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ABSTRACT 

New rotationally invariant texture feature extraction 
methods are introduced that utilise the dual tree complex 
wavelet transform (DT-CWT). The complex wavelet 
transform is a new technique that uses a dual tree of 
wavelet filters to obtain the real and imaginary parts of 
complex wavelet coefficients. When applied in two 
dimensions the DT-CWT produces shift invariant 
orientated subbands. Both isotropic and anisotropic 
rotationally invariant features can be extracted from the 
energies of these subbands. Using simple minimum 
distance classifiers, the classification performance of the 
proposed feature extraction methods were tested with 
rotated sample textures. The anisotropic features gave the 
best classification results for the rotated texture tests, 
outperforming a similar method using a real wavelet 
decomposition. 

1. INTRODUCTION 

Efficient content based retrieval of images and video is 
ultimately dependent on the features used for data 
annotation. Recently developed texture based features 
have proved to be one of the effective descriptions of 
content. Spatial-frequency analysis techniques using 
Gabor filters and wavelets have provided good 
characterisation of textures in controlled environments. 
However, in order to better characterise textures, extracted 
features must capture the nature of the texture invariant to 
rotational, shift and scale transformations. 

The focus of the work presented here is rotational 
invariance of texture features. This can be classified into 
two types: isotropic and anisotropic. Features extracted 
with isotropic rotational invariance represent averaged 
measures from annular frequency regions. Anisotropic 
rotational invariance features also contain measures from 
annular frequency regions but also represent the angular 
distribution of frequency content. 

Initial attempts to produce isotropic and anisotropic 
rotationally invariant texture features from wavelet 
decompositions used the steerable pyramid transform [2 ] .  
This transform has the disadvantage of being considerably 
overcomplete with the amount of overcompletenes 
increasing with the number of analysed orientations. 
Classic dyadic wavelet decompositions have also been 
used to produce rotationally invariant features. Such 
features have been extracted from simple combinations of 
subband measures [ 3 ]  as well as from hidden Markov 
models used to model rotation variations in the wavelet 
output [4]. The use of such decompositions has the 
disadvantage of lacking directional selectivity. However, 
Wu and Wei [5] used a spiral resampling lattice before 
using a similar dyadic wavelet packet decomposition to 
produce rotationally invariant features. 

Non-separable wavelets have been implemented to 
obtain more flexible isotropic and anisotropic rotationally 
invariant features [6] .  Similar features have been 
extracted using Gabor filters (the G-let) implemented in 
the Fourier domain [ 3 ]  to produce isotropic rotationally 
invariant features. The disadvantage with these methods is 
the complexity associated with using a frequency 
decomposition (FFT or similar) before analysis. 

The dual tree complex wavelet transform has already 
been shown to provide good results for unrotated texture 
classification using a wavelet packet type decomposition 
[9]. In this paper we use this decomposition to extract 
efficient isotropic and anisotropic rotationally invariant 
features. This is made possible because the DT-CWT 
decomposition gives good directional selectivity whilst 
remaining computationally efficient and does not require a 
resampling lattice. 

2. DUAL TREE COMPLEX WAVELET 
TRANSFORM 

The DT-CWT is a spatial frequency transform that uses 
spatial filters to decompose an image or image region into 
dyadic subbands similarly to the classic dyadic wavelet 
transform. 
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Shift invariance can be achieved in a dyadic wavelet 
transform by doubling the sampling rate. This is effected 
in the DT-CWT by eliminating the down sampling by 2 
after the first level of filtering. Two parallel fully 
decimated trees are constructed by placing the 
downsampled outputs of first level filters of tree one 
sample offset from the outputs of the other. To get 
uniform intervals between the two trees' samples, the 
subsequent filters in one tree must have delays that are 
displaced by one half sample. For linear phase, this is 
enforced if the filters in one tree are of even length and the 
filters in the other are of odd length. Additionally, better 
symmetry is achieved if each tree uses odd and even filters 
alternatively from level to level. The filters are chosen 
from a perfect reconstruction biorthogonal set and the 
impulse responses can be considered as the real and 
imaginary parts of a complex wavelet [ I ] .  

Application to images is achieved by separable 
complex filtering in two dimensions. The 2: 1 redundancy 
in one dimension translates to 4:l redundancy in two 
dimensions with the output from each filter and its 
conjugate forming six orientated subbands at each scale. 
Complex wavelets are able to separate positive and 
negative frequencies thus differentiating and splitting the 
subbands of a dyadic decomposition into subbands 
orientated at +15", ?45", ?75" as shown in figure 1. 

This gives 6x3 orientated subbands with two residual low- 
low pass images. i.e. 20 subbands in all. Channel 
energies were extracted from each subband using the L1 
norm: . N N  

where ek is the energy for the krh subband of dimension 
NxN with coefficients xk (i, j )  . 

3.1. Isotropic Rotationally Invariant Features 

In a similar scheme to that produced by Porter for the 
DWT [3], isotropic rotationally invariant features are 
produced by summing the energies from each of the 
subbands at each scale. As the subbands at ?45" were 
judged to be at significantly different radial frequencies 
than the rest, an alternative feature set was constructed that 
omitted them from the summations. Both cases gave 
feature vectors of length 4. 

3.2. Anisotropic Rotationally Invariant Features 

At each scale anisotropic features were extracted by using 
the discrete Fourier transform. If f9 represents the 6 
orientated channel energy values at a particular scale then 
the DFT is given by: 

c 

q=o 
A 

The zeroth harmonic, f ,  , is just the DC summation. The 

magnitudes of f, , f 2  and f 3  (the first, second and third 
harmonic) can be used as anisotropic features at each scale 
or can be combined into single features. Coefficients 

above the third harmonic ( f4, f,) are above the Nyquist 
limit and therefore not useful. Greenspan et al. [7] have 
used a similar analysis technique with the steerable 
pyramid and rotated filters. Additional anisotropic 
invariant features using autocorrelation measures of these 
subband energies have been developed by Hill et al. [8]. 

A A  A 

A , .  

Figure 1: Frequency plane showing 6 orientated 
subbands of the complex wavelet output 

3. EXTRACTION OF ISOTROPIC AND 
ANISOTROPIC ROTATIONALLY INVARIANT 

FEATURES FROM THE DT-CWT 

In the subsequently described experiments, the texture 
image regions are decomposed into six bandpass 
orientated subbands at each scale with the low-low 
subbands being recursively decomposed for three levels. 
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4. EXPERIMENTAL RESULTS 

Sixteen textures were taken from the Brodatz texture 
album to test the classification performance of the 
developed features. These textures are shown in figure 2 
and were chosen to represent textures that contained a 
range of periodic, stochastic and directional elements. 
The textures were scanned as eight-bit raw grey level 
images of size 256x256 pixels. 

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on March 5, 2009 at 07:49 from IEEE Xplore.  Restrictions apply.



Figure 2: 16 Brodatz textures used in texture classification 
experiments 

Feature Extraction 
Technique 

Complex Wavelet 
1: Sum of 6 channels 

at each scale 
Complex Wavelet 

8: j0, -f,, j 2and  
A 

f7 for each scale 

Many different configurations of feature vectors are 
possible from the DT-CWT and the rotational Fourier 
analysis described above. The following feature vectors 
were tested in the experiments resulting in tables 1 and 2. 

1. Average of the 6 subband channel energies at each 
scale. [4 features] 

2. Average of 4 subbands channel energies (i.e. no k45" 
subbands) at each scale. [4 features] 

3. Magnitudes of jo and jl for each scale. [7 features] 

4. Magnitudes of jo and j2 for each scale. 17 features] 

5. Magnitudes of jo and j3 for each scale. [7 features] 

6. Magnitudes of jo for each scale. Each of fl , f 2  and 
n n  

No. of Correct 

Rate (%) 
features Classification 

4 91.30 

13 93.75 

n 

Real wavelet [lo] 
Summation of channel 
energies at each scale 

f, averaged over all the scales. [7 features] 

7. Magnitudes of jo, jl and j2 at each scale.[lO 
features] 

8. Magnitudes of jo, j, , j2 and j3 for each scale. 113 
features] 

4 87.35 
Of course all configurations include an energy measure for 
the residual low-low channel values. 

One version of each texture class was used for training at 
angles of 0", 30", 45" and 60". Seven different versions of 
each texture were used for classification and presented at 
angles 20°, 70", 90", 120", 135" and 150". This gave 42 
classifications per texture and 672 in all. Each training 

texture was tiled into 16x16 squares with feature values 
being extracted from the complex wavelet decomposition 
of each tile leading to a mean vector and covariance 
matrix for each texture class. The four angles of training 
were used to enable the mean feature vector and the 
covariance matrix to be properly estimated under texture 
rotation. Similarly, the mean feature vectors were 
extracted from the test textures from the complex wavelet 
transform of tiled 16x16 squares. Textures were classified 
using a minimum Mahalanobis distance classifier. 

A 9-7 biorthogonal wavelet pair was used as the odd 
filters and a 6-2 biorthogonal wavelet pair was used for 
the even filters. These were chosen because they are 
linear phase, approximately matched to give shift 
invariance and more spatially localised than the filters (13- 
19 & 12-16) used by Kingsbury in [l]. Good spatial 
localisation can be important for texture analysis and when 
using such small analysis areas (16x16) can minimise edge 
effects. No better results were obtained with the larger 
filters developed by Kingsbury in [I] even when 
decomposing using the entire texture image. 

Table 1 shows the correct classification results of the 
best feature sets using decompositions on areas of 16x16 
pixels. Inclusion of the 45" subbands gave the best results 
for the isotropic rotationally invariant feature vectors (i.e. 
feature vector 1). The best results for the anisotropic 
rotationally invariant feature vectors was achieved with the 
full 13-length feature vector (i.e. feature vector 8). For 
comparison, the best correct classification rate with the 
same data for the isotropic rotationally invariant features 
extracted from a DWT as developed by Porter [lo] are 
shown. Table 2 shows the correct classification results of 
the best feature vectors using wavelet decompositions over 
the entire images for both training and classification. 

Table 1: Classification performance of wavelet features 
on rotated images: decomposition on 16x16 areas 
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Feature Extraction 
Technique 

Complex Wavelet 
1: Sum of 6 channels 
at each scale 

No. of Correct 

Rate (%) 
features Classification 

Complex Wavelet I 13 I 90.33 

Real wavelet [ 101 73.21 
Summation of channel 

Table 2: Classification performance of wavelet features 
on rotated images: decomposition on whole images 

The features extracted using 16x 16 areas provided better 
classification results. This is likely to be because the 
variation in covariance distribution of the features was 
better estimated and therefore the Mahalanobis distance a 
better measure. However, in cases where the smallest 
repeating element was larger than this area, larger or entire 
image decompositions would be preferred. 

5. CONCLUSION 

The ability of the DT-CWT to distinguish between 
positive and negative frequencies results in six orientated 
subbands at each scale when it is applied in two 
dimensions. A discrete Fourier transform of these 
subband energies results in a harmonic representation of 
the angular frequency content. This is not only rotationally 
invariant but characterises the angular frequency 
distribution i.e. anisotropic rotational invariance. 

The Classification performance in the conducted tests 
of a feature vector formed from rotational harmonics 
extracted from a DT-CWT decomposition was over 5% 
better than a similar method based on a real wavelet 
transform. Although less well matched to produce shift 
invariance the adopted filters produced identical or better 
classification results as those used by Kingsbury in [ l ]  
whilst being more spatially localised. 

This method is considerably less complex than previous 
attempts at producing anisotropic rotationally invariant 
features [7]. The complexity of the method is roughly 
equivalent to four single two dimensional wavelet 
transforms. Although this is a significant increase in 
complexity over the normal DWT it still represents less 
complexity than a 2D-FFT decomposition for the same 
size of image. 
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