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Abstract

In this paper we present a method for tracking changes in curvature

of limit cycle solutions that arise due to inflection points. We term these

changes ‘ghost’ bifurcations, as they appear to be bifurcations when con-

sidering a Poincaré section that is tangent to the solution, but in actual

fact the deformation of the solution occurs smoothly as a parameter is

varied. These type of solutions arise commonly in EEG models of ab-

sence seizures and correspond to the formation of spikes in these models.
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Tracking these transitions in parameter space allows regions to be defined

corresponding to different types of spike and wave dynamics, that may be

of use in clinical neuroscience as a means to classify different subtypes of

the more general syndrome.

PACS: 87.10.+e, 87.19.-j, 87.18.-h 05.45.-a

Keywords: ghost bifurcation; delay differential equation; continuation method;

dynamical system; neural-field model; absence epilepsy.

1 Introduction

Many physical and biophysical systems are modelled using nonlinear dynamical

systems as a means for elucidation and prediction of system behaviour (Schaf-

fer, Kendall and Tidd , 1993). The repertoire of behaviour (solutions) that

such systems can display is diverse and includes steady state, periodic and

chaotic motion. Transitions between these solutions can occur via many differ-

ent mechanisms and understanding these transitions is the key to explaining and

predicting the process being studied. Bifurcation theory is an important means

for understanding transitions that directly affect the nature of the underlying

orbits (solutions). These arise when there is a topological change in solution

type, upon smooth variation of a system parameter (or parameters). These

may modify the orbits locally (such as a Hopf bifurcation, or a saddle-node) or
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globally (as in a homoclinic or heteroclinic bifurcation). For a more detailed

description of such transitions, we refer the reader to (Kuznetsov, Kuznetsov

and Marsde , 1998).

Another family of transitions that is of crucial importance in capturing the dy-

namics of a system is where the geometry of solutions changes upon smooth

variation of the parameter. This change in the sign of curvature gives rise to

families of orbits, as is the case in mixed-mode oscillations, which are oscillatory

cycles formed by several small amplitude oscillations followed by a number of

large excursions. The presence of mixed-mode oscillations can occur through

a variety of mechanisms, for example, via a delayed-Hopf bifurcation (Larter,

Steinmetz and Aguda , 1988). However, in this case, the pattern of oscillations

changes upon smooth variation of a second parameter. In other words, the

delayed-Hopf bifurcation accounts for the onset of small amplitude oscillations

of the mixed-mode orbit but the whole family is obtained through curvature

changes by varying an extra parameter.

A further mechanism that results in a change in the sign of the curvature is an

inflection point, which is the subject of this paper. Specifically, upon smooth

variation of system parameter, a periodic oscillation can deform via a sequence
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of inflection points, giving rise to different patterns in the solution profile. This

behaviour is not exclusive to periodic solutions and has previously been reported

for quasiperiodic solutions too (Judd et al., 2008). In this study, the transition is

termed cubic tangency bifurcation; a reflection of how the trajectory becomes

tangent to a Poincaré section at the inflection point. Therein, the focus of

study is to characterise mechanisms by which invariant orbits associated with a

dynamical system intersect with a varying Poincaré section (i.e. the intersection

set changes, but the flow does not). In contrast, our work is concerned with

the case where the flow of an invariant orbit changes upon parameter variation

without inducing a bifurcation in the traditionally defined manner (Kuznetsov,

Kuznetsov and Marsde , 1998). Instead we use the term ghost bifurcation to

represent a topological change in the intersection set of the Poincaré section

with the invariant orbit, that is not a bifurcation of the underlying flow.

When studying delay differential equations (DDEs), that arise naturally in the

modelling of biological systems (i.e. in population dynamics or epidemiol-

ogy) (Baker et al., 1995), it is often the case that several different patterns

of (quasi)periodic solutions are observed. Typically the transitions between

patterns of activity are not the focus of the study and are generally not charac-

terised or reported (an example of these types of solutions arises in a model of
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Hematopoietic regulation (Colijn and Mackey , 2001)). However, recent studies

have demonstrated that transitions in system behaviour via inflection points are

of crucial importance for explaining the onset of spike-wave (SW) activity as

seen in electroencephalogram (EEG) recordings of human brain activity, during

absence seizures (Marten et al., 2008; Rodrigues et al., 2008a).

In this paper, we describe a numerical method that can be used to detect

such transitions as an add-on to the numerical continuation package, DDE-

BIFTOOL (Engelborghs, Luzyanina and Samaey , 2001). DDE-BIFTOOL is a

Matlab package that can detect the onset and termination of bifurcations and

follow solutions in parameter space for systems of DDEs, in a similar manner

to the package AUTO (Doedel et al., 1998) for ODEs.

2 Description of the method

We focus on delay equations with a single fixed delay which may be represented

as follows:














ẋ = f(x(t), x(t − τ), ν), t > 0

x(t) = ϕ(t), t ≤ 0.

(1)

Here f is a continously differentiable vector field in an n-dimensional state

space, τ ∈ R is the fixed delay, while ν ∈ R
p represents a number of control
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parameters and the functional component {x(t−τ),−τ < t−τ < 0} represents

past states. The existence of a unique solution requires a function (history) as

initial data on the interval [−τ, 0], i.e ϕ : [−τ, 0] → R
n. The presence of

the history function implies that the phase space of the system is an infinite

dimensional space consisting of functions with values in the state space R
n.

Denoting this infinite dimensional space as C, then ϕ ∈ C and the evolution

operator is now defined as Φt(ϕ) : C → C. This describes how the initial

conditions ϕ ∈ C evolve in time with the solution given by a vector valued

function x(t) : [0,∞) → R
n. We now proceed to describe the formulation of

our problem in a framework suitable for numerical continuation, which employ

techniques for periodic-boundary value problems (P-BVP).

2.1 Periodic orbits as a periodic-boundary value problem

Mathematically, we define the inflection point criteria for a P-BVP as follows:






























ẋ = Tf(x(t), x(t − τ/T mod T ), ν),

x(0) = x(1),

∂f1(x(1),x(1−τ/T ),ν)
∂t = ∂2f1(x(1),x(1−τ/T ),ν)

∂t2
= 0.

(2)

Here we have rescaled the vector field, f(.), so that its time scale, corresponds to

that of period T , giving the term x(t− τ/T ). The parameter, T , is the period

of oscillation as determined by the boundary value problem. The periodicity

condition is given by x(0) = x(1), that is periodic oscillations are rescaled
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to the time interval [0, 1]. The final equation defines the conditions for an

inflection to occur on the first component of the vector field, that is, f1. To

numerically solve (2), a discretisation scheme is required for which we use the

collocation method as follows.

Collocation is a theoretical framework that enables the discretisation of solu-

tions of a differential equation defined on some continuous function space X.

This discretisation replaces X with a finite-dimensional space XN which discre-

tises the set of differential equations. In particular, the method uses orthogonal

piecewise polynomials (in space XN ) to approximate the solution defined by

the P-BVP. This is achieved by ensuring that the set of piecewise polynomi-

als satisfies the underlying differential equation at a set of discrete collocation

points (Doedel, Keller and Kernevez , 2005; Engelborghs el al., 2001). When

this set of piecewise polynomials are substituted into the P-BVP and evalu-

ated at the collocation points, a large system of nonlinear algebraic equations

is obtained which can be solved using standard root-finding methods, such as

Newton iteration. In addition, solutions satisfying a P-BVP can be mapped out

in parameter space using numerical continuation, which is a technique adopted

in bifurcation analysis packages, such as AUTO and DDE-BIFTOOL (Engel-

borghs, Luzyanina and Samaey , 2001). To make these ideas clearer, we proceed

to describe this method in more detail.
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Let L represent the number of collocation intervals and let m denote the number

of subintervals within each collocation interval. We define a partition Π as a

set of mL + 1 mesh points over the range [0, 1], given by:

Π := t0 = 0 < · · · < tj < · · · < tj+i/m < · · · < tj+1 < · · · < tL = 1, (3)

for integer values j = {0, · · · , L− 1} and i = {0, · · · ,m}. The collocation so-

lution x(t) lies on the interval [0, 1] and is a piecewise vector-valued polynomial,

defined on the mesh Π, of the form:

x ∈ C([0, 1], Rn), x|[tj ,tj+1] ∈ Pm. (4)

Here Pm is the set of all (vector-valued) polynomials with degree at most m.

To fix the solution, we require values of x(t) at n(mL + 1) points, chosen

appropriately in time and we assume continuity of the collocation solution at

the boundaries of the collocation intervals. In particular, the collocation solution

x(t) is given by a piecewise polynomial function represented in the Lagrange

form:

Lm
j,i(t) =

m
∑

i=0

ℓj,i(t)xj+i/m, t ∈ [tj , tj+1] (5)

where xj+i/m samples the solution profile x(t) and the polynomial basis, ℓ,
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consists of the Lagrange polynomials:

ℓj,i(t) =
m
∏

k=0,k 6=i

t − tj+k/m

tj+i/m − tj+k/m
. (6)

such that ℓ satisfies the Kronecker-delta function (i.e. lj,i(tj+i/m) = 1 and

lj,i(tj+k/m) = 0 ∀k 6= i). Specifically for convergence of the solution within

each of the subintervals [tj , tj+1], the mesh points tj+i/m, are chosen to be the

roots of the Legendre polynomials (denoted here as zj,i). This enables us to

numerically calculate n(mL+1) approximants, xj+i/m, that tend to x(t) in an

optimal manner when the mesh interval tends to zero. In fact in the case of

ODEs the approximants tend to the solution with point-wise superconvergence

at the boundary of each collocation interval (Engleborghs and Doedel , 2002).

Furthermore, the resulting piecewise polynomials Lm
j,i(t) satisfy the system of

mL vector-valued equations:

L̇m
j,i(zj,i) − f(Lm

j,i(zj,i), L
m
j,i(zj,i − τ/T ), ν) = 0. (7)

Note that while the collocation solution is continuous for t ∈ [0, 1] it may not

be continuously differentiable at the boundaries of each collocation interval. A

schematic of this collocation method is illustrated in Fig (1).

2.2 Detection of inflection points

Suppose that a periodic solution, γ(t), satisfying the DDE (1) is found either

via numerical integration or continuation, then we can use the P-BVP (2)
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to investigate whether the solution satisfies the inflection point criteria. To

achieve this, both the P-BVP (2) and γ(t) are appropriately discretised using

the collocation method and then the solution is evaluated using a Newton

iteration scheme as shown in Figure (1). Importantly, the P-BVP (2) has to

be well posed and the initial orbit, γ(t), has to be close enough to the true

solution (with inflection point), x(t), to ensure convergence of the Newton

method. Once x(t) is found, it is then possible to follow it in parameter space

using standard continuation methods. To set up a well posed P-BVP, we need

to match the number of equations with the number of unknowns and these may

be either variables or parameters. In addition, it is required that at least one

parameter from equation (1) is free, so as to enable a solution to be found.

In particular, we observe that the P-BVP (2) has at least n+2 unknowns. There

are n values corresponding to the physical dimension of the delayed equation (1),

an unknown period, T , and at least one parameter, νl ∈ ν, that is allowed to

vary; hence in total at least n + 2 unknowns. To guarantee uniqueness of

the solution, x(t), it must satisfy n + 2 boundary conditions in order to be

a well posed P-BVP. From P-BVP (2) we note that we have n point-wise

periodic boundary conditions corresponding to the condition x(0) = x(1) and

two extra conditions corresponding to the inflection point criteria, ∂f1(.)
∂t = 0

and ∂2f1(.)
∂t2

= 0, giving a total of n + 2 boundary conditions.
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It is worth mentioning that in general, a phase condition is required by contin-

uation methods to guarantee a unique periodic solution in a well posed P-BVP.

An example of phase condition is one that minimises the distance between two

periodic orbits, min
θ

{
∫ 1
0 ||x(t + θ) − x(t)||}. However, we replace the phase

condition by a Poincaré phase condition (i.e. inflection point criteria) which

provides the required n + 2 boundary conditions to guarantee uniqueness of

solutions. Hence, we may consider the whole method as a functional that acts

on the vector field (dynamical system) and detects an inflection point and once

converged onto this inflection point, it is then possible to trace it in parameter

space.

2.3 Illustration of the method

To illustrate the detection method we consider a model of cortico-thalamic in-

teractions (as studied for example in (Marten et al., 2008)) and use the software

package DDE-BIFTOOL. To this package, we provide relevant MATLAB code

as an add-on for the detection of ghost bifurcations as outlined in the previous

section. The procedure for the detection of a ghost bifurcation is similar to the

principles outlined in the user manual of DDE-BIFTOOL for the detection of

true bifurcations. The source code for this may be found at (Rodrigues et al.,

2008b).
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The specific model that we use to illustrate the method was recently pro-

posed to explain the existence of (poly)spike-wave activity, as observed in elec-

troencephalogram (EEG) recordings of human brain activity, during absence

seizures (Marten et al., 2008), which may be written as follows:


















































































































d
dtφe(t) = y(t),

d
dty(t) = γ2

e [−φe(t) + ς(Ve(t))] − 2γey(t),

d
dtVe(t) = z(t),

d
dtz(t) = αβ [−Ve(t) + νeeφe(t) + νeiς(Ve(t)) + νesς(Vs(t))] − (α + β)z(t),

d
dtVs(t) = w(t),

d
dtw(t) = αβ

[

−Vs(t) + νsnφn + νseφe(t) + νA
srς(Vr(t)) + νB

srς(Vr(t − τ))
]

− (α + β)w(t),

d
dtVr(t) = v(t),

d
dtv(t) = αβ [−Vr(t) + νreφe(t) + νrsς(vs(t))] − (α + β)v(t).

(8)

The principal state variable, φe (cortical mean-field), is the only observable of

interest, as it relates directly to EEG. The control parameters of interest are,

νse, and the delay, τ . For a complete description of the model, as well as details

of other parameters we refer the reader to (Marten et al., 2008). An exemplar

of absence seizure data with (poly)spike-wave is depicted in Fig (2).

A plot of a noise free bifurcation diagram showing a transition from steady state

to limit cycles is shown in Figure (3-a). The bifurcation diagram is obtained

by numerically simulating the system, allowing transients to decay, and then
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plotting the local maxima and minima of the amplitude of the principal state

variable, φe, as we increase the parameter of interest, νse. Beyond the Hopf

bifurcation extra structures that appear to be bifurcations appear for parameter

values between νse ≈ 1.5× 10−3V s and νse ≈ 1.7× 10−3V s and also between

νse ≈ 1.8 × 10−3V s and νse ≈ 1.9 × 10−3V s. However, DDE-BIFTOOL does

not highlight these transitions points as bifurcations. It turns out that at these

parameter values the solutions develop a local maximum via an inflection point,

the ghost bifurcation, that we described previously. To confirm this, we start

with any periodic solution beyond the Hopf bifurcation and close enough to the

ghost bifurcation point of interest. The solution can either be obtained from a

numerical simulation for a fixed parameter value of νse, which is then discretised

using a collocation scheme. Alternatively, the solution can be obtained via a

continuation process in DDE-BIFTOOL by tracing out branches of periodic

orbits emanating from the Hopf bifurcation. Any periodic solution computed

can be taken as initial guess for the Newton’s scheme, which makes use of the

inflection P-BVP (2). The add-on to DDE-BIFTOOL then iterates through

parameter space, νse and detects ghost bifurcations as shown in Figure (3-b).

The middle inset of figure (3-b) shows a convergence to a periodic solution

satisfying the P-BVP (2). This procedure can be repeated for other nearby

solutions satisfying the inflection point criteria. In addition, it is possible to
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trace the locus of these solutions in two parameter space by making use of

DDE-BIFTOOL’s continuation methods as shown in figure (4). This Figure

presents the onset of solution types which can then be used to classify or predict

a system’s behaviour. In particular, Figure (2) shows that complex patterns of

periodic solutions can arise depending on the number of ghost bifurcations

points past. Indeed, it is possible for the coexistence of two or more inflection

points as shown in Figure (4). Finally, the method fails to converge when a

ghost bifurcation point collides with a true bifurcation points. However, it is

possible to adapt the method to allow the detection of an inflection point, even

when a bifurcation is encountered, which is the subject of future developments.

3 Discussion

In this paper, we introduce the concept of a ghost bifurcation; that is a tran-

sition that appears to occur as a result of a bifurcation, when considering a

Poincaré Section that is tangential to the flow of a dynamical system, but in

actual fact arises as a result of an inflection point in the flow. Using the soft-

ware package DDE-BIFTOOL we have developed an add-on for detecting these

ghost bifurcations points and illustrate how they correspond to the formation

of ‘spikes’ in a DDE model of human EEG. The detection of ’spikes’ is key to

understanding the transitions to spike-wave activity in EEG models of absence
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seizures and mapping these transitions in parameter space provides a means

to classify absence seizure data. In this way, a more detailed clinical study of

absence seizure could be performed. It should be noted that absence seizures

have not been clinically reported to have subtypes syndromes. However, it

is known that absence seizures can arise via different physiologic mechanisms

within a cortico-thalamic pathway and absence EEG data vary from subject to

subject. This suggests, that variants of these disease should be identified and

thus ought to be considered as a subject of further investigation. The EEG

models of absence seizures we have developed and the methodology presented

in this paper can provide a root to categorising the disease. For example, clas-

sifying various subtypes of absence epilepsies could be achieved by performing

parameter fitting of the above cortico-thalamic model (8) from absence EEG

data and determining in what region of parameter space, as shown in Fig (4),

the seizure lies.
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Figure 1: Scalp EEG from human subjects with childhood absence epilepsy.

The traces represents aggregate brain electrical activity, in this case recorded

from electrodes F8 and Cz. The seizure is marked by the large amplitude os-

cillations that are periodic, approximately three oscillations per second, which

arise due to increased spatial and temporal coherance in the EEG. In particular,

these seizures are characterised by spike and wave morphology on each cycle.

The spike component appears to evolve during the initial cycles (e.g. see the

left red boxes) and increases smoothly in amplitude over time. In addition,

the amplitude of the spikes can remain relatively constant (with small varia-

tions) or vanish reflecting an underling dynamics that occurs simultaneously to

the one that causes periodic waves. Via mathematical modelling of absence

epilepsy (Marten et al., 2008; Rodrigues et al., 2008a) we investigated the ap-

pearance and anhilation of spikes and we explain that these arise as a result of

an inflection point of the vector field.
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Figure 2: A sketch adapted from (Thota , 2007) which illustrates the collo-

cation scheme. A periodic trajectory is represented by mesh points within the

interval [0, 1]. Trajectories are appropriately discretised and represented by a

piecewise polynomial in Lagrange form given by equation (5). In this instance,

the initial periodic orbit corresponds to the lower parabolic curve, which is then

evaluated (vertical gray arrows) via Newton’s method until it converges to a

solution with an inflection point. Both the initial and final orbit satisfy the delay

differential equation through the algebraic equation (7), which allows to test

at every Newton step the trajectories of the model against the inflection point

criteria defined by the periodic boundary value problem (2). In this particular

implementation, we test the inflection point conditions on one of the boundaries

of the mesh interval, e.g. at tN = 1. To ensure convergence, the collocation

scheme relies on Legendre roots.
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Figure 3: From the system of equations (8), we generate numerically a bifur-

cation diagram in the variable φe, versus the parameter νse, illustrated in part

(a). The bifurcation diagram was achieved by plotting the local maxima and

local minima of the solution profiles obtained through numerical simulations. In

part (b), we show three different solution profiles of the model. Starting from

a nearby solution, for example the solutions in the regions of the dashed boxes

corresponding to the blue dashed arrows, converge by Newton’s scheme to the

ghost bifurcation point in the middle box (as shown by the red dashed arrow).

The black arrow in part (b) indicates the inflection point.
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Figure 4: Illustrating a two parameter continuation diagram, containing both

branches of true bifurcations, as well as ghost bifurcations, demonstrating how

different regions correspond to different solutions of the original system (8).

The blue line corresponds to a branch of Hopf bifurcations, HB, correspond-

ing to a transition from steady-state to periodic behaviour. The dashed red

line corresponds to the onset of period-doubling bifurcations, PD and the red

solid lines to the birth of saddle-node of periodic orbits, SNP. The black lines

correspond to branches of ghost bifurcation points, i.e. deformation of the so-

lutions due to inflection points. It should be noted, that the iteration fails to

converge onto a ghost bifurcation point, when it collides with the onset of a

true bifurcation, for example, PD and SNP as depicted in the Figure. The inset

figures show different solution profiles arising due to different number inflection

points, which provides a means for the generation of complicated patterns in

the model.
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