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Abstract.

When one considers a Poincaré return map on a general unbounded (n−1)-dimensional section

in a vector field in R
n there are typically points where the flow is tangent to the section. The

only notable exception is when the system is (equivalent to) a periodically forced system. The

tangencies cause bifurcations of the Poincaré return map when the section is moved when there

are no bifurcations in the underlying vector field. The interaction of invariant manifolds and the

tangency loci on the surface gives rise to discontinuities of the Poincaré map and there can be

open regions where the map is not defined. We study the case of the four-dimensional phase

space R
4. Specifically, we make use of tools from singularity theory and flowbox theory to present

normal forms of the codimension-one tangency bifurcations in the neighbourhood of a tangency

point.

AMS classification scheme numbers: 37C10, 37G05 37G25, 58K50.

1. Introduction

In many applications one is faced with the task of understanding the dynamics of a

mathematical model given by a system of ordinary differential equations. Written as an

autonomous vector field, such a dynamical system takes the general form

ẋ = f(x, λ), x ∈ X, λ ∈ R
m, (1)

where X is the phase space, λ is a (vector-valued) parameter, and f : X → X is

sufficiently smooth. In this paper we are interested in the important case that the phase

space X is Euclidean and of dimension at most four, that is, X = R
n for n ≤ 4. The

dynamics is given by the flow Φ associated with (1).

An important tool for analysing the dynamics of a vector field is to consider the

dynamics of a Poincaré return map P on a suitable codimension-one section Σ, (i.e.

Σ is of dimension n − 1). The classic application of the Poincaré map is the study of

periodic orbits. One chooses a small, local section transverse to a given periodic orbit,

then the image of a point x ∈ Σ under P is given as the next intersection of the orbit

‡ corresponding author; email: Clare.Lee@bristol.ac.uk
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of x with Σ, formally,

P : Σ → Σ

x 7→ P (x) := Φtx(x), (2)

where t
x

is the time to the next intersection with Σ. The return map back to the

local section is a local diffeomorphism (a smooth map with a smooth inverse) in a

neighbourhood of the intersection point of the periodic orbit with the section, which

is a fixed point under this Poincaré map. Hence, the stability analysis of the periodic

orbit in the full phase space is reduced to the study of the fixed point of the Poincaré

map; see standard textbooks such as [7, 9, 19].

Poincaré maps are also used to study other invariant sets, both theoretically and

in experiments, for example see [14, 15]. One typically records all intersection points,

possibly after transients died down, of some orbit with a suitable section (typically

some hyperplane). The requirement here is that the orbit actually intersects the section

repeatedly. Note that one often records maxima and/or minima of a time series, which

is equivalent to considering the intersection points of the derivative of the time series

with the section where the value is zero. In other words, one is typically interested in

the dynamics on an unbounded or global section, and not only on some small, local

neighbourhood.

Except in the case that one considers the stroboscopic map of a periodically forced

system, the Poincaré map is not a diffeomorphism on the entire global section [22]. Note

that P in (2) is well defined at x only if 0 ≤ inf{t > 0 | Φt(x) ∈ Σ} < ∞. In general

there may be points in the section Σ whose trajectories do not return to Σ in either

forward or backward time, meaning that the Poincaré map or its inverse is undefined.

But even if the Poincaré map is well defined, another issue arises, namely, for a general

(non-periodically forced) vector field and any chosen global section Σ, there is a non-

empty set of points where the flow is tangent to the section. This set is called the critical

tangency locus, and it is formally given as

C := {x ∈ Σ | f(x) · ~nΣ(x) = 0} , (3)

where ~nΣ(x) is the unit normal to Σ at the point x. Importantly, the Poincaré map,

defined as the kth return to Σ (for fixed k ≥ 1), is discontinuous at any point on

the critical tangency locus C. This is because the number of intersections increases or

decreases by one at the tangency; [10, 2, 3, 4]. The kth iterate of the global Poincaré

map can be extended continuously across C by considering the (k ± 1)st iterate of P

in the adjoining region. The choice of the sign follows from the condition that t
x
, the

time to the next intersection, depends continuously on x across C. We remark that

this extension is not unique as it depends on which open region of Σ \ C one starts in.

Furthermore, the continuous extension of P is not differentiable at C, meaning that P

cannot be extended across C as a diffeomorphism. What is more, the existence of the

set C gives rise to bifurcations of invariant sets in the section Σ that are not bifurcations

of the underlying vector field itself. Since the Poincaré map is used as a tool to study
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the dynamics of the vector field, it is important to classify this type of bifurcation of

only the Poincaré map itself.

We are concerned with an important class of such bifurcations, which we refer to

as tangency bifurcations. A tangency bifurcation is characterised by the tangency of a

smooth invariant manifold of a given dimension with the section Σ. It can be brought

about by changing either a system parameter or by moving Σ. We studied this type of

bifurcation in [10] for vector fields up to dimension n = 3, that is, for Poincaré maps

on sections of dimension one and two. In this paper we present normal forms for all

codimension-one tangency bifurcations of vector fields in R
4. In light of the difficulty

of visualising dynamics in four space dimensions, considering a Poincaré map on a

three-dimensional section is particularly useful in this case. Hence, the list of tangency

bifurcations presented here is of direct use for the interpretation of the dynamics of

Poincaré maps on global three-dimensional sections.

Any tangency bifurcation necessarily takes place at some point in the critical

tangency locus C, and it can be classified by its order of tangency; see section 2 for

details. We consider the situation locally near the tangency point and assume that the

respective local piece of the invariant manifold be part of an invariant periodic orbit,

invariant torus, or of a stable or unstable manifold.

Specifically, the normal forms of the codimension-one tangency bifurcations are

presented in a standard flowbox with parallel flow along one of the axes. A flowbox

is simply a domain in phase space that does not contain any compact invariant sets,

such as equilibria, is bounded by orbit segments and transverse in- and out-sets of

codimension one. Note that it is possible to find a flowbox near any tangency bifurcation

which, according to the Flowbox Theorem [13], can be mapped diffeomorphically to

the standard flowbox by ‘straightening out’ the flow. At the moment of tangency

bifurcation there is one orbit of (1), which is part of some invariant manifold M , that

is tangent to the three-dimensional section precisely at the tangency point associated

with the bifurcation. It is the order of this tangency that determines the geometry of

the section within the standard flowbox. Note that the critical tangency locus on the

three-dimensional section is of dimension two. The order of contact in the directions

perpendicular to this orbit determine the geometry of the manifold M inside the flowbox.

In fact it suffices to classify the cases when the manifold M is also a codimension-one

hypersurface, i.e. of dimension three in a four-dimensional flowbox. The one parameter

unfolding of the tangency bifurcation is given by moving the section up and down.

It is very difficult to show the interaction of two three-dimensional hypersurfaces

in a four-dimensional flowbox. However, a tangency bifurcation can be characterised

and understood by the interaction of the two-dimensional projections of the section and

the manifold in the three-dimensional in-set of the flowbox. Namely, the situation in

the in-set determines the geometry of the two-dimensional intersection of the manifold

with the three-dimensional section. Hence, each codimension-one tangency bifurcation

is presented by images that show the flowbox in the in-set and in the section before, at

and after the bifurcation. The figures in this paper have been rendered directly from



Tangency bifurcations of global Poincaré maps of 4D vector fields 4

the respective normal forms.

This paper is organised as follows. In section 2 we introduce some notation

as needed to provide background information on tangency bifurcations. There we

already provide the list of all codimension-one tangency bifurcations for vector fields

of dimension up to four. Section 3 summarises the results from [10] on tangency

bifurcations for vector fields of dimension up to three; in particular, we emphasise

how the respective manifolds in the in-set determine the situation in the one- or two-

dimensional section. The normal forms of the tangency bifurcations for vector fields on

R
4 are presented one by one in section 4. Finally, we discuss our results and conclude

in section 5.

2. Background and notation

We are interested in how the flow of a vector field on R
n interacts globally with a

Poincaré section Σ. By this we mean that Σ is a smooth manifold of dimension n − 1

that is unbounded in all directions. In other words, Σ divides the phase space R
n into

two disjoint parts. The notion of a global section is quite natural, and the easiest and

often used example is that Σ is an (n − 1)-dimensional hyperplane.

We consider here the general case of a system that is not periodically forced. Hence,

the critical tangency locus C defined in (5) is nonempty [22]. At a regular point in C

the flow makes a quadratic tangency with the section Σ. It follows from the Implicit

Function Theorem that C consists generically of smooth codimension-one submanifolds

of Σ. The codimension-one submanifolds of C that correspond to regular points meet

in submanifolds of higher codimension, which correspond to higher-order tangencies.

To be specific, for n = 2 the set C consists generically of isolated points in the one-

dimensional section Σ. For n = 3 the critical tangency locus consists generically of

smooth one-dimensional curves of regular points in the two-dimensional section Σ that

meet at isolated cusp points, where the flow has a cubic tangency with the section Σ.

For the case n = 4, which is the main subject here, C consists generically of smooth

two-dimensional surfaces in the three-dimensional section Σ. Two surfaces meet along a

one-dimensional curve of cusp points. On the curve of cusp points one may find isolated

points where the flow has a quartic tangency (i.e., of order four) with Σ; such a point

is also known as a swallowtail point.

Overall, the critical tangency locus C divides the section Σ into open regions.

Neighbouring regions (divided by regular points of C) correspond to different directions

of the flow, with respect to the normal to Σ. Note that Σ is orientable, so that its unit

normal ~nΣ(x) can be ‘transported’ unambiguously along Σ by moving the point x.

2.1. Classification of tangency bifurcations

Our interest is in how a smooth invariant manifold M , of dimension ℓ composed of

a family of orbits of vector field (1), interacts with a Poincaré section Σ. In order
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to introduce our notion of bifurcation, we first recall from [10] the relevant notion of

topological equivalence.

Definition 1. Consider two open neighbourhoods U1 and U2 of R
n. Suppose that

Σ1 ⊂ U1 and Σ2 ⊂ U2 are (n−1)-dimensional smooth sections that divide U1 and U2 into

two parts and have critical tangency loci C1 and C2, respectively. Suppose further, that

there is an ℓ-dimensional invariant manifold M1 ⊂ U1, and an ℓ-dimensional invariant

manifold M2 ⊂ U2.

We say that the flow Φ1 on U1 is Σ-M -topologically equivalent to the flow Φ2 on U2 if

there exists a homeomorphism h : U1 → U2 such that

(E1) h maps orbits of Φ1 in U1 to orbits of Φ2 in U2 and respects the direction of time;

(E2) h maps Σ1 to Σ2 and C1 to C2;

(E3) h maps M1 to M2.

Note that (E2) and (E3) ensure that h|Σ1
maps M1 ∩Σ1 to M2 ∩Σ2. The notion of

topological equivalence in Definition 1 implies notions of structural stability. Namely,

a phase portrait (a particular arrangement of Σ, C and M) is structurally stable if

all sufficiently small (and smooth) perturbations are topologically equivalent. At a

bifurcation point the phase portrait is not structurally stable.

In this paper we study bifurcations that are not bifurcations of the underlying flow,

yet change the topological structure of the invariant objects of the Poincaré map on

the section Σ. That is, we consider the case that there is a homeomorphism h that

satisfies (E1) and (E2), but not (E3). To be even more specific, we exclude the case

that an equilibrium crosses Σ. Instead consider the case of a tangency bifurcation of an

ℓ-dimensional smooth invariant manifold M of vector field (1). A tangency bifurcation

arises when an orbit

O(x∗) = {Φt(x∗) | t ∈ R}. (4)

is tangent to the given (n − 1)-dimensional Poincaré section Σ at a point x∗ ∈ M ∩ Σ.

Note that a manifold M of dimension one consists of a single orbit. However, for ℓ ≥ 2

the manifold M consists of a smooth (ℓ − 1)-dimensional family of orbits. Therefore,

to classify the tangency bifurcation we need to take into account both the order of the

tangency of the orbit O(x∗) as well as the nature of the tangency between M and Σ in

the family direction of M , which is transversal to the direction of the flow. Following

[10], we use the classification of tangency bifurcations, which is based on the intersection

of the tangent spaces TM(x∗) and TΣ(x∗).

Definition 2. Let M be an ℓ-dimensional invariant manifold of a vector field f on R
n

with a given (n− 1)-dimensional global section Σ. Suppose that the following conditions

are satisfied:

(B1) there is a point x∗ ∈ M ∩ Σ such that the orbit O(x∗) has a tangency of degree

d ∈ N with Σ at x∗, where we assume that the tangency is at least quadratic, that

is, d ≥ 2;
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Figure 1. Two cases where an orbit O(x∗) on a two-dimensional manifold M (purple) has a

quadratic tangency with a planar section Σ (green). The situation in panel (a) is structurally

stable, while that in panel (b) is of codimension one; which case occurs is determined by the

dimension of the intersection of the tangent space TM (x∗) of M (blue) with the tangent space

TΣ(x∗) = Σ.

(B2) The dimension of the orthogonal complement N of f(x∗) in TM(x∗) ∩ TΣ(x∗) is p;

and

(B3) The point x∗ is a critical point of codimension q of the restriction ϑ|N to N of the

local chart ϑ : TM(x∗) → R
n of the manifold M at x∗.

Then we say that M and Σ have a d-tangency with singularity dimension p and

singularity codimension q at x∗ (or d-p-q-tangency or short).

To clarify Definition 2, figure 1 shows two examples of tangency bifurcations of

vector fields in R
3. In both panels (a) and (b) a two-dimensional invariant manifold

M (purple) has an orbit O(x∗) that has a quadratic tangency with a two-dimensional

planar Poincaré section Σ (green). This quadratic tangency takes place at a regular

point x∗ of the critical tangency locus C. The difference between the two cases is the

following. In figure 1(a) the manifold M is not tangent to Σ in the family direction,

which means that the tangent space TM(x∗) (blue) of M at x∗ intersects TΣ(x∗) = Σ

in a one-dimensional line, which is the tangent f(x∗) to the orbit O(x∗) at x∗. Hence,

this is a structurally stable codimension-zero situation. As figure 1(a) shows, when the

section (or the manifold) is moved up or down we still find a unique point in Σ ∩ M

with the same properties as x∗. If M were to be a one-dimensional manifold that only

contains the orbit O(x∗) then this would be a 2-0-0 tangency, which is of codimension-

one. By contrast, in figure 1(b) the tangent spaces TM(x∗) and TΣ(x∗) coincide, so

that their intersection is two-dimensional. This means that the manifold has a second

direction of tangency, apart from the direction f(x∗) of the flow. We are dealing with

a 2-1-1 tangency according to Definition 2. In particular, p = 1 because the manifold
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is tangent to Σ in N , which in turn means that x∗ is indeed a critical point of ϑ|N in

(B3). Since the tangency with respect to the one-dimensional orthogonal complement

N is quadratic, the codimension of this critical point is q = 1. Notice that the situation

in figure 1(b) is no longer structurally stable. Instead, the 2-1-1 tangency in R
3 is of

codimension one. It can be unfolded by moving either the section or the manifold up

and down.

The notion of codimension can be formulated for any d-p-q-tangency of an ℓ-

dimensional manifold with a Poincaré section of a vector field f on R
n. We have the

following result.

Proposition 1. A d-p-q-tangency of an ℓ-dimensional invariant manifold M ⊂ R
n with

a global section Σ is of codimension one if ℓ = d + q − 1, where p < ℓ < n.

This proposition is a special case of the general formula for codimension given in

[10]. Notice that the codimension does not depend on the dimension n of the phase

space. Therefore, it is most convenient to study a given d-p-q-tangency in the smallest

possible phase space, which is that of dimension n = ℓ+1. In other words, it is possible

to list the codimension-one tangency bifurcations by the dimension n of the phase space,

where one only needs to consider a manifold of dimension ℓ = n−1. Hence, the question

is how the two (n−1)-dimensional smooth manifolds M and Σ interact near a tangency

point x∗ ∈ C. This gives rise to the following classification of codimension-one tangency

bifurcations for n ≤ 4.

In R
2 for a manifold M of dimension ℓ = 1:

(T1). the 2-0-0-tangency: a quadratic tangency of the orbit that defines M ; the unfolding

is presented in section 3.1.

In R
3 for a manifold M of dimension ℓ = 2:

(T2). the 2-1-1-tangency: a quadratic tangency of an orbit on M and a quadratic tangency

with respect to the one-dimensional space N . There are two cases, depending on

the relative directions of the two quadratic tangencies; the unfoldings are presented

in section 3.2.

(T3). 3-0-0-tangency for ℓ = 2: a cubic tangency of an orbit on M ; the unfolding is

presented in section 3.3.

In R
4 for a manifold M of dimension ℓ = 3:

(T4). the 2-2-2-tangency: a quadratic tangency of an orbit on M with quadratic

tangencies in the two additional tangent directions that span the two-dimensional

space N . There are two cases, depending on the relative directions of the quadratic

tangencies; the unfoldings are presented in section 4.1.

(T5). the 2-1-2-tangency: a quadratic tangency of an orbit on M that makes a cubic

tangency with respect to the one-dimensional space N ; the unfoldings are presented

in section 4.2.
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(T6). the 3-1-1-tangency: a cubic tangency of an orbit on M that makes a quadratic

tangency with respect to the one-dimensional space N . There are two cases,

depending on the relative directions of the cusp and the quadratic tangency; the

unfoldings are presented in section 4.3.

(T7). 4-0-0-tangency for ℓ = 3: A quartic tangency of an orbit on M ; the unfolding is

presented in section 4.4.

2.2. Normal form setting in standard flowbox

A codimension-one tangency bifurcation can be unfolded by changing a single system

parameter to alter the position of the manifold M . Alternatively, one can keep the vector

field fixed and change the position of the section. While the first option appears to be

the more natural one in many applications, changing only the section gives topologically

equivalent unfoldings. This second option is used here as the more convenient choice to

define normal forms of the codimension-one tangency bifurcations.

We consider from now on a one-parameter family of global sections Σs, where the

dependence on the parameter s is smooth. Each of these sections has a critical tangency

locus C = C(s) that depends on s. To help us understand the geometry of the flow we

introduce another geometrical object: the extended critical locus C, defined as

C =
⋃

s

C(s). (5)

Since the dependence of Σs on s is smooth, C is a smooth codimension-one submanifold

of the phase space R
n. Hence, its dimension is n − 1, the same as that of the section

Σs and the manifold M . Generically, the extended critical locus is transverse to Σs.

Therefore, knowing properties of the flow through C gives new geometric insight. We

introduce the critical tangency locus D on C, which is given by

D := {x ∈ C | f(x) · ~nC(x) = 0} , (6)

where ~nC(x) is the unit normal to C at the point x. As with C on Σ the tangency locus

D in C generically consists of codimension-one submanifolds that divide C into regions

with opposite directions of the flow relative to the normal bundle of C.

Because a tangency bifurcation does not involve equilibria in Σ, it is possible to

consider the phase portrait in a flowbox near the point x∗ ∈ C at which the tangency

takes place. This flowbox is given by an in-set and an out-set transverse to the flow,

which are connected by orbit segments. According to the Flowbox Theorem [13] any

flowbox can be mapped diffeomorphically to a standard flowbox in R
n, which we define

here as{
u̇ = 1,

v̇ = 0,
(7)

where u ∈ [−1, 1] and v ∈ [−1, 1]n−1. It follows that the in-set and the out-set of the

standard flowbox are

I = {u = −1} and O = {u = +1}. (8)
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To realise a d-p-q-tangency bifurcation in the standard flowbox given by (7), one needs to

provide formulae for the family of sections Σs and the manifold M . More specifically, for

any s the section Σs is a hypersurface whose geometry is determined by the order d of the

tangency of the orbit O(x∗). The manifold M in the flowbox is also a hypersurface, but

its geometry determines the nature of the tangency in the other directions (with respect

to the space N of Definition 2), as encoded by p and q. Our approach of constructing

normal forms is in the spirit of singularity theory [5], which suggests how the respective

surfaces should be chosen. However, one also has to deal with the flow in the flowbox.

The situation is very similar to the one encountered when one considers flows on phase

spaces with boundaries [18, 20, 16] or when studying piecewise-smooth vector fields [21].

As explained in [10], transformations can be constructed (while observing the restrictions

imposed by the presence of the flow) that allow one to bring a given tangency bifurcation

into its normal form in the standard flowbox; see also [18, 11].

In our approach the family Σs is a standard singularity surface given by the

tangency-order d that moves in the vn−1-direction with the parameter s. For the list

in section 2.1 we need to consider the three cases for d = 2, 3 and 4, which give rise

to fold, cusp and swallowtail surfaces, respectively; compare, for example, [17, section

9.4]. From the definition of Σs one immediately obtains formulae for the critical tangent

locus C, the extended critical locus C and its critical tangency locus D.

Our family of (quadratic) fold surfaces in R
n for n ≥ 2 is given by

Σs = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 − u2 − s = 0}, (9)

C(s) = {(u, v1, . . . , vn−1) ∈ Σs | u = 0 and vn−1 = s}, (10)

C = {(u, v1, . . . , vn−1) ∈ R
n | u = 0}, (11)

D = ∅. (12)

Our family of (cubic) cusp surfaces in R
n for n ≥ 3 is given by

Σs = {(u, v1, . . . , vn−1) ∈ R
n | v1 u − u3 + vn−1 − s = 0}, (13)

C(s) = {(u, v1, . . . , vn−1) ∈ Σs | v1 = 3u2, vn−1 = s − 2u3}, (14)

C = {(u, v1, . . . , vn−1) ∈ R
4 | v1 = 3u2}, (15)

D = {(u, v1, . . . , vn−1) ∈ C | u = 0, v1 = 0}. (16)

Our family of (quartic) swallowtail surfaces in R
n for n ≥ 4 is given by

Σs = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 + v2u + v1u

2 + u4 − s = 0}, (17)

C(s) = {(u, v1, . . . , vn−1) ∈ Σs | v2 = −2v1u − 4u3,

vn−1 = v1u
2 + 3u4 + s}, (18)

C = {(u, v1, . . . , vn−1) ∈ R
n | v2 = −2v1u − 4u3}, (19)

D = {(u, v1, . . . , vn−1) ∈ C | v1 = −6u2, v2 = 8u3}. (20)

Now that families Σs have been determined for the different cases of tangency, the

task is to define manifolds M that represent the different tangencies in the additional
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directions. Note that we have chosen to define the section using vn−1 and the lowest vi

coordinates. This means that an increase in the dimension only changes Σs to the extent

that a new coordinate is added. As a result, the manifolds that are defined in I are

also defined in terms of vn−1 and the lowest vi-coordinates with all other vi being set to

zero. Importantly the geometry of the manifolds on the in-set of the standard flowbox

determines the invariant set M ∩ Σ in the Poincaré section, for any given tangency

bifurcation. In the next section we present the tangency bifurcations (T1)–(T3) for

n = 2 and n = 3 from [10] from this point of view. Section 4 then presents the tangency

bifurcations (T4)–(T7) for n = 4.

Our images of unfoldings in the next sections are necessarily increasing in

complication. To help their interpretation we use a single colour code throughout for

the different objects (and their projections): the manifold M is purple, the section Σs

is green, the critical tangency locus C and the extended critical tangency locus C are

grey, and the critical tangency locus D is white. The projection Ĉ of C onto the in-set

divides I into regions. Orbits originating in one such region have the same number

of intersections with Σs before exiting the flowbox. In our figures each region of I

whose orbits intersect Σs at least once is shown in green; furthermore, the number of

intersections is indicated by circled numbers ➀–➃. A region of I whose orbits do not

intersect Σs at all is white.

Furthermore, we indicate the direction of the flow on Σ\C and on C\D as follows.

The normal ~nΣ(0) to Σ at the tangency point x∗ = 0 always lies in the vn−1-direction,

and we choose ~nΣ(0) such that it points in the direction of positive vn−1. Furthermore,

we choose the normal ~nC(0) to C such that ~nΣ(0), nC(0) and f(0) form a right-handed

coordinate system. The direction of the normals ~nΣ(x) and ~nC(x) at some general point

x of Σs or C, respectively, is then obtained by the condition that it agrees with that

of ~nΣ(0) and ~nC(0) when it is moved to 0 along the surface (which is orientable). In

all dimensions and for all degrees of tangency, we denote a region of Σs \ C with the

symbol ⊙ when the flow is such that f(x) ·~nΣ(x) > 0, and with the symbol ⊗ otherwise.

Similarly, regions of C\D are denoted with the symbols ⊙ and ⊗, depending on whether

f(x) · ~nC(x) > 0 or not. The direction of the flow is readily determined for the three

different cases of sections from formulae (9)–(17).

3. Tangency bifurcations in dimensions one and two

The tangency bifurcations (T1)–(T3) for n = 2 and n = 3 from section 2.1 were the

topic of [10]. They are presented here for completeness, but also to help with the

interpretation of the tangency bifurcations for n = 4 in the next section. Moreover,

the presentation differs slightly from that in [10] in that the emphasis is now on how

the projections of the section and the manifold in the in-set of the standard flowbox

determine the invariant set MΣ = M ∩ Σs.
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Figure 2. The unfolding of the 2-0-0 tangency bifurcation of a one-dimensional invariant manifold

M (purple) with a global section (green) in the standard flowbox for n = 2. Also shown are the

projections onto both the in-set I (left boundary of the panels) and the section Σs (bottom of the

panels); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

3.1. The 2-0-0 tangency bifurcation in R
2

The first codimension-one tangency bifurcation is a quadratic tangency of a single orbit

segment on a one-dimensional manifold. As is discussed in [10], the ‘classic case’ is that

the piece of manifold in the flowbox is part of a periodic orbit. It has been observed that

this quadratic tangency may give rise to additional branches in a bifurcation diagram

when a periodic orbit changes shape with parameter variation [6, 8]. Similarly, when

maxima of a time series are recorded, a new maximum arises at an inflection point of

the time series, that is, at a tangency bifurcation of the derivative of the time series [12].

The 2-0-0 tangency bifurcation of a one-dimensional manifold is of codimension one for

any n.

Proposition 2. A 2-0-0 tangency of a one-dimensional manifold in R
n is given in the

standard flowbox (7) by the family (9) of quadratic sections Σs with the manifold

M = {(u, v1, . . . , vn−1) ∈ R
n | vi = 0 for i = 1, . . . , n − 1}. (21)

The normal form is given by n = 2.

The unfolding of the 2-0-0 tangency is illustrated in figure 2 with three panels of the

standard flowbox for n = 2 before, at and after the bifurcation. The critical tangency

locus C on the quadratic section Σs is at u = 0. As s is changed, Σs moves down and

through the fixed manifold M . For s = 0 the two curves Σs and M are tangent.
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As we explain now, this unfolding can be understood by observing only the

situations in the in-set I and in the section Σs. The in-set I can be identified with

the v1-space, and it is shown on the left boundaries of the flowbox panels in figure 2.

The projection of Σs onto I is shown as the green segment where each orbit intersects

Σs twice. It is bounded by the projection Ĉ (grey dot) of the critical tangency locus C

onto I, which is the point v1 = s. The manifold M is uniquely determined by M ∩ I,

which is the point v1 = 0 (purple dot). When s is changed, the projection of Σs onto

I changes because Ĉ moves relative to M . As a result, the invariant set MΣ = M ∩ Σs

changes within Σs. Since Σs is a function over the variable u, it can be identified with

the u-axis as illustrated at the bottom boundaries of the flowbox panels in figure 2. To

the left of C the flow points upward through the section Σs and to the right of C it

points downward. This is denoted with the symbols ➳ and
➳

respectively. This choice

of symbol is more intuitive in the one-dimensional context than the symbols ⊙ and ⊗.

Figure 2 illustrates that the situation in I indeed determines the situation in Σs.

Specifically, in panel (a) s > 0 so that M ∩ I is below Ĉ and not in the green region of

I, meaning that M does not intersect Σs and the set MΣ is empty. Panel (b) shows the

moment of bifurcation when s = 0 so that M ∩ I = Ĉ; hence, M is tangent to Σs and

the set MΣ consists of a single point (purple dot). Finally, in panel (c) s < 0 so that

M ∩ I is above Ĉ and, hence, in the green region of two intersections; as a result, MΣ

consists of two points (purple dots).

3.2. The 2-1-1 tangency bifurcations in R
3

The 2-1-1 tangency bifurcation is the first example of a quadratic tangency bifurcation

that occurs in vector fields with phase space of dimension at least three.

Proposition 3. A 2-1-1 tangency bifurcation of a two-dimensional manifold in R
n is

given in the standard flowbox (7) by the family (9) of quadratic sections Σs with the

manifold

M = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 = ±v2

1
; vi = 0 for all other i }. (22)

The minus-sign in (22) is referred to as the minimax case and the plus-sign as the saddle

case of the 2-1-1 tangency bifurcation. The normal form is given by n = 3.

As with the normal form of the 2-0-0 tangency bifurcation for n = 2, we can describe

the unfolding of the 2-1-1 tangency bifurcation for n = 3 by considering only the in-set I

and the section Σs, which can again be identified (by projection) with the (u, v1)-plane.

Figures 3 and 4 show the minimax case and the saddle case, respectively, on the level

of the in-set I (left column) and the section Σs (right column), rather than the entire

flowbox. The three rows show the phase portraits before, at and after the bifurcation.

Note that we consider in Proposition 3 a curved manifold M on the in-set I to represent

the tangency in the N -direction perpendicular to the flow. This representation differs

from, but is equivalent to that of figures 9 and 10 in [10], where M is represented as

a plane. Specifically, the in-set is now given by the (v1, v2)-plane, and both cases are



Tangency bifurcations of global Poincaré maps of 4D vector fields 13
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Figure 3. Unfolding of the minimax case of the 2-1-1 tangency bifurcation of a two-dimensional

invariant manifold M (purple) with a global section (green); shown are the in-set I (left column)

and the section Σs (right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

characterised by a quadratic tangency between M and Ĉ in I. As the panels in the left

columns of figures 3 and 4 show, the difference between the two minimax and saddle

cases lies in the direction of the curvature of M ∩ I in relation to Ĉ and the projection

of Σs. Both figures again illustrate that the situation in I determines the situation in

Σs.

For the minimax case in figures 3, M ∩ I curves away from Ĉ and only enters the

projection of Σs for s ≤ 0. This means that the set MΣ is created (or destroyed) in

the form of a topological circle. In row (a), s > 0 so M does not intersect Ĉ or the

projection of Σs in I, which is why MΣ is empty. Decreasing s to the bifurcation point

for s = 0 in row (b), M ∩ I becomes tangent to Ĉ at a single point, meaning that MΣ

consists of a single point (purple dot). Finally, in row (c), s < 0 so M ∩ I enters the

projection of Σs in I and, hence, the set MΣ is a circle.

For the saddle case in figures 4, M ∩ I curves towards Ĉ and, therefore, enters the
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Figure 4. Unfolding of the saddle case of the 2-1-1 tangency bifurcation of a two-dimensional

invariant manifold M (purple) with a global section (green); shown are the in-set I (left column)

and the section Σs (right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

projection of Σs for all s. Hence, MΣ 6= ∅ for all s since M ∩ I intersects the projection

of Σs on I for all s. The intersection of M with Σs in row (a) consists of two arcs that

both cross C, each corresponding to one of two parts of M ∩ I inside the projection of

Σs onto I. At the moment of bifurcation in row (b), M ∩ I is totally contained in the

projection of Σs but is tangent to Ĉ. This means that the two arcs of MΣ meet on C

to form a cross. For s < 0 in row (c), M ∩ I is still totally contained in the projection

of Σs but no longer intersects Ĉ. Therefore, MΣ again consists of two arcs but they do

not intersect C.

3.3. The 3-0-0 tangency bifurcation in R
3

The 3-0-0 tangency bifurcation is the first tangency bifurcation that involves a cubic

tangency of an orbit on the manifold.
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Figure 5. Unfolding of the 3-0-0 tangency bifurcation of a two-dimensional invariant manifold

M (purple) with a global section (green); shown are the in-set I (left column), the section Σs

(middle column) and the extended critical locus C (right column); from (a)–(c), s = 0.5, s = 0,

and s = −0.5.

Proposition 4. A 3-0-0 tangency bifurcation of a two-dimensional manifold in R
n is

given in the standard flowbox (7) by the family (13) of cubic sections Σs with the manifold

M = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 = −v1 ; vi = 0, for all other i }. (23)

The normal form is given by n = 3.

Note that the manifold M in Proposition 4 is chosen to be in general position with

respect to Σs, which reflects the fact that p = 0. In particular, M cannot be parallel

to either the vn−1- or the vn−2-direction; see [10]. As before, we consider in figure 5

the unfolding of this bifurcation by showing the in-set I and the section Σs, which can

again be identified (by projection) with the (u, v1)-plane. For the first time the extended

tangency locus C is nontrivial: it is the parabolic cylinder given by (15) that is divided

by the curve D of (16) into two parts with different flow directions. To help with the
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understanding of the 3-0-0 tangency bifurcation we also show in figure 5 the situation

in C, which can be identified (by projection) with the (u, v2)-plane.

The 3-0-0 tangency bifurcation for n = 3 is shown in figure 5 before, at and after

the bifurcation. The critical tangency locus divides Σs into two regions of different

directions of the flow. Due to the cubic shape of Σs, the in-set I is divided by the

projection Ĉ into two regions ➀ and ➂ where orbits intersect Σs once or three times,

respectively. Notice the cusp in the curve Ĉ. As s changes, Ĉ and the region of three

intersections with Σs move and interact with the manifold M . Figure 5 illustrates that

the situation in I determines not only the situation in Σ, but also that in C. In row (a)

for s > 0, M ∩ I does not intersect Ĉ in panel (a1), meaning that all orbits starting

on M ∩ I only intersect Σ once within the flowbox. Indeed MΣ does not intersect C in

panel (a2) and the intersection of C = C ∩ Σ in C is above MC in panel (a3). At the

moment of bifurcation for s = 0 in row (b), M ∩ I intersects Ĉ exactly once at the cusp

point; see panel (b1). As a result, Σs becomes tangent to M in panel (b2), which can

also be seen in C in panel (b3). Notice that the cubic tangency of M and Σs corresponds

to a quadratic tangency of MΣ and C in Σ0, and of MC and C in C. Indeed, the cubic

tangency can only take place at the intersection with C and D. For s < 0, as in row

(c), M ∩ I enters the region of I where orbits intersect the section three times within

the flowbox. Specifically, the segment of MΣ with v1 > 0 to the left of C is mapped to

Σs inside the parabola C, which in turn is mapped to the right of C before exiting the

flowbox.

4. Tangency bifurcation in dimension four

We now present all codimension-one tangency bifurcations that appear for the first

time in vector fields of dimension at least four; these are cases (T4)–(T7) in the list in

section 2. According to Proposition 1, they involve the interaction of a three-dimensional

manifold M with a three-dimensional section Σ inside the standard flowbox of dimension

four. Since it is practically impossible to visualise this in four dimensions we present the

respective unfoldings on the level of the in-set I, the section Σs and the extended critical

tangency locus C, as was done in section 3. Now all images show spaces of dimension

three.

4.1. The 2-2-2 tangency bifurcation in R
4

As our first tangency bifurcation in four dimensions we consider a quadratic tangency

of the flow where the tangent spaces of M and Σs coincide. Hence, there are two further

directions along which the manifold and the section have a quadratic tangency, so that

M is given by a quadratic surface in the in-set. As was the case with the 2-1-1 tangency

bifurcation of a two-dimensional manifold, there are two different cases depending on

the relative directions of the corresponding quadratic curves: either they are all on the

same side of Σs, or one of them is on one side and the other two are on the side.
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Figure 6. Unfolding of the minimax case of the 2-2-2 tangency bifurcation of a three-dimensional

invariant manifold M (purple) with a global section (green); shown are the in-set I (left column)

and the section Σs (right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

Proposition 5. A 2-2-2 tangency bifurcation of a three-dimensional manifold in R
n

is given in the standard flowbox (7) by the family (9) of quadratic sections Σs with the

manifold

M = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 = ±v2

1
− v2

2
; vi = 0 for all other i }. (24)

The minus-sign in (24) is referred to as the minimax case and the plus-sign as the saddle

case of the 2-2-2 tangency bifurcation. The normal form is given by n = 4.
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Figure 7. Unfolding of the saddle case of the 2-2-2 tangency bifurcation of a three-dimensional

invariant manifold M (purple) with a global section (green); shown are the in-set I (left column)

and the section Σs (right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

The two cases of 2-2-2 tangency bifurcation are shown in figures 6 and 7 before,

at and after the bifurcation in terms of the three-dimensional in-set I and the three-

dimensional section Σs. For any value of the parameter s, the section Σs is divided

by the critical tangency locus C (the grey plane given by u = 0) into two parts with

different directions of the flow as indicated. The set Ĉ (grey) divides I into two regions:

in the green region onto which Σs projects, each orbit has two intersections with Σs, and

in the white region none. The difference between the two cases arises from the fact that
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the two-dimensional intersection of the manifold M (purple) in the in-set I is either a

maximum or a saddle surface.

For the minimax case in figure 6 the manifold M in the in-set I is a paraboloid with

a maximum (or a minimum). There are no intersections between M and Σs for positive

values of s, so that MΣ = ∅; see row (a). Decreasing s to the moment of bifurcation

at s = 0 in row (b), M and Σs become tangent at a single point of C; hence, MΣ now

consists of a single point (purple dot) in (b2). As s is decreased further, MΣ expands

into a topological sphere; see row (c). This sphere is bisected by C, and points to the

left of C are mapped to points to the right of C. Figure 6 shows that the minimax case

of the 2-2-2 tangency bifurcation describes how a compact piece of invariant manifold

emerges in or disappears from a three-dimensional Poincaré section.

For the saddle case in figure 7 the manifold in the in-set I is a saddle surface, which

intersects Ĉ for any value of s. For positive s the saddle point of M in I lies below

Ĉ, which means that MΣ is composed of two domed surfaces, known as a two-sheeted

circular hyperboloid. Each dome is bisected by C and the points on MΣ to the left of

C return on the same dome to the right of C; see (a2). As s decreases the two domes

become more pointed until they form a cone at the bifurcation point for s = 0; see (b2).

The bifurcation arises because the saddle point of M is now contained in Ĉ ⊂ I; see

(b1). When s is decreased further, as in row (c), the saddle point of M moves into the

(green) region of I where points with two intersections with Σs originate. Hence, the

cone opens up into a one-sheeted hyperboloid; see (c3). Figure 7 shows that the saddle

case of the 2-2-2 tangency bifurcation describes how two pieces of invariant manifold in

a three-dimensional Poincaré section come together and merge into a single piece.

4.2. The 2-1-2 tangency bifurcation in R
4

We now discuss the situation where there is a quadratic tangency in the direction of the

flow, but the intersection of the tangent spaces of M and Σ is of dimension two, rather

than three as in section 4.1. As there is a single additional direction of tangency between

M and Σ, this tangency is necessarily cubic if the bifurcation is to be of codimension

one, meaning that M is given by a cusp surface in the in-set.

Proposition 6. A 2-1-2 tangency bifurcation of a three-dimensional manifold in R
n

is given in the standard flowbox (7) by the family (9) of quadratic sections Σs with the

manifold

M = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 = v3

1
− v1v2 ; vi = 0 for all other i }. (25)

The normal form is given by n = 4.

The 2-1-2 tangency bifurcation is shown in figure 8 before, at and after the

bifurcation in terms of the three-dimensional in-set I and the three-dimensional section

Σs. As before, Σs is divided by C into two parts with different directions of the flow as

indicated, while Ĉ (grey) divides I into two regions with either two or zero intersections

with Σs. The manifold M is a cusp surface (purple) that intersects Ĉ for any value of
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Figure 8. Unfolding of the 2-1-2 tangency bifurcation of a three-dimensional invariant manifold

M (purple) with a global section (green); shown are the in-set I (left column) and the section Σs

(right column); from (a)–(c), s = 0.1, s = 0, and s = −0.1.

the parameter s. For positive s, as in row (a) of figure 8, the cusp point lies in the

region of I below Ĉ with no intersections, and MΣ consists of two disjoint parts. At the

bifurcation for s = 0 in row (b) the cusp point of M lies in Ĉ, so that the two parts

of MΣ connect at a single point. When s is decreased the cusp point of M lies in the

(green) region of I with two intersections with Σs, and MΣ is now a single connected

surface.
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Figure 8 shows that the 2-1-2 tangency bifurcation provides a different mechanism

of how two pieces of invariant manifold in a three-dimensional Poincaré section may

merge into a single piece. More specifically, the merging of two pieces of invariant

manifold in the Poincaré section does not require that the two tangent spaces of M and

Σs coincide as is the case for the 2-1-2 tangency bifurcation from section 4.1. The 2-1-2

tangency bifurcation manifests itself in the critical tangency locus C as the unfolding

of a pitchfork bifurcation when the normal form symmetry is broken; see, for example,

[19]. This is again different from the saddle case of the 2-1-2 tangency bifurcation,

which is characterised by a saddle transition in C. The fact that we obtain a pitchfork

bifurcation here is due to the invariance of the standard cusp surface M in (25) under

the transformation (v1, v2, v3) 7→ (−v1, v2,−v3), which is a rotation about the v2-axis

over π. When the manifold is deformed away from the normal form the symmetry in

the pitchfork may be lost.

4.3. The 3-1-1 tangency bifurcations in R
4

We now consider a tangency bifurcation of a three-dimensional manifold M with an orbit

that has a cubic tangency with the section Σ. To obtain a bifurcation of codimension

one, there is a single additional direction along which M has a quadratic tangency with

Σ. There are two cases that depend on whether the quadratic tangency is away from

or towards the critical tangency locus.

Proposition 7. A 3-1-1 tangency bifurcation of a three-dimensional manifold in R
n

is given in the standard flowbox (7) by the family (13) of cubic sections Σs with the

manifold

M = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 = ±v2

2
− v1 ; vi = 0 for all other i }. (26)

The minus-sign in (24) is referred to as the minimax case and the plus-sign as the saddle

case of the 3-1-1 tangency bifurcation. The normal form is given by n = 4.

The two cases of 3-1-1 tangency bifurcation are shown in figures 9 and 10 before, at

and after the bifurcation in terms of the three-dimensional in-set I, the three-dimensional

section Σs, and the three-dimensional extended tangency locus C. For any value of the

parameter s the section Σs is divided by the critical tangency locus C (the grey parabolic

cylinder) into two part with different directions of the flow as indicated. The extended

tangency locus C is divided by its critical tangency locus D (the grey plane given by

u = 0) into two part with different directions of the flow as indicated. The intersection

C = Σ∩C is the cubic green surface given by vn−1 = −u3− s. The set Ĉ (grey) consists

of two sheets that meet along a curve of cusps (white line). It divides I into two regions,

where each orbit has one or three intersections with Σs, marked ➀ and ➂ respectively.

The difference between the two cases arises from the fact that the manifold M in I either

intersects region ➂ for all s or there are values of s for which M does not intersect this

region.
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Figure 9. Unfolding of the minimax case of the 3-1-1 tangency bifurcation of a three-dimensional

invariant manifold M (purple) with a global section (green); shown are the in-set I (left column)

and the section Σs (right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

For the minimax case in figure 9 the manifold M lies entirely in the region of one

intersection with Σs when s is positive; see row (a). At the bifurcation point for s = 0

in row (b), M touches the cusp line on Ĉ in I, meaning that MΣ becomes tangent to

C at a point of its tangency locus D; see (b2). When s is decreased, as in row (c), M

intersects Ĉ in a closed curve with two cusp points, so that a part of M lies now in

region ➂; see (c1). As a consequence, MΣ intersects C in a closed curve; see (c2) and

(c3). Figure 9 shows that the minimax case of the 3-1-1 tangency bifurcation describes
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Figure 9. (Continued) Unfolding of the minimax case of the 3-1-1 tangency bifurcation; shown

is the extended critical locus C; from (a)–(c), s = 0.5, s = 0, and s = −0.5.

how an invariant manifold of a Poincaré map in a three-dimensional section may develop

(or lose) a patch that has two images inside the flowbox under the Poincaré map. Note

that this transition manifests itself as a minimax transition between the two surfaces

MΣ and C in Σs.

For the saddle case in figure 10 the manifold M always has a part in region ➂. For

positive s there are two intersection curves of M with Ĉ, which both cross the cusp line

of Ĉ; see (a1). As a result, there is a part of MΣ, in between the two curves MΣ∩C, that

does not get mapped to another part of MΣ under the Poincaré map; see (a2) and (a3).
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Figure 10. Unfolding of the saddle case of the 3-1-1 tangency bifurcation of a three-dimensional

invariant manifold M (purple) with a global section (green); shown are the in-set I (left column)

and the section Σs (right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

At the bifurcation for s = 0, as in row (b), the manifold M has a tangency with the

cusp line of Ĉ, which means that the manifold MΣ becomes tangent to C at a point of

D; see (b2) and (b3). After the bifurcation for negative s, as in row (c), there are again

two intersection curves of M with Ĉ, but they now do not cross the cusp line instead

they lie entirely in one of the sheets of Ĉ; see (c1). Therefore, in Σs the critical tangency

locus C divides the manifold M into three pieces: the left-most piece (for negative u) is

mapped to the middle piece (around u = 0), which is mapped to the right-most piece
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Figure 10. (Continued) Unfolding of the saddle case of the 3-1-1 tangency bifurcation; shown is

the extended critical locus C; from (a)–(c), s = 0.5, s = 0, and s = −0.5.

(for positive u). Figure 10 shows that the saddle case of the 3-1-1 tangency bifurcation

describes how an invariant manifold of a Poincaré map in a three-dimensional section

may develop (or lose) a patch that has no images inside the flowbox under the Poincaré

map. Note that this transition manifests itself as a saddle transition between the two

surfaces MΣ and C in Σs.
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4.4. The 4-0-0 tangency bifurcation in R
4

The 4-0-0 tangency bifurcation is the first tangency bifurcation with a quartic tangency

of an orbit on the manifold M . Such a tangency point may occur generically in R
4 at

an isolated point. The section Σ in the flowbox is a swallowtail surface; compare with

[1]. For this bifurcation to be of codimension one, we must consider the interaction with

a three-dimensional manifold in general position, that is, the tangent spaces of M and

Σ only intersect in the direction given by the flow at the tangency point.

Proposition 8. A 4-0-0 tangency bifurcation of a three-dimensional manifold in R
n

is given in the standard flowbox (7) by the family (17) of quartic sections Σs with the

manifold

M = {(u, v1, . . . , vn−1) ∈ R
n | vn−1 = v1 ; vi = 0 for all other i }. (27)

The normal form is given by n = 4.

The 4-0-0 tangency bifurcation is shown in figures 11 before, at and after the

bifurcation in terms of the three-dimensional in-set I, the three-dimensional section Σs,

the three-dimensional extended tangency locus C, and the (u, v3) plane. The latter

represents the two-dimensional critical tangency locus D, which is a parabolic cylinder.

The set Ĉ (grey) in I consist of three sheets that meet along two cusp curves (white),

which in turn meet at a swallowtail point. This surface divides I into three regions,

where each orbit has zero, two or four intersections with Σs, respectively. For any value

of the parameter s the section Σs is divided into two by the critical tangency locus C

(the grey cusp surface) with different directions of flow in each part as indicated. The

flow is tangent to C along a fold curve D which has a cusp point at u = 0. Similarly,

the extended tangency locus C is divided by its critical tangency locus D (the grey

parabolic cylinder) into two parts with different directions of the flow as indicated. The

intersection C = Σ ∩ C in C is the quartic green surface given by vn−1 = u4 − s.

In figure 11 the manifold M always intersects the surface Ĉ. For positive s, as in

row (a), M intersects the surface Ĉ well away from the swallowtail point, so that MΣ

intersects C well way from the cusp point on D. Hence, C divides MΣ into two pieces;

the piece for smaller u is mapped under the Poincaré map to the piece for larger u.

Looking at the extended tangency locus C and its tangency locus this means that MC

and C ∩D do not intersect. At the bifurcation point the plane M goes exactly through

the swallowtail point; see (b1). This means that the manifold MΣ is tangent to the fold

curve D at the cusp point; see (b2). This corresponds to a quadratic tangency of MC

with C in D; see (b3) and (b4). After the bifurcation for negative s, as in row (c), the

plane M intersects all three regions of I. Therefore, in the section Σs the set MΣ ∩ C

crosses the fold curve D on C twice; see (c2). This also means that the curve MC in C

now intersects the curve C = Σ ∩ D at two points; see (c3) and (c4). Figure 11 shows

that the 4-0-0 tangency bifurcation describes how an invariant manifold that is mapped

to itself once under the Poincaré map in a three-dimensional section may develop (or

lose) a patch that has two images inside the flowbox under the Poincaré map. Note that
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Figure 11. Unfolding of the 4-0-0 tangency bifurcation of a three-dimensional invariant manifold

M (purple) with a global section (green); shown are the in-set I (left column) and the section Σs

(right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

this transition manifests itself as a cusp bifurcation between the two surfaces MΣ and C

in Σs, which in turn is a quadratic tangency between MC and C in the two-dimensional

critical tangency locus D of C.
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Figure 11. (Continued) Unfolding of the 4-0-0 tangency bifurcation of a three-dimensional

invariant manifold M (purple) with a global section (green); shown are the extended critical locus

C (left column) and the intersection of MΣ with C = Σ ∩ D in the two-dimensional space D as

represented by the (u, v3)-plane (right column); from (a)–(c), s = 0.5, s = 0, and s = −0.5.

5. Discussion and outlook

We considered tangency bifurcations between an invariant manifold and a Poincaré

section in vector fields of dimensions up to four. This type of bifurcation of the associated

Poincaré map occurs because the flow becomes tangent to the section. The normal

forms for all codimension-one tangency bifurcations were presented within a standard

flowbox by a one-parameter family of sections and a fixed invariant manifold. Each
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normal form was pictured in the lowest dimension in which it occurs, but the equations

were given for any dimension n. It is important to note that the codimension of a

tangency bifurcation is independent of the dimension of the vector field. This is so

because the dimension (n − 1) of the Poincaré section increases with the dimension n

of the space, while the manifold remains the same. In our normal forms this means

that additional coordinate directions are set to zero, as is stated in the propositions.

For example, a quadratic tangency of a one-dimensional manifold with a Poincaré

section always gives two intersection points that coalesce before disappearing. Similarly,

two-dimensional manifolds always intersect the Poincaré section in curves and three-

dimensional manifolds intersect it in surfaces.

We did not present the proofs of genericity of the normal forms here as they each

take the following steps. Given a system with a particular tangency type, one identifies

a suitable flowbox around the tangency point. Then one maps the intersection of the

invariant manifold with the in-set to one of the normal forms, while preserving the flow

direction. A second coordinate change that leaves the intersection between the manifold

and the in-set invariant (and again preserves the flow direction) can then be constructed

to bring the section into its normal form. Explicit proofs for the tangency bifurcations

in two- and three-dimensional vector fields are given in [10]; see also [18, 20, 16, 21, 11]

Tangency bifurcations of codimension greater than one can be studied in the same

way, but then more unfolding parameters are needed to fully investigate the bifurcation.

Note that there is always the problem of finding a way in which to display all the

information in dimensions larger than three. Our approach here was to illustrate four-

dimensional flows in a flowbox by presenting different projections onto suitable sides

of the box. This technique is right at the boundary of what can be achieved for four-

dimensional flows.

Now that we have classified them, the next step is to consider how tangency

bifurcations affect the Poincaré return map in a given vector field arising in an

application. The case of a quadratic tangency of a one-dimensional attracting periodic

orbit with a two-dimensional section was treated in [10]. Depending on the choice of

section there are either areas where the Poincaré map is undefined or there are points

of discontinuity of the map. This one-dimensional quadratic tangency will have the

same effect on the global dynamics also in higher dimensions. In ongoing work we

are studying the possible dynamical consequences of the other tangency bifurcations of

invariant manifolds — initially for two-dimensional Poincaré sections.
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