literature [56, 61], and they illustrate numerically that
the normal form of the folded-node singularity describes the dynamics accurately for
sufficiently small ε; see also [15, Fig. 12].

While the theory of singular perturbation is valid only for “small” ε, the numerical
representation of canard orbits as orbit segments satisfying (18) and (19) is valid
also for “large” ε. This fact allows us to investigate canard orbits away from where
theoretical information is available, and the branches of canard orbits in figure 3(a)
continued from ε = 0.015 for increasing ε are an example. The branches ξ3–ξ8 run
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Figure 4. Projection onto the (s, v)-plane of the canard orbit ξ3 corresponding
to the four consecutive black dots on the branch ξ3 in figure 3(a); from panel
(a) to (d) the value of ε is as indicated. See also the accompanying animation
dko a2.gif.

roughly parallel up to a value of ε ≈ 0.031 and then develop folds and loops (in
this representation by the AUTO L2-norm), which are seemingly aligned along some
curves. We discuss the branch ξ3 in more detail (it has the smallest number of
oscillations). As ε is increased, the branch ξ3 has a minimum of the L2-norm at
ε ≈ 0.031 and then moves through a number of folds before reaching a maximal value
of the parameter ε at a final fold for ε ≈ 0.00654. When the branch ξ3 passes through
the minimum, the orbit segment uc no longer satisfies that the v-component of uc(t)
is less than 0 for all t ∈ [0, 1]. Furthermore, the s-component of thepoint uc(0) ∈ La

now lies to the left of uc(1) ∈ Lr in the region of negative s. Figure 4 shows the canard
orbit ξ3 at the four successive black dots on the branch in figure 3(a). In figure 4(a)
the three maxima of the oscillation are very large and all lie in the region of positive
v. Further along the branch in figure 4(b), the first oscillation is much smaller and
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its maximum lies below {v = 0}. Similarly, in panels (c) also the second oscillation
is much smaller, until in panel (d) the entire orbit segment lies again in the region of
negative v. In terms of an interpretation for the full self-coupled FitzHugh-Nagumo
system (20)–(22), the canard orbits in figure 4 would correspond to a solution of (20)–
(22) that jumps before the first full oscillation for panel (a), after one full oscillation
in panel (b), after two full oscillations in panel (c), and at the end point uc(1) in
panel (d). Notice also that the canard orbit in figure 4(d) may be of interest for the
dynamics of the full FitzHugh-Nagumo system with self-coupling (since it lies entirely
in the region where v < 0). Overall, these calulations demonstrate that branches of
canard orbits can indeed be continued readily over large ranges of a parameter.

4. Canard orbits in a 3D reduced Hodgkin-Huxley model

The Hodgkin-Huxley equations [33] describe the evolution of the membrane potential
of the giant axon of a squid. This famous nonlinear model displays very interesting
dynamics but its phase-space dimension makes it difficult to analyse the behaviour
both numerically and analytically. Since it was derived in the early 1950s, several
reductions were developed to try to simplify the analysis. In particular, the
FitzHugh-Nagumo system (without self-coupling) is a two-dimensional reduction of
the Hodgkin-Huxley equations. We consider here a three-dimensional reduction of a
non-dimensionalized version of the Hodgkin-Huxley equations; see [36, 53] for more
details. It is obtained by equilibrating the fastest of the gating variables — the
activation of the sodium channels — and takes the form

ε
dv

dτ
= V (v, n, n)

:= Ī −m3
∞(v)h(v − ĒNa)− ḡkn4(v − ĒK − ḡl(v − ĒL)), (31)

dh

dτ
=

1
τhth(v)

(h∞(v)− h), (32)

dn

dτ
=

1
τntn(v)

(n∞(v)− n). (33)

Here, the equilibrium and relaxation functions are given by

x∞(v) =
αx(v)

αx(v) + βx(v)
, (34)

tx(v) =
kt

αx(v) + βx(v)
, (35)

where x ∈ {m,h, n} and kt = 1 ms, such that each tx is dimensionless. The opening
and closing functions, associated with the dynamics of the ionic channels, are given
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ε ḡk ḡl ĒNa ĒK ĒL τh τn

0.0083 0.3 0.0025 0.5 −0.77 −0.544 6.0 1.0

Table 1. Parameters values as used in (31)–(33).

by

αm(v) = (kvv+40)/10

1−exp(− 1
10 (kvv+40))

,

βm(v) = 4 exp(− 1
18 (kvv + 65)),

αh(v) = 0.07 exp(− 1
20 (kvv + 65)),

βh(v) = 1
1+exp(− 1

10 (kvv+35))
,

αn(v) = (kvv+55)/100

1−exp(− 1
10 (kvv+55))

,

βn(v) = 0.125 exp(− 1
80 (kvv + 65)).

(36)

Finally, τ = t/kt where t is the time variable in the original Hodgkin-Huxley model.
Throughout this section, we study (31)–(33) for the (classical) parameter values
given in table 1. The main free parameter is the applied current I (in units of
µA/cm2) in the original Hodgkin-Huxley model, which enters (31) as Ī = I/k where
k = kv · 120 mS/cm2 with kv = 100 mV.

We consider the 3D reduced Hodgkin-Huxley model (31)–(33) for a number of
reasons. It is a more realistic neuronal system with an explicit separation of time
scales, which is known to produce mixed-mode oscillations, for example for τn = 1
and τh > 1 [53, 54]. Moreover, (31)–(33) possesses a folded node in a relevant range
of the parameters and a natural reinjection mechanism. This is in contrast to the
self-coupled FitzHugh-Nagumo system, where the reinjection mechanism is realized,
rather artificially, by a Heaviside function. Hence, (31)–(33) avoids having to consider
a silent-phase system with the need to worry about irrelevant parts of phase space.

4.1. Bifurcations of periodic solutions with the applied current I

As a starting point of our investigation we present in figure 5 a bifurcation study,
performed with the package AUTO, of (mixed-mode) periodic orbits in dependence
on the injected current I. Panel (a) shows an overview over a large range of I and panel
(b) an enlargement. There is a unique fixed point that forms the lower branch; it is
stable for small and for large values of I and unstable in between two Hopf bifurcation
points at I ≈ 7.78047 and I ≈ 265.365. The two Hopf points are connected by a
branch of periodic orbits. The left Hopf point at I ≈ 7.78047 is subcritical, so that
the emanating branch of periodic solutions is initially of saddle type. The stable
Floquet direction loses stability at a first saddle-node of limit cycle bifurcation SL at
I ≈ 6.46194, but then again is of saddle type after a period-doubling bifurcation PD
at I ≈ 7.17374; see figure 5(b). After further bifurcations, the branch stabilizes at a
last saddle-node of limit cycle bifurcation SL at I ≈ 14.9747 and then remains stable
until it disappears in the right Hopf bifurcation at I ≈ 265.365.

An important feature of the bifurcation diagram in figure 5(a) and (b) is a family
of isolas of mixed-mode periodic orbits of type 1` (having one large oscillation followed
by ` small ones). We computed 15 of these closed branches; they intersect one another
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Figure 5. Panel (a) shows branches of solutions of (31)–(33) as a function of
the applied current I, and panel (b) is an enlargement of isolas of mixed-mode
periodic orbits; all other parameters are as given in table 1. Stable branches are
solid thick curves and unstable branches are solid dashed curves; the isolas of
MMOs are plotted as thin curves (without stability information) that alternate
between dark and light; also shown are points of Hopf (H), saddle-node of limit
cycle (SL) and period-doubling bifurcation (PD). Panels (c) and (d) show the
time profiles of two mixed-mode periodic attractors, on the right-most isolas (at
I = 12.51) and on the left-most isola (at I = 8.761), respectively.

and lie in between the period-doubling point PD and the unstable part of the branch
of periodic orbits bifurcating from the Hopf points. We do not show the stability of
the periodic orbits on the isolas since it varies substantially along each branch, but
note that for certain values of I several coexisting stable MMOs can be found (which
is how the continuation runs were started). The profile of the periodic orbit belonging
to a particular isola, that is, its pattern as a mixed-mode periodic orbit, changes as
one moves in parameter space around the isola, but the overall number of oscillations
remains constant. The MMO isolas appear to accumulate for increasing ` onto a curve
to the left. Furthermore, the left-most isola correspond to mixed-mode periodic orbits
that are increasingly close to a homoclinic bifurcation. Two time profiles of MMOs are
shown in figure 5(c) and (d). The mixed-mode periodic orbit in panel (c) is from the
right-most isola, and it is of type 14. By contrast, the mixed-mode periodic orbit in
panel (d) is from the left-most isola; it indeed appears to be very close to a homoclinic
bifurcation and displays so many and so small oscillations that they are hard to count.
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We remark that we found numerically many more isolas of mixed-mode
oscillations of even more complicated type in terms of large and small oscillations. A
detailed study of the bifurcation structure of MMO periodic orbits (also in dependence
on other parameters) remains a challenging task for future research. Instead, we use
figure 5 as a guide and now concentrate on how the slow-fast dynamics is organized by
a folded node in the region of mixed-mode periodic orbits of type 1` — in the I-range
around I = 12.0.

4.2. Detection of secondary canards

The 3D reduced Hodgkin-Huxley model (31)–(33) is a smooth slow-fast dynamical
system in R3 with two slow variables of the form (1)–(3). Its critical manifold is given
by

S = {(v, h, n) ∈ R3; V (v, h, n) = 0}, (37)

where V (v, h, n) is the right-hand side of (31). The critical manifold S is folded along
the curve

F = {(v, h, n) ∈ S;
∂

∂v
V (v, h, n) = 0}. (38)

For I = 12.0 and the other parameters as in table 1 one finds a folded-node singularity
pfn = (−0.5927, 0.2817, 0.4858) on F . To compute the attracting and repelling slow
manifolds Sa

ε and Sr
ε near pfn with the method from section 2, we consider the specific

choices

La := S ∩ {v = −0.75}, (39)
Lr := S ∩ {v = −0.55} (40)
Σfn := {(v, h, n) ∈ R3 | n = 0.2817}. (41)

Initial orbit segments ua and ur satisfying the boundary conditions (14)–(15) and
(16)–(17), respectively, have been found with the homotopy method from [16], and
they are shown in figure 6 (a). Continuation with AUTO then yields the slow manifolds
Sa

ε and Sr
ε as surfaces shown in figure 6 (b). Nine canard orbits ξ4–ξ12 have been

identified reliably as transverse intersection points of the curves Sa
ε ∩Σfn and Sr

ε ∩Σfn;
see panel (c). After concatenation, each canard orbit is then represented directly as
an orbit segment uc that satisfies boundary conditions (18) and (19). The canard
orbits ξ4–ξ12 are also shown in figure 6 (b), where they can be seen to connect the line
La ⊂ Sa with the line Lr ⊂ Sr. As before the labeling is such that the canard orbit
ξi completes i full rotations in the vicinity of the folded node.

4.3. Properties of the secondary canards and their continuation in ε

Figure 7(a) and (b) show the nine detected secondary canards ξ4–ξ12 from figure 6 in
two different projections together with numerical computations of the strong singular
canard γ̂s and the weak primary canard γw. The strong singular canard γ̂s has been
obtained as the limit of canards continued for decreasing ε; compare with figure 3.
The weak primary canard γw was identified during the computation of Sa

ε and Sr
ε ,

where we used the fact that orbit segments on the slow manifolds spiral around γw

and accumulate onto it. Notice the particular shape of the right-most part of γw

further away from the folded node. We find that there is a saddle-focus equilibrium
nearby. The weak canard γw appears to follow its one-dimensional stable manifold
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Figure 6. Panel (a) shows the initial orbit segments ua and ur from La and Lr

to Σfn. The attracting and repelling slow manifolds Sa
ε and Sr

ε together with the
detected canard orbits ξ4–ξ12 are shown in (v, h, n)-space panel (b), and in Σfn

in panel (c). Here I = 12.0 and all other parameters are as given in table 1.

extremely closely towards the saddle-focus, and then spirals out by following its
unstable manifold. For increasing i the secondary canards ξi accumulate onto γw,
so that they also accumulate on the invariant manifolds of the saddle-focus. These
observations clearly indicate a close connection between the folded-node singularity
and the saddle-focus attractor of the system. As a result, when this attractor
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Figure 7. Panels (a) and (b) show the nine canard orbits ξ4–ξ12 from figure 6 in
projection onto the (n, v)-plane and the (h, v)-plane, respectively; also shown are
the strong singular canard bγs and the weak primary canard γw. Panels (c1) and
(c2) show the branches of canard orbits ξ4–ξ8 that are obtained when ε is varied
for fixed I = 12.0.

undergoes a Hopf bifurcation (upon variation of I) the canard orbits generated by the
folded singularity interact with the emanating periodic orbit; this will be discussed in
section 4.4.

Figure 7(c1) shows the branches of the five secondary canards ξ4–ξ8 that were
obtained by continuation with AUTO for increasing and decreasing ε, where NTST =
300 intervals points were used. As was the case for the self-coupled FitzHugh-
Nagumo system (compare with figure 3), all canards converge for ε → 0 to the same
orbit segment, which corresponds to the strong singular canard γ̂s. When ξ4–ξ8 are
continued in the direction of increasing ε, a fold in ε is detected for each branch at
ε ≈ 0.0211; that is, the ε-values of all fold points as computed with AUTO agree up to
four decimal places. This suggest an underlying dynamical phenomenon that affects
all secondary canards. We verified that the coincidence of folds for all branches of
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Figure 8. Panel (a) shows the branch of the secondary canard ξ6 from
figure 7(c1), along which five points are marked. Panels (b) to (f) show the
canard orbit ξ6 in projection onto the (n, v)-plane at these five different locations
along the branch, together with the fold curve F , the strong singular canard bγs

and the folded node pfn. See also the accompanying animation dko a3.gif.
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canard orbits is robust in the sense that it is independent of the particular boundary
conditions that we imposed to compute the slow manifolds Sa

ε and Sr
ε and, hence,

the canards orbits. When we modify the boundary conditions and recompute slow
manifolds and canards, the continuation of the resulting canard orbits features a fold
in ε at the same value up to four decimal places. Past the fold in ε, each branch of
canard orbits can be continued in the direction of decreasing ε, all the way towards
ε = 0; see figure 7(c1). The line ε = 0 is shown in grey in this panel to emphasise that
the limit is reached in both directions of the continuation.

Figure 8 illustrates how the canard orbit ξ6 changes along the branch; it is
qualitatively representative for any of the other detected secondary canards of system
(31)–(33). For orientation purposes, panel (a) reproduces the ξ6-branch in dependence
on ε from figure 7(c1). Five black dots, marked (b) to (f), are chosen along the branch,
and figure 8(b)–(f) display the corresponding canard orbit ξ6 in projection onto the
(h, v)-plane; also shown are F , pfn and γ̂s (which was extended by continuation over
a larger v-range from the computed limit of ξ6 for ε → 0). A number of interesting
observations can be made. The detected canard orbit ξ6 is shown in panel (c); as
ε is decreased to 0 it maintains the same number of small oscillations (six for this
particular canard) but their v-amplitude and width in the h-direction shrink to zero;
see figure 8(c). This agrees with what is known from theory; compare with figure 3.
When the detected canard orbit ξ6 in figure 8(c) is continued in the direction of
increasing ε, the amplitude of all six small oscillations increases up to the critical
value of ε = 0.0211, which corresponds to the fold point; see panel (d). As is shown in
panels (e) and (f), past the fold only the left-most oscillation (a full rotation around the
weak canard) continues to grow slightly up to a certain limit, whilst the five remaining
small oscillations start to shrink in amplitude. Finally, figure 8(f) reveals that, as the
branch is continued towards ε = 0 past the fold, the first oscillation of ξ6 develops
into a relaxation-type loop. The orbit segment starting at uc(0), follows the strong
singular canard γ̂s well past the fold curve F and then has a fast segment that is is
almost vertical, that is, in the direction of the fast variable v. The canard orbit ξ6 past
the fast segment continues on with five more (now quite small) oscillations. Hence,
in this limit of ε → 0 of the branch past the fold point, the canard orbit ξ6 ‘splits
off’ one large canard-type oscillation, meaning that ξ6 resembles the concatenation of
a canard periodic orbit with ξ5. As was mentioned earlier, ξ6 is representative: we
found the new phenomenon that, when continued past the fold, any of the detected
canard orbits ξi converges to a concatenation of a relaxation oscillation with ξi−1.

4.4. Continuation of canard orbits in I for ε = 10−6

Once they are detected, canard orbits can be continued in any system parameter of
interest. As an example, we now consider the dependence of the canards ξ4–ξ8 on
the injection current I of the 3D reduced Hodgkin-Huxley model (31)–(33), where we
fix the time-scale parameter at ε = 10−6. This choice for ε is motivated by the fact
that Rubin and Wechselberger [54] give numerical evidence that the theory of a folded
node singularity in conjunction with a reinjection mechanism [14] explains MMOs of
type 1` of (31)–(33) only when ε ∈ [0, 10−5). A second motivation is to demonstrate
that continuation in a system parameter can be performed reliably even for quite
small values of ε. The result of the continuation of the five canard orbits ξ4–ξ8 is
shown in figure 9(a) over a large range of I and represented by the AUTO L2-norm.
Continuation runs for both decreasing and increasing I were started from the canard
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Figure 9. Panel (a) shows the branches of the secondary canards ξ4–ξ8 for
ε = 10−6 as a function of the injected current I; panel (b) is an enlargement
near where they end in limit points LP at I∗ ≈ 4.83411. The canard orbit ξ6 for
I = I∗ is shown in panels (c1) and (c2) as a time profile of v. Panel (d) shows the

branch of the folded singularity, which changes type at bI ≈ 4.83378 from folded
node (solid curve) to folded saddle (dashed curve).

orbits for fixed I = 12.0 that were found at ε = 10−6 (when ε was decreased from the
classical value ε = 0.0083; see section 4.3); for these computations NTST = 400 mesh
intervals were used. The branches of canard orbits ξ4–ξ8 run almost parallel in this
projection over the entire shown range of I ∈ [4, 34]. The difference in the L2-norm
from ξi to ξi+1 is due to the fact that the respective orbit segments differ by exactly
one small oscillation.

We first discuss the continuation in the direction of increasing I, where we find
that each of the branches ξ4–ξ8 stops close to I = 32; see figure 9(a). Increasing I
corresponds to decreasing the eigenvalue ratio µ of the folded node. Theory predicts
that the secondary canards rapidly (exponentially in µ) approach the weak canard
γw, where they terminate at integer values of µ (that correspond to the number of
rotations around γw) [61]. We found in [15] for the normal form of the folded node
that the continuation of secondary canards is numerically so delicate that a canard
with more than a few rotations around γw can generally not be continued all the way
to its expected end point. This numerical sensitivity for decreasing µ also arises here:
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a numerical computation of µ = µ(I) shows that the continuation of the branches ξ4–
ξ8 stops well before their expected end points are reached. The fact that our choice
ε = 10−6 is very small is likely to make matters worse compared to computations
in the normal form. In any case, the continuation in I is inconclusive as far as the
suggested validity range [54] of the normal form for secondary canards near the folded
node of (31)–(33) is concerned.

We now consider the continuation for decreasing I, and figure 9(b) shows an
enlargement of the branches of ξ4–ξ8 near their left end points. The behaviour of the
five branches is indeed very similar: they run parallel and are offset by practically the
same amount in the L2-norm. Each branch ξ4–ξ8 ends at a limit point bifurcation,
labelled LP , which corresponds to a fold with respect to I. We found that it is
not possible to continue branches past the detected limit point. What is more, the
associated numerical I-value of the detected limit point LP was found to be the same
value of I∗ ≈ 4.83411 for all five branches up to five decimal places (with EPSS = 10−5

as the relative convergence criterion for the detection of special solutions in AUTO).
The agreement of the left end points of the branches ξ4–ξ8 is emphasized in figure 9(b)
by the grey vertical line at I∗. Figure 9(c1) is the time profile of the v-variable of the
orbit segment uc representing ξ6 at the final point where I = I∗. As the enlargement
in panel (c2) shows, at I∗ we find that ξ6 makes six small oscillations of effectively the
same amplitude; this is again representative, meaning that at I∗ any of the computed
orbits ξi has i small oscillations with practically identical amplitudes.

These numerical results clearly suggest an underlying dynamical phenomenon,
which we now explore further. Figure 9(d) shows the branch of the folded singularity
of system (31)–(33), as a true equilibrium of the desingularized reduced system (11)–
(12) for ε = 0. It is a folded node pfn for larger values of I, but changes stability
at I = Î ≈ 4.83378 where one of its eigenvalues goes through 0. This means that at
I = Î the folded singularity is a folded saddle-node, and for I < Î it is a folded saddle.
Theory predicts that, as the folded saddle-node is approached by decreasing I down
to I = Î, the number of secondary canards that exist for ε > 0 goes to infinity; for
I < Î, on the other hand, there will be a single canard orbit when the folded saddle
is perturbed for ε > 0; see [56, 61]. Hence, for 0 < ε ¿ 1 one would expect that
the branches of canard orbits ξ4–ξ8, found near pfn and followed for decreasing I,
terminate in some way in the vicinity of Î. Note that Î (which is determined from the
limit ε = 0) is only about 10−3 from I∗ (which was found numerically for ε = 10−6).

System (31)–(33) with ε = 10−6 has an actual equilibrium very close to the
folded singularity (for ε = 0). Associated with this equilibrium is a sequence of
bifurcations that is qualitatively just what we found for ε = 0.0083; compare with
figure 5(d). Namely, for ε = 10−6 the equilibrium loses its stability in a Hopf
bifurcation H, which takes place exactly at IH = I∗ up to the numerical precision of
our computation. Figure 10(a) shows the bifurcating (I-dependent) family of periodic
orbits as a surface in (v, h, n)-space for ISL ≤ I ≤ 4.83653. Past the Hopf bifurcation
H the periodic orbits are initially of saddle type. They undergoes a saddle-node
of limit cycle bifurcation already at ISL ≈ 4.83394, where the surface turns around
towards increasing values of I and h; the correpsonding fold in the surface of periodic
orbits is not visible in figure 10(a) because it occurs very close to the Hopf point H.
For I > ISL the periodic orbits are repelling until a period-doubling bifurcation is
reached at IPD ≈ 4.83422. The periodic orbit ΓPD at the moment of period-doubling
bifurcation divides the surface: periodic orbits to the right of ΓPD are of saddle type,
and periodic orbits to the left of ΓPD are repelling (for I > ISL). Notice from the
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Figure 10. Panel (a) shows the canard orbit ξ6 in (v, h, n)-space for I = I2 =
4.83607, for I = I1 = 4.83508 and for I = 4.83411 ≈ I∗; also shown are the
corresponding periodic orbits Γ2, Γ1 and Γ∗ as they lie on the surface of periodic
orbits that emerges from the Hopf point H. The peridic orbit labelled ΓPD is
that at the moment of the period-doubling bifurcation for IPD ≈ 4.83422. Panels
(b) and (c) show projections onto the (v, n)-plane of Γ2 and ξ6 for I = I2, and Γ∗
and ξ6 for I = I∗, respectively. See also the accompanying animation dko a4.gif.
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axes scales in figure 10(a) that the family of periodic orbits exists in a very small
region of (v, h, n)-space, where it depends extremely sensitively on the parameter I;
furthermore, the family consists of canard periodic orbits with a single fast segment,
very much like those that one finds near the begining of a classical canard explosion
[12, 30].

The purpose of figure 10 is to show how the canard orbit ξ6 terminates when
I∗ is approached along the branch shown in figure 9(b). To this end, ξ6 is shown in
figure 10(a) at three different values of I, namely at I2 = 4.83607, at I1 = 4.83508
and at I = I∗ ≈ 4.83411. (Due to the very small scale of figure 10(a), these canard
orbits have been computed with NTST = 800 mesh intervals.) Highlighted on the
surface of periodic orbits are the associated periodic orbits Γ2, Γ1 and Γ∗ that exist
at these values of I. Overall, we see that, as I is decreased, the size of the periodic
orbit and its h-distance from the canard orbit ξ6 decreases. At the end point I = I∗

the canard orbit ξ6 appears to spiral very close to the (repelling) periodic orbit Γ∗.
This convergence process is also shown in panels (b) and (c) in projections onto the
(v, n)-plane for I = I2 = 4.83607 and I = I∗ ≈ 4.83411, respectively. We checked that
the canard orbit ξ6 is again representative. All canard orbits ξ4–ξ8 show the same
convergence behaviour towards Γ∗.

The picture that emerges is that the dynamics we find near I = I∗ can be viewed
as a “slow passage through a canard explosion”; recall the canard-type nature of the
family of periodic orbits in figure 10 and its extremely sensitive dependence on I. This
phenomenon has recently been studied in [35, 40, 41] in the context of systems with
three different time scales, where it was shown to exist near a folded saddle-node.
Indeed, we find for ε = 0 the transition of the folded singularity from folded node, via
a folded saddle-node, to folded saddle when I is changed through I = Î ≈ 4.83378.
Our evidence suggests that the saddle-node is of type II in the terminology of [56, 61],
which means that at a distance of O(ε) of the folded node one finds a Hopf bifurcation.
This type of Hopf bifurcation is generally referred to as a singular Hopf bifurcation
[3, 4, 10, 31]. Recently, Guckenheimer [31] developed a generic model vector field of
a singular Hopf bifurcation in the context of slow-fast systems with one fast and two
slow variables, and showed that singular Hopf bifurcation gives rise to canard orbits
that organize associated MMOs. Furthermore, he investigated the geometry of slow
manifolds for the case that the Hopf bifurcation occurs near a folded saddle, in which
case there is a single canard orbit nearby. The scenario we find here is consistent with
what one would expect near a singular Hopf bifurcation. However, it is evident from
figure 10 that we are dealing with a more complicated case, the “unfolding” of which
by a normal form is yet unknown. In particular, we find that the canard orbits interact
with a repelling periodic orbit that is connected to the Hopf bifurcation via a nearby
saddle-node of limit cycle bifurcation. Overall, our numerical investigations suggest
that there is an underlying bifurcation structure that involves the interaction of a
folded saddle-node with a singular Hopf bifurcation near a higher-order degeneracy.
The study of this (type of) bifurcation in the 3D reduced Hodgkin-Huxley model, as
well as in simpler generic model systems, such as that in [31], is a very interesting
topic for future research.
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5. Discussion

We introduced and demonstrated a numerical method for the computation of branches
of canard orbits of slow-fast ordinary differential equations in system parameters.
It has at its core the continuation of solution families of suitably defined two-point
boundary value problems. This setup allows for efficient and accurate computations
and, in particular, it deals effectively with the challenge of strong attraction to
and repulsion from canard orbits. We introduced the associated boundary value
condition for slow-fast systems in R3 with two slow and one fast variables, where
canard orbits are structurally stable and isolated because they arise as transverse
intersections of two-dimensional attracting and repelling slow manifolds. As we have
demonstrated, once they have been detected, such canard orbits can be continued in
system parameters, including the time-scale parameter ε. In particular, we find that
fold points on the branches bound the maximal range of ε where canard orbits can be
found and, hence, may give an estimate of the validity range of theoretical existence
results (that are typically obtained near ε = 0). Notice further that a fold of a branch
corresponds geometrically to a (quadratic) tangency of the associated slow manifolds.
Our method was explained here for the case that the equations are in the standard
form where ε appears explicitely as a factor. Nevertheless, it is possible to compute
slow manifolds and canard orbits in much the same way also in certain situations
where the separation of time scales is not immediately apparent from the equations;
see [17] for an example.

The two examples presented here not only demonstrate how the method works
in practice, but also illustrate how the continuation of canard orbits can contribute to
an understanding of dynamical phenomena in a given slow-fast system. In particular,
we found in a reduced 3D Hodgkin-Huxley model that branches of canard orbits end
near a folded saddle-node (of type II) and the associated singular Hopf bifurcation.
A more detailed case study of this phenomenon under variation of other system
parameters emerges as an promising project for future research. In fact, investigation
of folded singularities, singular Hopf bifurcation and their interactions is ongoing and
not complete. We expect that the continuation of canard orbits may also contribute
to the study of different generic cases in representative models [31, 40, 61] (that play
the roles of normal forms). In particular, it will be of great interest to consider how
slow manifolds interact with stable and unstable manifolds of equilibria and periodic
orbits of saddle type, which can be computed with similar methods [38, 39].

More generally, folded singularities and singular Hopf bifurcation may give rise
to mixed-mode oscillations if a reinjection mechanism is present. The self-coupled
FitzHugh-Nagumo system [16, 61] and the 3D reduced Hodgkin-Huxley model [53, 54]
considered here are examples of systems with these type of singularities and associated
MMOs. As we demonstrated, the computation of the associated slow manifolds and
branches of canard orbits for such systems is a helpful tool for the investigation of how
different patterns of MMOs arise; other examples of systems where the continuation of
canards may prove fruitful include [1, 41, 46, 62]. Similarly, canard orbits may play a
role in models of neurons to explain the transition between different types of bursting
(for example, between square-wave, elliptic or parabolic bursting [50]), or between
bursts with different numbers of spikes in the active phase [32, 58]. Therefore we
expect that numerical methods as presented here may also contribute to the analysis
of bursting phenomena.

Finally, it appears feasible to generalize and extend the BVP approach taken
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here so that it can also be used for the investigation of slow-fast systems with higher-
dimensional phase spaces. A geometric theory of multiple times-scale systems in higher
dimensions is not yet available, but it is natural next step to consider canard orbits
in the locus of intersection of two slow manifolds of a slow-fast systems in Rn for
any n ≥ 3. Generically, the intersection locus consists of structurally stable and
isolated (one-dimensional) canard orbits if and only if the sum of the dimensions of
attracting and repelling slow manifolds adds up to n + 1. However, the intersection
locus may be of higher dimension or of higher codimension; the case of a k-dimensional
intersection locus for k > 1 is also refereed to as a “black swan” [55]. We believe that,
in combination with ideas from [38] and [39], the approach taken here may also be used
to detect and then continue (families of) canard orbits in such more general situations.
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