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Optimization of Image Coding Algorithms and 
Architectures Using Genetic Algorithms 

David R. Bull, Member, IEEE, and David W. Redmill 

Abstruct- This paper addresses the application of genetic 
algorithm (GA)-based optimization techniques to problems in 
image and video coding, demonstrating the success of GA’s 
when used to solve real design problems with both performance 
and implementation constraints. Issues considered include prob- 
lem representation, problem complexity, and fitness evaluation 
methods. For off-line problems, such as the design of two- 
dimensional filters and filter banks, GA’s are shown to be capable 
of producing results superior to conventional approaches. In 
the case of problems with real-time constraints, such as motion 
estimation, fractal search, and vector quantization codebook 
design, GA’s can provide solutions superior to those reported 
using conventional techniques with comparable implementation 
complexity. The use of GA’s to jointly optimize algorithm per- 
formance in the context of a selected implementation strategy is 
emphasized throughout and several design examples are included. 

Index Terms-Image coding, video coding, genetic algorithms, 
digital filters, motion estimation, fractal coding, vector quantiza- 
tion. 

I. INTRODUCTION 
HE requirements for efficient image and video cod- T ing techniques increase daily, in line with the growth 

of the telecommunications and consumer products indus- 
tries. Applications range from digital broadcast (for both 
studio and consumer) and cable and satellite delivery systems, 
through video conferencing and computer-based multimedia 
to wireless applications. All of these share the requirement for 
algorithms which faithfully code the original picture data for 
transmission (or storage) at reduced bit-rates across bandlim- 
ited channels. 

A block diagram showing the conventional approach to 
image coding is given in Fig. l(a). This shows the primary 
components in the coding process. The image is initially 
decorrelated (typically using a discrete cosine transform (DCT) 
operating on subimage regions) in order to reduce the natural 
interpixel dependence present in most scenes. Alternative 
techniques include predictive coding, wavelet or subband 
approaches, fractal coding, and vector quantization. Good 
overviews of these techniques are given in [ l ]  and [2]. After 
quantization, the remaining bits are entropy-coded in order 
to further reduce the transmission bandwidth requirements. 
The coded information will then be transmitted or stored 
(experiencing possible corruption by noise and or multipath 
effects), requiring the addition of channel coding for protection 
or error-resilient coding methods. The decoder section is 
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essentially the inverse of the above, ideally producing at its 
output a perceptually perfect reconstruction of the original 
input. r 

In the case of video signals, the codec must deal, not 
only with a two-dimensional (2-D) spatial domain, but also 
with a third independent variable: time. Interframe correlation 
is generally exploited by employing some form of motion- 
compensated prediction. The transmitted information then 
simply comprises a set of motion vectors and a coded form 
of the motion-compensated frame difference signal. This is 
shown conceptually in Fig. l(b). In practice, especially at 
lower bit-rates, the decoded image will inevitably be percep- 
tually degraded. A trade-off thus exists between bit-rate (or 
compression ratio) and image quality. The aim of any image 
coder is thus to yield the best quality reconstructed image at 
the lowest implementation cost, for a given compression ratio. 

Genetic algorithms (GA’s) have been recognized for some 
time as a powerful tool for the optimization of difficult 
problems in engineering design. This paper addresses the 
application of these techniques to problems in image and video 
coding and demonstrates their potential when used to solve real 
design problems with both performance and implementation 
constraints. GA’s embody an adaptive search strategy based on 
the genetic processes of biological organizms. The foundations 
of GA’s were laid down by Holland [3] and are well described 
in many texts and tutorial papers (for example, see Beasley, 
Bull, and Martin [4], [ 5 ] ,  Goldberg [6], and other papers in 
this special section). The power of GA’s comes from their 
robustness and ability to search multimodal, multidimensional 
search spaces which may be discontinuous or noisy. The suc- 
cess of any GA-based optimization strategy is, however, highly 
dependent on problem representation, coding, and objective 
function formulation. 

This paper reviews the application and scope of GA tech- 
niques to problems in image and video coding. Design prob- 
lems, ranging from I-D and 2-D filter and VQ codebook 
design, to motion compensation, registration. and fractal search 
are addressed. Section I1 describes the use of GA’s for 
the design and realization of 1-D and 2-D digital filters. 
Emphasis is placed on reduced complexity implementations 
of separable and nonseparable filters for high throughput or 
low power applications. Extensions of this work to filter-bank 
implementations for subband and wavelet decompositions are 
discussed in Section 111. 

The main reason cited against using GA’s for real-time 
coding applications is their computational complexity and 
unpredictable convergence characteristics. It is demonstrated 
in Sections IV and V, however, that for certain real-time image 
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Fig. I .  Basic image and video coding schemes. (a) Image. (b) Video 

coding applications-block matching, motion estimation, and 
fractal search-algorithms incorporating GA’s can compete 
favorably with the exhaustive or hierarchical search methods 
conventionally employed. An area closely related to motion 
estimation is that of image registration. Although not in- 
cluded as a component in existing image coding schemes, this 
may become important for efficient transmission and storage 
for multimodal imaging applications such as stereoscopic or 
healthcare telematic applications. Two further (potentially) 
real-time applications discussed in Sections VI and VI1 are 
object-based coding and the design and searching of code- 
books for vector quantization. These are emerging areas with 
significant potential. 

11. DIGITAL FILTER DESIGN FOR IMAGE CODING 

A. Introduction 

The problem of efficiently realizing high-performance cod- 
ing algorithms with diverse design constraints is immense. 
Most design techniques do not cater for broad-based opti- 
mization but instead have only a local domain of influence. 
This is exemplified in filter design, where first a transfer 
function is developed to satisfy a given frequency response 
template; then, coefficients are individually (suboptimally) 
quantized; and finally, decisions are made on architectural 
aspects (usually with no formal optimization criteria). GA’s 

have the potential to jointly optimize these diverse and often 
conflicting constraints. 

Applications of 1-D and 2-D digital filters in video and 
image coding include compression coding, scanning rate con- 
version, smoothing, and aperture correctioln [2]. Due to the 
high computational demands imposed by video digital sig- 
nal processing (DSP), optimization and complexity reduction 
methods are in widespread use. In filtering, for example, real- 
ization structures generally aim at eliminating the requirement 
for explicit multipliers and range from the use of very simple 
structures such as comb filters, through efficient cascades of 
simple filter sections, to methods which exploit arithmetic 
redundancy in the quantized coefficient set [7]. Other opti- 
mization methods employed to realize efficient fixed-function 
DSP systems have included linear and dynaimic programming 
[SI and simulated annealing [9]. 

Many of the above approaches constrain the individual filter 
coefficients to be simple combinations of signed power-of- 
two (SPT) terms, thereby enabling more complex multipliers 
to be replaced by shift and addition/subtraction operations. 
However, such restrictions imply a discrete and nonuniformly 
populated solution space which is incompatible with many 
optimum filter design methods. In the past, this has been 
overcome either by rounding coefficients generated by optimal 
continuous designs, or by searching the solution space using 
simulated annealing [9] or linear programming methods [lo]. 
The rounding approach is known to yield suboptimal filters, 
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G, G2 G, ... Gk ... Gm 

c, c, c, ... c, ... c, 
Fig. 2. Structured GA chromosome organization. 

while the search-based methods require a large computational 
effort to effectively search the solution space while not guar- 
anteeing an optimum solution. GA’ s have previously been 
identified as a useful tool for efficiently optimizing large 
discrete multimodal search spaces. This section reviews their. 
use in this context. 

B. 1-D FIR Filter Optimization 
Due to the normal requirement for phase linearity in im- 

age or video coding, one-dimensional (I-D) finite-duration 
impulse-response (FIR) filters find widespread application. The 
difference equation for a 1 -D FIR filter is given in (I) .  Here 
the output y[n] is produced through the convolution of an input 
sequence z[n] (typically the rows or columns of a 2-D image) 
with a filter impulse response h[n]. 

N 

y[n] = h[i]z[n - i]. ( 1 )  
7 =O 

GA’s have been applied with some success to the design 
of I-D digital filters with discrete coefficients. Schaffer and 
Eshelman have reported good results for multiplier-free filters 
where coefficients are restricted to a small number of signed 
power of two terms [ 111. Ifeachor and Harris [ 121 introduce 
a flexible approach to the design of frequency sampling FIR 
filters claiming filter performances equal or better to those 
produced using linear programming with significantly reduced 
design time. 

Recent work by Wade et al. [I31 describes a method for 
designing multiplier-free FIR filters comprising an ordered 
cascade of parameterized linear phase primitive sections. They 
employ a weighted fitness function which addresses complex- 
ity as well as filter performance in the following manner: 

1 2 z 

where the first term represents the sum of extrema1 errors of 
a given design in the frequency domain and the second two 
terms, weighted adder and delay counts. A structured CA is 
adopted which embodies a multilevel chromosome structure 
(Fig. 2) where higher level genes define the primitive type ( T k )  

and activate lower level genes containing information such as 
delay values D(Th) and power of two coefficient values (C,). 
This approach yields efficient albeit high order filters in a low 
design time compared with linear programming approaches. 
Typical savings quoted for a variety of filter specifications 
range up to 50% in chip area. 

C. Graph-Based Filter Optimization 

The directed graph is well established as a vehicle for 
algorithmic engineering in all aspects of signal processing [7], 
[14], [lS], including the synthesis of transforms, I-D and 2-D 
filters, subband coders, and more general matrix-vector oper- 
ations. It offers a simple yet flexible means of manipulating 
DSP algorithms and provides a vehicle for both design and 
architectural mapping while enabling easy assessment layout 
regularity, interconnectivity, timing, latency, and arithmetic 
complexity. In the work of Bull and Horrocks [7], directed 
graph techniques are employed to optimize the inner product 
formation process for FIR digital filters. 

A directed graph can then be represented in matrix form (3 ) ,  
where v[n] contains the values at each vertex, F ,  contains the 
gains for each internal edge and B contains gains for each 
edge from a source vertex to each internal vertex. Note that 
FT must be lower triangular with zero diagonal to ensure a 
computable graph. An example graph is given in Fig. 3, for 
coefficient values 17 and 59. The matrix form for this graph 
is given in (4) 

?i[n] =F?v[n] + Bz[n] ( 3 )  

(4) 

A simple goal of the optimization process might be to obtain 
the graph using the smallest number of adders and subtractors, 
with a suitably scaled fitness function, based on some distance 
measure, used to support this criterion. A GA approach to this 
problem has been presented by Bull et al. in [ 161. A two-string 
chromosome was employed to encode the solutions: the first 
was used to represent the source vertices for the input edges 
to each vertex and the second to code the edge gains. For 
example, the chromosome representing the graph of Fig. 3 
would be 

string1 = (1, I, 1 , 2 , 2 , 3 )  
string2 = (00100; 00000,00010, 

00000,00000, 0000l) 

= (a4, 1 , 2 2 ,  1 ,1 ,2 .  

Graph vertices in this case were restricted to comprise two 
input adders, and graph edges were constrained to powers- 
of-two values. The standard genetic operators were applied to 
both strings except that, in the case of the first string, mutation 
was applied in such a way as to ensure the preservation of 
a lower triangular matrix and hence a computable graph. In 
addition to crossover and mutation, a repair operator was also 
used to form a valid solution where possible from a nonvalid 
one. The fitness of a candidate solution was defined in order to 
address both the validity and complexity of solutions. Using a 
crossover probability of 0.6 and a mutation probability of 0.02 
for both strings, with a range of multiplicative coefficients, for 
different matrix and population sizes, an optimum solution 
was found in 85% of runs. These figures were compared with 
a random search (over 100000 individuals), which yielded a 
similar solution in only 0.08% of trials. 
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where B denotes the maximum shift value used. Since the filter 
coefficient space is discrete and sparsely populated, it is useful 
to incorporate a gain term G in the transfer function. For the 
octal symmetry conditions the transfer function then becomes 
as in (7) at the bottom of this page. If T ( f )  is the desired 
frequency response of the filter and W(f)  is a weighting 

x[nl 
Flg. 3. Directed graph for generating products 17x[n] and 59x[n] .  

- -  
function, the cost function of the minimax design process, 
for a 2-D multiplierless FIR filter specified by G ,  {h (n ) }  can 
be formulated as in (8), where f k  represents a predefined 
sampling grid for evaluating (7) 

An iterative extension of the above algorithm was ap- 
plied in [I61 to the Problem of formin& a multiPle-outPut 
directed graph (as would be required by a 1-D FIR fil- 
ter) using the minimum number of vertices. This was ap- 
plied to a range of filters including an order 31 linear- 
phase high-pass FIR filter with the following 8 bit coeffi- 
cients { 1 , 2 , 3 ,  5,6,9,10,14,30,49,70,90,107,12~,127}. Re- 
sults, using a support matrix of 35 vertices over 100 trials 
showed that an optimum (10 adder) solution was found in 
44% of the trials. 

111. TWO-DIMENSIONAL DIGITAL FILTER DESIGN 

A. Filter Design Formulation 

(n1, n2) has a transfer function ( 5 )  
A 2-D digital filter with impulse response h,(n), nT = 

n 

with 

fT = (fl, f 2 )  E !J?. ( 5 )  
To ensure a low-pass linear-phase response the coefficients 
must obey even symmetry in both the horizontal and verti- 
cal directions and for a filter with an odd number of taps 
in both directions this can be expressed as h(nl,  n2) = 
h(nl ,  -n2) = h(-n,l, 722) = h(-nl ,  -n2) with nl = 
- -NI ,  . . .  , 0, . . .  , N I ,  and n2 = -N2,  . . .  , 0, .:. , N2. If 
the filters are further constrained to be horizontally and ver- 
tically equivalent, then symmetry must also exist about the 
diagonals; thus, h(n1, n 2 )  = h(nz, nl) and N I  = N2 = N .  
Coefficient values therefore need only be specified for the 
range 0 5 T L ~  5 N and 0 5 122 5 nl. Coefficients h(n) 
are assumed to be sums or differences of two power-of-two 
terms, i.e., 

h(n)  E D  

B. Circularly Symmetric Low-Pass Filters 

In [17] and [18], Sriranganathan et al. encode each co- 
efficient in the range 0 5 nl 5 N and 0 5 122 5 n1 

as a gene within the GA, while remaining coefficients are 
inferred by octal symmetry. Each coefficient consists of 2 
terms, c k  .2-9'". These are specified using 1 bit for the sign of 
ck and 3 or 4 bits for the shift value, g k  (depending on whether 
B > 8). The value of G is inferred from the normalized ripple 
characteristics of the final filter. 

The use of restricted signed power of two coefficients 
has been extended by the authors to allow an unrestricted 
allocation of SPT terms to individual coefficients while still 
maintaining a constraint on the total number of terms available 
in the design process. This has yielded gre,ater improvements 
in filter performance, due to the ability of ihe GA to allocate 
terms according to individual coefficient sensitivities. Table I 
shows the results of this work compared with those given 
in [9], [lo] using SA and mixed integer linear program- 
ming (LP) with identical constraints on the filter coefficients. 
It should be noted that in the case of LP, filters B, C, 
and H represent designs to B bit finite ]precision whereas 
filters A, D, and G are the result of 2-SPT optimization. 
Also included are the full precision minimax optimization 
results (opt) and designs obtained by applying the McClellan 
transform (MCT) to an optimum 1-D solution. For the GA 
cases, GA1 represents the constrained case allowing, at most, 
2 SPT terms per coefficient whereas GA2 represents the 
unconstrained case with an average of 2 terms per coefficient. 
An example frequency response plot for the 7x7 filter (C) 
designed using the GA approach is shown in Fig. 4. As 
can be observed, GA's are capable of producing results 
superior to those obtained using competing methods. Even 
with restricted dynamic range and only two nonzero terms per 
coefficient, in many cases their performance approaches that 
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TABLE I 

MCCLELLAN TRANSFORM DESIGN, LINEAR PROGRAMMING (LP) 1 lo], SIMULATED ANNEALING (SA) [9], 
AND GENETIC ALGORITHMS (GAI AND GA2) 

PERFOKMANC~ COMPARISONS BETWEEN 2-D MULTIPLIERLESS FIR FILTER DESIGNS USING FULL PRECISION MINIMAX OPTIMIZATION (OPT) 191, 

Normalised frequency (fl) 
-0.5 -0.5 Normalised frequency (12) 

Fig. 4. Frequency response plot for 7 x 7  filter (C) 

TABLE I1 
FILTER COEFFICIENTS FOR DESIGN c (SCALE FACTOR G = 4.15 1 48) 

of the optimum (infinite precision) minimax solution, albeit 
with greatly reduced implementation complexity. An example 
set of coefficient values (for filter C in Table I) is presented 
in Table 11. 

The size of the search space for this problem, measured 
in terms of the representation, used ranges from 254 for a 
5x5  filter with 7-bit dynamic range to 21G5 for a 9 x 9 filter 
with 1 1-bit dynamic range. The robustness of the GA-based 
design method is demonstrated in (181. Using 20 different 
random number seeds for filter C the GA yielded an average 
ripple value of 0.061 61 with a best result of 0.0437 and a 

553 

Best 
Average 

Population size = 80 
Crossover rate = 0.8 
Mutation rate = 0.003 

0 200 400 600 800 1000 1200 1400 1600 
Generations 

0 

Fig. 5. CA convergence characteristics. 

variance of 0.0133. An example of convergence is presented 
in Fig. 5 which shows both average and best performance of 
the population in each generation for filter C. 

C. Diamond-Shaped Filters for Quincunx Subsampling 
A second type of filter considered in [I81 is useful when 

subsampling on a diagonal or quincunx sampling lattice. In 
order to avoid aliasing, low-pass filtering is necessary prior to 
subsampling and it can be shown that the optimum half-band 
low-pass filter has a frequency response of 

H(f1, f 2 )  = 1, f l  + f 2  < 0.5 
0,  fl  + .f2 > 0.5. (9)  

This corresponds to a diamond-shaped pass-band in the 2-D 
frequency domain. For down-sampling it is also useful for the 
filter to have skew symmetry along the frequency diagonals 
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GA’s were used to design this type of filter using an approach 
similar to that employed for the circularly symmetric case. 
An example result is shown in Fig. 6. This filter is specified 
with band edges at normalized frequencies of 0.3 and 0.7. 
The stopband attenuation achieved for this design, again with 
the constraint of 2 nonzero digits (over an 11-bit dynamic 
range) was -32 dB (6 = 0.0252). This compares with 
a value of -49.59 dB for the same design with 11-bit 
full precision integer coefficients obtained using a linear 
programming approach [IO] and -27.3 dB for the case of 
rounding this to 2-SPT. 

I v .  DIGITAL FILTER BANKS FOR IMAGE CODING 

A. Subband Coding 

Subband decompositions [ 11, [20] encompass a large variety 
of transforms and filter types including: fast Fourier transform 
(FFT), discrete cosine transform (DCT), overlapped trans- 
forms, quadrature mirror (QMF) filters, and discrete wavelet 
transforms. The latter in particular are finding increased ap- 
plication in coding systems, mainly due to the perceptually 
preferable nature of the artifacts introduced during compres- 
sion. In subband image coding, an image is split into a 
number of different frequency bands obtained by filtering and 
subsampling the original image. Good compression can be 
achieved if most of the original information is contained within 
relatively few subbands. 

One important class of subband decomposition, referred 
to as a wavelet transform, is achieved by a cascade of 2- 
band systems [Fig. 7(a)] recursively applied to the low band 
[Fig. 7(b)]. 

Consider the basic two-band building block shown in 
Fig. 7(a). This can be characterized by 

X (  z) = X (  2) { Ho (2)Go ( 2 )  + HI (z)Gi ( 2 ) )  

+ X(- z ) {Ho( - z )Go(x )  + Hi(-z)Gi(z)}. (11) 

The term X (  -2)  represents an aliasing component which can 
be removed when 

H i ( z )  = P G o ( - z )  
and 

An important class of alias cancellation filters are QMF filters 
which are defined with H l ( z )  = H C ~ ( - Z - ~ ) .  These define the 
high-pass filter to be the mirror of the low-pass filter and hence 
only require the design of one filter. Perfect reconstruction can 
be achieved by constraining the transfer function to be a pure 
delay term. 

Typical design objectives for this type of system generally 
represent a trade-off between complexity, frequency response, 
and reconstruction error. It may at first appear that GA’s 
could be used directly to jointly optimize Ho(z) and H l ( z )  to 
achieve both close to perfect reconstruction and efficient filters. 
However, for image coding applications a significant problem 
arises: optimality is generally subjective (and traditional objec- 
tive measures such as PSNR do not always correlate well with 

1 

0.8 

0.6 

0.4 

0.2 

0 
0.5 

0.5 

-0.5 -0.5 
Normalisedfrequency (11 ) Normalised frequency ( f2 ) 

Fig. 6. Frequency response for a 13 x 13 diamond-shajped filter with B = 11, 

a subjective assessment of image quality). Clearly, in order 
to use genetic algorithms, it is necessary to define in some 
analytic way, what the optimality criteria for a subband filter 
bank are. Although complexity can be relatively easily defined, 
the issue of compression quality is clearly more difficult. 
Useful objective functions might include some combination of 
frequency response and impulse response characteristics from 
the individual filters. Other objective quality measures may 
include the closeness to perfect reconstruction, coding gain or 
entropy. 

It is clear that before GA’s can be usefully employed in 
this area, there are two issues which need to be addressed: the 
representation to be used and the design objectives. For the 
problem of subband filter design, neither is well defined. This 
is an area of ongoing research. 

B. Graph-Bused Methods for  Filter Bunk Realization 
The above discussion has demonstrated that the design of 

subband filter coefficients is currently difficult within a GA 
framework. However, once quantized coeffilzient values exist, 
there is generally a requirement to find the most efficient 
implementation. Bull et al. [15j apply a graph based approach, 
similar to that described in Section 11, to the problem of 
realizing video subband filter banks. This, in combination with 
a data multiplexing regime which implements a 2-channel 
QMF using a single FIR structure, facilitated the fabrication of 
a 64-channel subband coder and decoder on a single gate array. 
Different filters were specified for horizontal and vertical, 
analysis and synthesis, and high- and low-pass processing. 
This example was later redesigned using (;A methods [I61 
similar to those presented in Section 11. A support matrix with 
50 vertices was employed, and the solution found was superior 
(in terms of the number of adders-subtractors required for 
the inner product processes) to that previously published in 
reference [15]. Although much work still remains to be done 
in this area, these preliminary results demonstrate the potential 
of the GA approach. 

v .  GA’S FOR MOTION ESTIMATION AND IMAGE REGISTRATION 

A. Image Registration 

In image coding, there is an increasing (demand for real- 
time solutions to complicated and computationally intensive 
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Fig. 7. Subband decomposition. (a) Two-band case. (b) Hierarchical case 

optimization problems, such as image registration and motion 
estimation. The task of registration is to find the parameters 
of a transformation that produce the best match between two 
different images, possibly taken at different times, or using dif- 
ferent imaging modalities or from different camera positions. 
These parameters often represent an affine transformation 
(spatial shift, rotation, and scaling). Areas of application 
include medical imaging and remote sensing and compression 
coding of image sequences, involving camera pan, zoom, or 
other complex movements. Because the complexity of the 
search for the transform parameters increases rapidly with 
transform complexity and image size, CA’s represent an 
attractive potential solution to this problem. 

Fitzpatrick et al. [21], [22] proposed the use of GA’s for 
medical image registration. They used a stochastic or noisy 
fitness function [23] approximated by considering only a small, 
randomly selected set of points. This reduces computational 
effort at the expense of introducing additional approximation 
error, which can be viewed as a noise component in the 
fitness landscape. GA’s have been shown to be robust to such 
noise and, as such, offer efficient solutions to the registration 
problem, Jacq and Roux [24] used a similar technique for 
the registration of 3-D-3-D and 2-D-3-D medical images. 
Tsang et al. [25] demonstrate the use of GA’s for matching 
single objects in an image which have been subjected to 
an affine transformation. His approach, based on matching 
object contours represented using a polygon approximation, 
is claimed to be less prone to trapping in local minima 
and also faster than simulated annealing. For machine vision 
applications with single objects, convergence was obtained in 
under 20 generations with a population size of 30. 

B. Motion Estimation 
A similar problem to image registration is motion estima- 

tion [ I ] ,  [26]. To achieve high compression ratios for video 

sequences, it is often useful to track the motion of image 
regions or objects between successive frames. In this way, the 
interframe prediction error can be significantly reduced at the 
cost of generating and transmitting a small number of motion 
parameters. A commonly employed technique is block match- 
ing. Here, each frame is split into square blocks, typically of 
I 6 x I6 or 8 x 8 pixels and, for each block, the motion estimator 
searches for an optimal displacement vector that matches the 
block in the current frame to a block from the previous frame. 
Although exhaustive search is feasible, it is computationally 
expensive. Hence algorithms based on hierarchical approaches, 
that give a good match with significantly reduced effort are 
commonly used. 

In order to demonstrate the potential of CA’s for the 
block matching application, the authors have simulated a GA 
based approach and compared the results with those from 
an exhaustive search and various multi-step algorithms (see 
Fig. 8). The GA operates on each 16x 16 block in the cur- 
rent frame, with chromosomes representing the displacement 
vectors (quantized to the nearest half pixel). A population 
size of 25 members was used and the population was seeded 
with vectors from a 5x5 grid with a spacing of 2 pixels, 
centered around the origin. With the coding scheme used, 
the crossover operation was found to be too disruptive and 
experiments showed good results using mutation only. The 
mutation operator was implemented as the addition of ran- 
dom Gaussian distributed discrete vectors. Experiments were 
performed by averaging the mean absolute difference (MAD) 
of the prediction error for each block in the first 10 frames 
of the “Claire” sequence (a total of 2560 blocks). Exhaustive 
search was performed with maximum displacements of 2, 4, 
8, and 16 pixels and multistage algorithms were tried with 
various grid-sizes and spacings. Fig. 9 shows a comparison of 
the results achieved for exhaustive search, multistep search, 
and the CA-based search. Although for a very low numbers of 
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Fig. 9. Performance of GA for fractal search 

evaluations, the multigrid algorithm appears superior, the GA 
provides better and virtually optimal results for intermediate 
numbers of evaluations. It is also anticipated that the GA’s will 
offer a feasible solution to more difficult motion estimation 
problems, using more complicated transformations including 
rotations and scaling parameters (see Section IV-A). However 
consideration must be given to the cost (in terms of bit-rate) 
of transmitting these additional parameters. This is a fruitful 
area for further study. 

VI. FRACTAL IMAGE CODING 
Recently, methods of image coding have been proposed 

based on the theory of iterated function systems (IFS). This 
approach is commonly referred to as fractal image coding [27] 
due to the exploitation of self-similarity within the image. 
The image to be coded is represented as an approximate 
transformation T of itself. Under certajn conditions, it can 
be shown that the iterated equation I ,  = T(IrL- - l )  with 

arbitrary io will converge to some image i M I which is 
termed as an attractor. The transformation, T ,  then forms the 
necessary data to code the image I .  The transformation is 
typically formed as a “collage” of smaller transformations, 
for different nonoverlapping regions of the image, termed 
as range blocks. Each range block is defined to be some 
transformation of a domain block taken from the same image. 
The transformation usually consists of a spatial scale (usually 
fixed at 2 : l), rotation, reflection, spatial offset, contrast 
scaling and luminance offset. Thus the data to be coded 
consists of a range block partitioning and a set of transform 
parameters for each range block. 

Although contrast scaling and luminance offset parameters 
for any candidate domain block can be found using a least 
squares approach, a fractal image coder still needs to search 
for the best domain block for each range block. This is 
typically performed using an exhaustive search method over 
all candidate domain blocks up to a given distance, making 
the task of encoding images computationally expensive. In 
order to reduce this complexity, Redmill and Bull have applied 
GA’s to search for the best match domain block [28]. In initial 
experiments, a fixed range block partitioning into 8 x 8  pixel 
blocks was used, and the search space was limited to offsets 
only (no rotations or reflections). The absence of rotations 
and reflections was found to give better results for exhaustive 
search and allows the use of a multi-step algorithm similar 
to that used in motion estimation. The GA was implemented 
in a similar way to that described for motion estimation. 
The search space consists of two-dimensional integer vectors 
up to a pre-specified limit. Mutation was implemented as 
Gaussian-distributed mutation vectors which were added to 
the candidate displacement vector. The population was seeded 
with a sampled grid to provide a good coverage of the 
search space with a small population, and a smaller population 
size (about 80% of the initial population size) was used 
for subsequent generations. This allowed the GA to better 
compromise between the initial random search and subsequent 
exploitation. Good results were found after only a few (less 
than 10) generations. 

Fig. 10 shows a comparison between the exhaustive search, 
multistep search, and GA approaches. Each evaluation consists 
of calculating the optimum contrast scaling and luminance off- 
set parameters and the resulting MAD between the range block 
and transformed domain block. The results show that, despite 
the small population and number of generations, the GA 
exhibits reliable convergence and can outperform exhaustive 
search and heuristic methods. Again it is anticipated that GA’s 
can be used with more complicated transformation models, 
for which simple heuristic methods don’t exist. However, as 
before, the cost of transmission of the extra parameters must 
be taken into account. 

VII. VECTOR QUANTIZATION 
Vector quantization (VQ) [l], 1291 maps a Euclidean space 

R’ on to a finite subset V of E‘, using a codebook optimized to 
give the minimum error between the original and reconstructed 
images. The encoder will select the nearest codebook entry 
io the current image block and transmit the address to the 
decoder, where it is used to address an identical codebook. VQ 
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Fig 10 Convergence of GA for fractal search. 

has been widely investigated as a tool for image compression, 
both in isolation and in combination with other methods 
such as the DCT and subband coding. The most popular 
approaches to VQ codebook design are based on derivatives 
of the Linde, Buzo, and Gray (LBC) algorithm [29]. Although 
little work has been reported in this field, CA’s clearly have 
potential in two distinct areas: codebook design and codebook 
search. Jiang and Butler [30] have recently presented some 
preliminary results in this area using GA’s to design codebooks 
for 4x4  image blocks using a neural network-based VQ 
strategy. Results for a range of standard images are given, with 
comparisons between the GA approach and a single alternative 
competitive learning algorithm. Improvements in PSNR of up 
to 15% are claimed in this case. This work is clearly at an 
early stage but represents an application for GA’s worthy of 
further investigation. 

VIII. FEATURE- AND OBJECT-BASED 
IMAGE AND VIDEO CODlNG 

In the context of low bit-rate coding schemes, there is 
a movement toward model-based approaches. These aim to 
describe an image in terms of the objects it contains rather than 
the values of regularly sampled picture elements. Approaches 
range from the use of wireframe models, to scene analysis 
methods based on segmentation in terms of intensity, texture, 
or motion characteristics. These methods require that the 
representative features can be accurately found in the image. 

The problem of feature detection within images is essen- 
tially a computationally intensive search and classification 
problem, for which GA’s have been found to be effective and 
are widely used. They have been successfully used for seg- 
mentation [31]-[34], edge detection [ 3 5 ] ,  and feature detection 
[36], [37]. Toet et al. [38], for example, consider the use of 
GA’s for contour matching between a reference image and a 
distorted or noisy version of the same. Scale and orientation 
independent results are presented for aerial reconnaissance 
images of military vehicles. Other applications include medical 
image segmentation and object recognition r39 1. 
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Ix. CONCLUSIONS AND FUTURE DIRECTIONS 

This paper has identified the potential and practical applica- 
tion of CA’s in the design and realization of image and video 
coding systems and related applications. The results presented 
show that CA’s are capable of robust performance, even 
with problems spaces which are discontinuous or deceptive. 
They have been shown to be capable of producing superior 
performance to conventional methods, often with similar or 
reduced computational effort. 

Several areas exist for future study. For example, the com- 
bination of a GA with more localized optimization methods 
such as hill climbing or low-temperature simulated annealing 
has been shown, in other application areas, to speed up 
convergence and to yield improved final results. A more recent 
innovation, worthy of further study, has been the adoption 
of genetic programming (GP) techniques, to evolve both the 
structure and parameters for a signal processing function [40]. 

Nonlinear filtering is also an emerging area with significant 
promise in signal and image processing applications. However, 
the design of algorithms based on nonlinear operations (e.g., 
morphological filters) can be computationally demanding or 
even intractable. Recent work by Harvey and Marshall [41] 
has demonstrated the potential of GA’s in this area. 

Finally, we have seen that for many of the problems 
considered in this paper, that multiple objective criteria exist, 
which often conflict and rarely produce a unique solution. 
In most GA work multiple objectives are combined (usually 
linearly) to form a single fitness function. There is however an 
emerging trend toward truly multiobjective optimization using 
approaches based on Pareto-like ranking methods. Recent 
work on multiple criterion optimization using CA’s [42] shows 
that CA’s hold the promise for the automated design of 
systems which are globally optimum, not just in terms of 
algorithmic performance but also in terms of technological 
constraints and architectural efficiency. 
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