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Abstract

We present two alternative mappings between a macroscopic neural mass model and a reduction

of a conductance-based model. These provide possible explanations of the relationship between

parameters of these two different approaches to modeling neuronal activity. Obtaining a physical

interpretation of neural mass models is of fundamental importance as they could provide direct and

accessible tools for use in diagnosing neurological conditions.
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1 Introduction

The brain is a multi-scale system with a complex hierarchical organization, which has been studied

using several experimental techniques. This hierarchical organization varies from the level of the single

neuron to that of whole brain regions. As these scales change, techniques for modelling the recorded

activity alters from probabilistic (in some sense) to structured. Equally, the temporal dynamics vary

from discrete events (i.e. spikes) to continuous rhythmic activity as may be observed via scalp EEG.

Systematic experimental results on the multi-scale characteristics of the brain have motivated a number

of theoretical approaches. In particular, under the dynamical hypothesis [1], mathematical models
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have been proposed to successfully describe these levels of observed phenomena. For example, at the

microscale, the Hodgkin-Huxley model [2] and related conductance-based models successfully explain the

temporal dynamics of an individual neuron. Whilst at the macroscopic scale, Neural field models [3, 4, 5],

Neural mass models [6, 7, 8, 9] and models based on Population density [10] are employed to describe

dynamical activity of LFP and EEG. To analyse complex systems, techniques such as separation of

scales can be employed to enable mathematical analysis. However, it is not apparent that a physiological

equivalent of separation of scales exists in the brain and is still a source of debate among neuroscientists.

One explanation for the uncertainty of this approach in neuroscience is the fact that many processes

in the brain operate on several spatial and/or temporal scales, hence providing strong interactions

between them. For instance, neurons produce spikes whose timing is in some cases up to a millisecond

precise [11]. On the other hand, there are examples showing that a lot of information is transmitted

between neurons via variations in the average firing rate, which occur in the time scales of hundreds of

milliseconds [12]. Thus, it is unclear when and how to ‘coarse-grain’ in order to move from one scale

to another, as well as if this procedure is valid at all. Despite this, mathematical techniques have been

developed, two approaches in particular are widely used to study neural field models. One approach

by Ermentrout [13] utilizes thermodynamic theory which describes the activity of all neurons within a

population by a single macroscopic variable. A similar derivation, which holds for averaging over Poisson

inputs for a large network, used in conductance based models was introduced by Shriki [14]. However,

to date, mappings have not been suggested to relate these two levels of activity and this motivates the

current work.

One area of importance is the modelling of human EEG using macroscopic models, as it has been

suggested that tracking dynamical changes in this models could be applicable in diagnosis of neurological

disorders [15, 16, 17]. In particular, the transition to generalized seizure states was observed to be linked

to bifurcations arising out of a variation of a parameter representing the strength of connectivity between

cortex and the specific relay nuclei in the thalamus [16, 18, 19]. Since the parameters of the macroscale

models considered are lumped together, they do not have a direct physical interpretation. However by

developing a mapping between scales, some understanding of the relationship between parameters at
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the macroscale and physiological parameters of reduced conductance-based models would be obtained.

2 Description of the modelling approaches

2.1 Macroscale

At the macroscopic level, the model we consider is a neural-mass model that was formulated by Freeman,

who used the phrase ‘Ki set hierarchy’ where i = {0, I, II, III}. These sets are both a model of

population dynamics and a description of the connectivity architectures to describe interactions made

by neural masses and are based upon detailed analysis of experimental data. The K0 set, is the simplest

component and models a neuronal ensemble forming part of a cortical column within which all neurons

share the same physiological and functional properties. They receive spatial inputs (from dendrites) that

are weighted and summed. Further they include a soma where pulse spike densities are produced and

the internal dynamics (the transmembrane potential of a neuron) follow a linear time invariant system

with second order dynamics. The output is then shaped by a nonlinear saturating function (essentially

providing a measure of the relationship between the transmembrane potential and the pulse density of

the neuronal mass. The response to some impulse function P (~x, t) is described as follows:











d2

dt2
V (~x, t) + (α + β) d

dtV (~x, t) + αβV (~x, t) = αβP (~x, t),

φ(~x, t) = ς(V (~x, t)),

(1)

where ~x is a spatial vector which at a macroscopic scale varies continuously over some domain. V (~x, t)

is the transmembrane potential at the ‘soma’ of the neural mass. ς(~x, t) is a sigmoidal function relating

the V (~x, t) to the pulse density, φ(~x, t), of the neuronal ensemble. Finally, α and β correspond to

the inverse rise and decay times of the response signal. Observing the dynamics of the first equation

it could be argued that they correspond to post synaptic dendritic responses of a single neuron, only

here represented by aggregated synaptic events, which is precisely the interpretation given by lumped

parameter models [7]. However, the precise relationship between the electrical potentials of single

dendrites and the resulting summed dendritic potential of an ensemble of neurons is unclear. In fact,

Freeman leaves the interpretation of these equations as an open problem. Nevertheless, in the literature,

3



authors assume them to be related to dendritic responses and different models of macroscopic rhythms,

such as alpha oscillations and slow-waves seen in sleep and epilepsy have been developed [16]. Adopting

this interpretation, Equation (1) may be written as follows:

V (~x, t) = l

∫ t

−∞

K(t − t
′

)P (~x, t
′

)dt
′

. (2)

Here, observables are now represented by local averaged values of a physiological process and it relates

the averaged induced transmembrane voltage V (~x, t) at the soma with the mean potential P (~x, t
′

)

generated by action potentials arriving from other neurons at the dendrites of the post-synaptic neuron.

The induced transmembrane perturbation propagates along the dendrites and reaches the cell body

with some attenuation (l) and lag represented by the kernel K(t). These depend on the distance of the

synapse from the cell body. The form of the kernel of the convolution is usually given by:

K(t) =











αβ
β−α (exp(−αt) − exp(−βt)) α 6= β

α2t exp(−αt) α = β

Note that the model suggested by Jansen [8], which is often used to model event-related potentials

(ERPs), is equivalent to the Freeman formulation when α = β.

At the next level of the hierarchy, a KI set is formed by two K0 sets and defines the coupling relationship

between them. However, this structure allows populations to be only either exclusively excitatory or

inhibitory and no auto-feedback is allowed. Extending this, a KII set consists of two KI sets (or four

K0 sets). KII networks can function as an encoder of signals or as an auto-associative memory, [6, 20].

Mathematically, KII sets may have several fixed points and can also have limit cycle attractors depending

on the parameters of the system and the initial conditions. We focus on a subset of the KII models

denoted reduced KII sets(RKII). In this simplification only a coupled inhibitory and excitatory neuronal

population is considered for each column. This may be modeled in the following form:

[ 1

α

d

dt
+ 1

][ 1

β

d

dt
+ 1

]

Vi(~x, t) =
∑

j 6=i

νijφj(~x, t), (3)

where i = {I = inhibitory, E = excitatory} and j = {I,E, ext}, with ext denoting external inputs.

The potential P (~x, t) at a particular location comprises contributions from pulse densities φj that

represent signals propagating from other neural mass, hence P (~x, t) =
∑

j 6=i νijφj(~x, t). The conversion
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from pulse density φj to wave amplitude is implicit in the synaptic weights νij where νEI ∈ R
−,

{νIE , νEext, νIext} ∈ R
+ and νEE = νII = 0, that is, self loops are not considered. φExt(t) represents

external inputs to the column and in general these represent excitatory connections from other columns,

since long range connections are only established by excitatory neurons. Note that synaptic weights

are not directly measured experimentally and can only be inferred through modelling process. At a

macroscopic scale these parameters can be interpreted as having the following form νij = Nijgj where,

Nij represent the mean number of connections from neural ensemble of type j on a population of type

i [21]. The term gj representing the size of the impulse response associated with synapses of type j.

2.2 Microscale

To model neuronal activity at the microscale level a conductance based model is employed. Conductance-

based models are based on an equivalent electrical circuit, which were first suggested in the seminal

work of Hodgkin and Huxley [2]. These models represent a minimal biophysical interpretation for an

excitable cell in which current flow across the membrane is due to charging of the membrane capacitance

and movement of ions through ion channels. The general mathematical formulation is as follows:

Cm(~x)
dV (~x, t)

dt
= −

∑

j

gj(~x)(V (~x, t) − Vj(~x, t)) + Iext(~x, t), (4)

where for each j:


























gj(~x) = gj(~x)ax
j by

j ,

da
dt = a∞−a

τa(V (~x,t)) ,

db
dt = b∞−b

τb(V (~x,t)) .

(5)

Equation (4) defines the time course of the neuron voltage V (~x, t) as a response similar to a resistance-

capacitance (τm(~x) = R(~x)Cm(~x)) circuit where τm(~x) defines membrane time constant. This linear

response is only valid for small current amplitudes. For large amplitudes, pulses are generated if the

current exceeds some threshold value V thr. Activation is also dependent on the sum of synaptic currents

gj(~x)(V (~x, t)−Vj(~x, t)) where gj corresponds to the synaptic conductance, Vj(~x, t) denotes the Nernst

potential (reversal potential) and (V (~x, t) − Vj(~x, t)) is the driving force for current j. a,b are gating

variables raised to small integers x,y respectively. a∞, b∞ are the steady-state activation and inactivation
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gating variable functions respectively and τa(V (~x)), τb(V (~x)) are the time constant of the synapses and

are voltage dependent. Note that the basic assumptions in conductance-based models are:

1. The different ion channels in the cell membrane are independent from each other.

2. The activation and inactivation gating variables are voltage-dependent and independent of each

other for a given ion channel type.

3. Each gating variable follows first-order kinetics.

4. Within a single cell compartment the extracellular space is isopotential.

3 Multiscale mapping

A fundamental question is how to map between these level of descriptions so that relationships between

the detailed physiological parameters of microscale models and those of macroscale models can be

established. A sketch representing what we are aiming to acheive is depicted in Fig 1. To address this

question we derive two independent solutions to map between an RKII set and a conductance-based

model. The first solution is based on neural field approaches, only here, a second order equation is

derived. This solution confirms the interpretation given by lumped parameter models. The second

solution provides an alternative interpretation to the RKII set, whereby the second order in voltage may

not correspond purely to dendritic activity.

Suppose that for the activity at the microscale, the post-synaptic potential (PSP) V (~x, t) is calculated

from a reduced intracellular conductance-based model with a linear integrator:

Ci
dVi

dt
= −giL(Vi − ViL) + Is (6)

Is = −giE(Vi − VE) − giI(Vi − VI) − giExt(Vi − VExt).

Here Ri = 1/giL is the neuron’s membrane resistance, ViL is the resting potential of the cell, VExt is

assumed purely excitatory, giL defines the specific neurone membrane conductance and τim = RiCi.

Excitatory synapses are generally mediated by NMDA and AMPA receptors and inhibitory synapses by
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GABA receptors. The complex ionic gating variables are simplified by ignoring the detailed dynamics

of transmitter concentration in the synaptic cleft. Instead, they are described by an explicitly time-

dependent conductivity gij(t) that will open whenever a pre-synaptic spike from neuron j arrives, hence:

gij(t) =

∫ t

−∞

gsyn
ij (t − s)

∑

m∈Z

δ(s − tmij )ds. (7)

The synapse gij is a temporal convolution of the sequences of spikes
∑

m∈Z
δ(t− tmij ) with some integral

kernel gsyn
ij at time t. tmij represents the mth spike arrival at the axon terminal of neuron j that synapses

onto cell neuron i.

We first consider the mapping of lumped parameter models. All derivations hereafter will assume that

a neuron is a zero dimensional entity i.e. we drop the spatial vector ~x. Further, we assume all-to-all

coupling within a neuronal population. Employing neural field theory it is possible to define macroscopic

rate variables. Since lumped parameter models assume that the dynamics result from dendritic activity,

this implies that the characteristic time-scale between arriving spikes is shorter than τij (the characteristic

time-scale of the kernel gsyn
ij (t)). This then allows us to substitute the spike train

∑

m∈Z
δ(s − tmij ) by

the rate of incoming spikes, say φij . If all post-synaptic neurons receive the same rate from pre-synaptic

neurons, then the index i can be omitted, effectively giving a neuronal population in the firing rate, φj .

Furthermore, the time course of the postsynaptic potential gsyn
ij depends mainly on the postsynaptic cell

i and which can be assumed to have the form gsyn
ij (t) = gijGij(t). Gij(t) is related to the time-scale of

the diffusion process of transmitters released in the synaptic cleft and gij is the maximal conductance.

Combining these, we re-write equation (7):

gij(t) = gij

∫ t

−∞

Gij(t − s)φj(s)ds = gijGij ⊗ φj(t), (8)

where the ⊗ represents the convolution operator and:

Gij(.)
−1Vi =

∞
∑

n=0

κin
∂n

∂tn
Vi. (9)

Phenomenologically, synaptic activity has a bi-exponential form representing the opening and closing of

channels. Hence:

Gij(t) =
τ r
ijτ

d
ij

(τ r
ij − τd

ij)
(e−t/τr

ij − e−t/τd
ij ), (10)
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where τ r
ij and τd

ij are the rise and decay times of the response.

Again, from the neural field theory, we will assume that the frequency of the pre-synaptic neuron varies

slowly when compared to synaptic activity i.e. τij ≪ τim. This assumption permits separation of scales,

however, in reality τim and τij are of similar magnitude. Using separation of scales we can replace the

fast dynamics by its asymptotic value V ∞
i and then consider the evolution of the slow variables only.

Further, we assume that voltage differences for all channels are constant. This follows implicitly from

our first assumption. Whilst this might be reasonable for excitatory synapses, for inhibitory connections

it is less clear whether this is a reasonable assumption. For example, consider gAMPA(t)(Vi−VAMPA) which

is an excitatory synapse, with reversal potential VAMPA = 5mv. The resting potential of a pyramidal

cell ViL = −70mv with threshold V thr
i = −50mv. Studies show the following amplitude difference

|Vi − VAMPA| ≈ 70mv, but the fluctuations are very small σV ≪ |Vi − VAMPA|. Hence, it is possible to

apply the approximation −gij(t)(Vi − Vj) ≈ −gij(t)(ViL − Vj) = gijcij , (for j=AMPA or NMDA),

where cij = Vj − ViL are now constants. In contrast, using this procedure for the inhibitory synapse

gGABA(t)(Vi −VGABA) is not valid, since VGABA = −70mv and fluctuations are large σv ≈ 10mv. However,

these assumptions are required to derive the lumped model and allow the determination of the asymptotic

voltage by setting dVi

dt = 0, which has the following form:

Vi(t) = V ∞
i (t) = ViL +

1

giL

∑

j

gijcij +
IiExt

giL
. (11)

Assuming that the rise and decay times are the same for all synapses, i.e. τ r
ij = τ r

i , τd
ij = τd

i ,

Gij(t) = Gi(t) and substituting these together with equation (8) into equation (11) results in the

following:

Vi(t) = ViL +
1

giL

∑

j

gijcijGi(t) ⊗ φj(t) +
IiExt

giL
.

Applying the reverse operator G−1
i we get the following macroscopic model:

[τ r
i

d

dt
+ 1][τd

i

d

dt
+ 1]Vi =

∑

j

gijcijφj(t) + ViL +
IiExt

giL
. (12)

Note that the inverse operator G−1
i either assumes that ViL and IiExt

giL
are constants or that IiExt changes

slower than τd
i . Averaging over large number of inputs and over an ensemble of neurons we obtain an
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equivalence of the lumped parameter model (3) and equation (12). This mapping allows the following

interpretations of the parameters: τ r
i = 1/α, τd

i = 1/β and the synaptic couplings νij = gijcij. Without

lose of generality we can set ViL = 0.

We now consider Freeman’s model where the precise meaning of the voltage is unspecified. For this we

assume the time scales of the membrane voltage and synaptic activity have the same order of magnitude.

To map between an RKII set and a conductance model we wish to reduce Equation (10). A possible

simplification is to assume that the response rises infinitely fast, i.e. τ r
ij = 0 and the decay time is finite.

This can be justified for small times scales and high frequency inputs, giving rise to the following first

order response:

τd
ij

dgij(t)

dt
+ gij(t) = gij τ̂φj(t), (13)

where gij is now a conductance, not a rate variable. Hence, we introduce a time-scale parameter

τ̂ . Applying the same procedure as before, the synaptic currents Is in the conductance model (6) are

simplified to Is = −giE(Vi−VE)−gp
I (Vi−VI)−giExt(Vi−VE) ≈ ciEgE +ciIgI +ciEgiExt. Multiplying

both sides of equation (13) by cij :

[

τd
ij

d

dt
+ 1

]

cijgij(t) = cijgij τ̂φj(t). (14)

Assuming j = {I,E and Ext}, we obtain:

[

τd
E

d

dt
+ 1

]

ciEgiE(t) +
[

τd
I

d

dt
+ 1

]

ciIgiI(t) +
[

τd
Ext

d

dt
+ 1

]

ciEgiExt =

τ̂(ciEgiEφE(t) + ciIgiIφI(t) + ciEgiExtφExt(t)). (15)

when summing over the three instances. Assuming all synaptic activity has the same time course

τd
I = τd

E = τd
Ext = τis gives:

[

τis
d

dt
+ 1

]

(ciEgE(t) + ciIgI(t) + ciExtgExt(t)) = τ̂(ciEgiEφE(t) + ciIgiIφI(t) + ciEgiExtφExt(t))

(16)

⇔
[

τs
d

dt
+ 1

]

Is = τ̂(ciEgiEφE(t) + ciIgiIφI(t) + ciEgiExtφExt(t)).

Using equation (6) to obtain Is and substituting into the above results in a second order in voltage
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equation:

[

τis
d

dt
+ 1

][

Ci
dVi

dt
+ giL(Vi − ViL)

]

= τ̂(ciEgiEφE(t) + ciIgiIφI(t) + ciEgiExtφExt(t))

(17)

⇔
[

τs
d

dt
+ 1

][

τim
d

dt
+ 1

]

Vi =
τ̂(ciEgiEφE(t) + ciIgiIφI(t) + ciEgiExtφExt(t))

giL
+ ViL.

For this mapping between (3) and (17) to be possible we must further assume that intracelluar activity is

in some way proportional to extracelluar activity. Finally, comparing the left hand side of equations (16)

and (17) we obtain a possible interpretation for the macroscopic parameters written as 1
α = τis rep-

resenting the synaptic time constant and 1
β = τim corresponding to the membrane time constant.

Setting ViL = 0, we also find a possible interpretation of the coupling parameters which differs from

the usual assumed macroscopic formulation. Here we have νEI = cEIgEI τ̂
gEL

and νIE = cIEgIE τ̂
gIL

. The

significance of this finding becomes apparent if within a neuronal population each neuron is modeled

using a conductance-based approach. Averaging over a population with all to all coupling will provide

a reasonable mapping to an RKII set. Furthermore, under the assumptions employed, it is now possible

to relate the coupling parameters to slowly varying, low amplitude input currents. Finally, it is now

possible to justify the second order in voltage as the time-scales of the synaptic activity and that of

the soma are in some sense combined. An intresting avenue of research is to combine this work with

recent studies showing that during EEG-Activated states not only there is an increase in firing rate of

cortical neurons but also changes in the synaptic conductances and synaptic integrative properties [22].

The results presented therein, will be incorporated in the mapping outlined in this research in order to

develope an enhanced EEG model that takes into account more detailed biophysical mechanisms.

4 Discussion

In this paper we represent three independent macroscopic approaches, namely Freeman [6], Lopes

da Silva [7] and Jansen [8] into the same framework, subsequently mapping this to an underlying

conductance-based approach. We provide two alternative routes, one of which is based on neural field

approaches. The first approach we put forward is limited as separation of scales is required, which is still
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a source of debate in the neuroscience community. On the other hand the second solution we present

is preferred as no separation of scales is used. However, it is also limited by the assumptions applied

but nevertheless provides insight as it is possible to justify the second order in voltage of the RKII set

and link it directly to a population of conductance-based models. Future work will consider relaxation

of the assumptions made, which will allow large amplitude currents, varying synaptic conductances and

integrative properties to be incorporated. However, we envisage this to give rise to higher order terms in

voltage, which suggests a reformulation of the ‘Ki set hierarchy’. This might not be so much of an un-

expected result since ‘Ki set hierarchy’ were derived phenomologically to support experiments performed

in the olfactory bulb [6]. In addition, we will consider time delays due to finite speed of axonal pulse

propagation and delays involving time courses of different neurotransmitters, which play a crucial role

in neuronal dynamics such as those observed in neurological disorders such as seizures [16, 18, 19]. In

many cases, time delays are incorporated into a model as an approximation to a complex set of processes

(e.g. ODEs) for which very often the true underlying mechanism is unknown. However, inclusion of time

delays can reveal hidden dynamics that otherwise would be impossible to explain observed data, see for

example [18, 19]. Equally important, it is necessary to ensure that the resulting simplified model verifies

the observed data and correctly models the underlying biophysical system. Thus, we aim to develop

an appropriate theoretical framework for mapping delays found in ‘Ki set hierarchy’ to conductance

models. In particular, we are interested in mapping time delayed cortico-thalamic models [18, 19] to

more detailed cortico-thalamic models such as those developed in [23, 24].
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Figure 1: A sketch of a mapping between a ‘Ki set’ and a reduced averaged conductance-based model.

At the macroscale, the ‘ki set’ receives inputs (firing rates) from other neuronal populations that are

linearly summed to form the total activation to the cell. These inputs are then passed through a second

order process, which is phemenological, hence the question mark symbols as this is not an entirely

understood process. Finally, the output of the ‘Ki set’ is a firing rate that would activate another

neuronal ensemble. A reduced averaged conductance-based is used to explain the microscopic activity

of a small neuronal population. The circuitry shown is based on an equivalent electrical circuit suggested

by Hodgkin and Huxley [2]
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