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The classical model of regenerative vibration is investigated with new kinds of nonlinear cutting force 
characteristics. The standard nonlinear characteristics are subjected to a critical review from the nonlinear 
dynamics viewpoint based on experimental results available in the literature. The proposed nonlinear model 
includes finite derivatives at zero chip thickness and has an essential inflexion point. In the case of the one 
degree of freedom model of orthogonal cutting, the existence of unstable self-excited vibrations is proven 
along the stability limits, which is strongly related to the force characteristic at its inflexion point. An 
analytical estimate is given for a certain area below the stability limit where stable stationary cutting and a 
chaotic attractor coexist. It is shown how this domain of bi-stability depends on the theoretical chip 
thickness. The comparison of these results to experimental observations and also to the subcritical Hopf 
bifurcation results obtained for standard nonlinear cutting force characteristics provides relevant information 
on the nature of the cutting force nonlinearity. 

Keywords: Hopf bifurcation; bi-stable zones; metal cutting; turning; limit cycle; subcritical 

1. Introduction 

One of the main goals of cutting process optimization methods is to maximise the volume of the 
chip cut within a certain time. There are several boundaries identified in the operational space of the 
cutting parameters, namely, chip width, chip thickness and the cutting speed. These boundaries are 
related to the maximum power, maximum cutting force, feed rate, depth of cut, etc. The most 
difficult boundary to model is the onset of harmful relative vibrations between the tool and the 
work-piece. The so-called regenerative effect (where the tool interacts with its delayed 
displacement via the surface profile that is cut one revolution earlier) is considered to be one of the 
main reasons for these vibrations, which cause poor surface quality or, in extreme cases, damage the 
machine tool structure. 

The regenerative effect for the simple orthogonal cutting model was first introduced and analysed in 
the middle of the 20th century (Tlusty & Spacek 1954; Tobias 1965). The central idea of this effect 
is that the motion of the tool depends on its past motion, in other words, a time delay occurs in the 
slightly damped oscillator model of the machine tool. This delay is inversely proportional to the 
cutting speed. The first thorough and detailed experiments on the nonlinear regenerative vibrations 
often showed small domains of attraction around stable stationary cutting (Shi & Tobias 1984). 
These investigations demonstrated that stable stationary cutting can be quite sensitive to external 
perturbations and stable, large-amplitude vibrations can appear even in those parameter domains 
where the stationary cutting is linearly stable.  

A rigorous analytical investigation of the nature of the loss of stability of stationary cutting was 
performed only much later only by means of the Centre Manifold reduction and Normal Form 
calculations (Stepan 1997; Kalmár-Nagy et al. 2001).  
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Figure 1. Panel (a) shows the arrangement of the machine tool–work-piece system in orthogonal cutting. Panel (b) 
illustrates a planar mechanical model.  

The subcritical sense of the cutting process has been shown for several other cutting models too 
(Nayfeh at al. 1997; Kalmár-Nagy & Pratt 1999; Szalai et al. 2004; Campbell & Stone 2004; Wahi 
& Chatterjee 2005). In the substantial situation, the bifurcating local unstable orbit separates two 
independent attractors, namely stationary cutting and a large amplitude nonlinear oscillation that is 
itself stable in a dynamical systems sense. In engineering, this latter vibration is often referred to as 
‘instability’ by owing to its harmful nature. The region where this co-existence can occur is called 
the region of bi-stability, while the terminology unsafe zone is used for the same idea in production 
technology to indicate possible chatter. 

Despite the fact that large-amplitude vibrations are of little interest from a technological standpoint, 
the location and size of the bi-stable domain are important. This is because they define the 
parameter region where the cutting process is more or less sensitive to perturbations caused by, e.g., 
non-homogeneous work-piece material. Some of the existing software packages used for 
technological parameter optimisation are capable of predicting the linearly stable parameter 
domains for many types of cutting tools, work-pieces and machine tool configurations, but they are 
unable to predict those unsafe zones within the stable domain where unexpected and persistent 
vibrations can still occur during otherwise stable machining.  

In this paper, we give a critical discussion of available nonlinear cutting force characteristics 
models partly from the point of view of simple geometric characteristics (e.g. derivative at zero chip 
thickness and the existence of an inflexion point). For the proposed nonlinear model, the 
subcriticality of the Hopf bifurcation is proven, which is related to the cutting force characteristics 
at a putative inflexion point. With the help of analytical and semi-analytical investigations, the 
location and the size of the bi-stable regions are then given. These regions are characterised as a 
function of the theoretical chip thickness, which is strongly related to the existence of an inflexion 
point in the cutting force. Experimental results (Shi & Tobias 1984; Endres & Loo 2002) in the 
literature confirm the validity of these conclusions in terms of direct cutting force measurements 
and the identification of the bi-stable region. 

2. Model construction 

The description of chip separation during cutting is a challenging task in both modelling and 
mathematical treatment. Several authors have used finite element models to try to describe 
accurately the coupled nonlinear physical effects near the cutting edge  
(Davies & Burns 2001; Stone et al. 2006). While these models simulate realistic cutting processes 
well, the structure and dependence on parameters of the consequent nonlinear vibrations remain 
hidden. In contrast, physical effects during cutting can be modelled more simply by means of 
empirical nonlinear cutting force characteristics based on the extensive measurement results of the 
production technology community. The large-scale geometric and elastic nonlinearities of the 
machine tool structure have far smaller influence on the nonlinear vibrations than those of the 
cutting force characteristics that exist on a small scale. In addition, the linear elasticity of the 
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machine tool is modelled in the direction of the essential mode only, which is related to the lowest 
natural frequency of the structure and supposed to be perpendicular to the cut surface. 

Thus, the mechanical model used here is a simple one degree-of-freedom (DOF) damped oscillator 
subjected to a nonlinear cutting force F (see Figure 1). The corresponding governing equation has 
the form 

 2
n n

1( ) 2 ( ) ( ) ( )qq t q t q t F t
m

κ ω ω+ + = , (1) 

where ω n and κ are the natural angular frequency and the damping ratio of the essential vibration 
mode described by the general coordinate q that refers to the tool position. We can express these 
parameters with modal mass m, stiffness k and damping factor b (see Figure 1(b)): here 

n /k mω = ,  , while Fn/(2 )b mκ = ω q (t) is the corresponding component of the resultant cutting 
force F(t).  

a) Empirical cutting force characteristics 

The most popular and generally applied relation for nonlinear cutting force characteristics is the 
power-law 

 ( ) ( )q qF t K wh tν= ;        10 << ν ,  (2) 

where w and h are the chip width and chip thickness of the orthogonal cutting, and Kq and ν are 
empirical parameters depending on the cutting conditions (material, tool geometry, etc.). The 
exponent ν may vary from 2/5 (Kalmár-Nagy & Pratt 1999) through the most popular choice 3/4 
(Kienzle 1957) to 4/5 (Tlusty & Spacek 1954). The power expressions for cutting force introduced 
in order to enable linear optimisation tasks in the log-log space of the technological parameters 
(Taylor 1907). 

Another approach to modelling cutting force characteristics is to fit a polynomial function to the 
experimental data. One of these less frequently used expressions is the cubic polynomial 
approximation (Shi & Tobias 1984) of the cutting force characteristics:  

 2 3
1 2 3( ( )) ( ( ) ( ) ( ))qF h t w h t h t h tρ ρ ρ= + + . (3) 

Clearly, here ρ 1 and ρ 3 are positive because the cutting force has positive gradient both at low and 
at high values of the chip thickness (see Figure 2). The potentially negative value for ρ 2 allows the 
existence of an inflexion point on the cutting force characteristics at 

 2
inf

3

1
3

h
ρ
ρ

= − . (4) 

From a dynamics viewpoint, there are essential differences between the two empirical 
interpretations (2) and (3) of the cutting force. One of these differences has a rather theoretical  
(or philosophical) nature. The traditional power-law characteristics have a vertical tangent at the 
origin (see Figure 2(a)), where the tool just touches the surface of the work-piece with zero chip 
thickness. This feature causes problems in the mathematical treatment of the vibrations at the loss of 
contact because the uniqueness and regularity of solutions no longer holds here. Apart from causing 
uncertainties and unpredictable errors in numerical simulations, this non-uniqueness of solutions in 
forward time is questionable in physical systems.  
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Figure 2. Panel (a) illustrates the power and the cubic forms of the empirical nonlinear cutting force characteristics. 
Panel (b) shows the result of Tobias’ classical measurements (Shi & Tobias 1984) in the case of full immersion milling 
with a face mill with an even number of teeth. Panel (c) shows the fitted cubic cutting force characteristics measured by 
Endres in case of turning (Endres & Loo 2002). Panel (d) shows static cutting force measurements made using 
orthogonal cutting conditions (see, Acknowledgement). 

The other important difference between the power-law (2) and the cubic polynomial force 
characteristics (3) is related to the possible existence of an inflexion point (see Figure 2(a)). 

In the literature, there are several extensive measurement results which provide a basis for cubic 
polynomial approximations of the cutting force both for milling and turning. Tobias and Hanna 
(Shi & Tobias 1984) performed measurements based on full immersion milling with a face mill of 
24 teeth. Due to the high number of cutting edges, the time periodicity of the parametric tooth-pass 
excitation could be averaged, and the mean cutting force characteristics with respect to the mean 
chip thickness were found to exhibit an inflexion point (Figure 2(b)).  

Another set of experimental data measured by (Endres & Loo 2002) during valve seat turning also 
shows the existence of an inflexion point in the cutting force characteristics (Figure 2 (c)). 
However, the authors fitted an exponential function to the measured data, and hence the inflexion 
point could not appear in the analytical approximation and so its effect was not examined further.  

The many combinations of cutting tool and work-piece material require lot of measurements using 
different speeds, feeds and different arrangements of the tool–work-piece system. The main goal of 
these kinds of measurements is to determine the cutting coefficients in different directions which 
are essential to predict the stability of certain cutting operations (Altintas & Budak 1995; Bayly et 
al. 2003; Warminski et al. 2003; Merdol & Altintas 2004; Insperger & Stepan 2004; Zatarain et al. 
2006). The last set of experimental data in Figure 2(d) was collected from a series of orthogonal 
cutting identification tests (see, Acknowledgement).  

In the subsequent sections we will show that the inflexion of the cutting force characteristics has a 
central role in the nonlinear vibrations, and consequently, in the size of the unsafe or bi-stable zone. 
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b) Regenerative effect  

Figure 1(b) presents the variation of the instantaneous chip thickness h(t) as a function of the 
present position  and the delayed position )(tq )( τ−tq  of the tool, given by 

 0( ) ( ) ( )h t q t q t hτ= − − + , (5) 

where h0 is the prescribed chip thickness, τ = 2π/Ω  is the period of the rotating work-piece and Ω is 
its angular velocity. Since, the cubic expression (3) of the cutting force depends on the actual chip 
thickness (5), the equation of motion (1) has the form 

 2 2
n n 1 2 3( ) 2 ( ) ( ) ( ( ) ( ) ( ))wq t q t q t h t h t h t

m
κ ω ω ρ ρ ρ+ + = + + 3 . (6) 

Its trivial solution provides the equilibrium corresponding to stationary cutting at 

 0 2
n

1 ( )qq F
mω

= 0h ,  

where the spring force is balanced by the cutting force (3). Introducing the perturbation x around 
this position by 0( ) ( )x t q t q= − , and rescaling time t with the angular natural frequency ωn, and the 
tool position perturbation x with the theoretical chip thickness h0 leads to the dimensionless 
variables and parameters  

 nt tω= ,   0/x x h= , 

 
2

1 2 0 3
2
n

2 3h h
w w

m

ρ ρ ρ

ω

+ +
= 0 ,    nτ ω τ= ,   

n

2π
τ ω

Ω
Ω = = ,   

 2 3 0
2 0 2

1 2 0 3

3

2 3

h
h

h h

ρ ρ
η

ρ ρ ρ

+
=

+ + 0

,   2 3
3 0 2

1 2 0 32 3
h

h h0

ρ
η

ρ ρ ρ
=

+ +
.      (7) 

In the dimensionless form of the equation of motion, the derivatives with respect to dimensionless 
time are denoted by primes, while all the tildes are henceforth dropped. With the vector 

 1 2col( , ) col( , )y y x x′= =y , 

the new form of the equation of motion (6) is 

 ( ) ( ) ( ) ( ( ), ( ))t t t t tτ τ′ = + − + −y L y R y g y y , (8) 

where the linear part is defined by the non-delayed and delayed coefficient matrices 

 
0 1

(1 ) 2w κ
⎡ ⎤

= ⎢ ⎥− + −⎣ ⎦
L ,            

0 0
0w

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
R , 

respectively, and the nonlinear part is given by 

 .  2 3
2 1 1 3 1 1

0
( ( ), ( ))

( ( ) ( )) ( ( ) ( ))
t t w

y t y t y t y t
τ

η τ η τ

⎡ ⎤
− = ⎢ ⎥

− − + − −⎣ ⎦
g y y
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Figure 3. In panel (a) the linear stability chart can be seen in normalised, dimensionless technological parameter space 
(w/wmin , Ω). In panel (b) the dimensionless frequencies ω of the self excited vibrations are presented at the limits of 
stability. (Here κ = 0.01.) 

c) Operator formulation 

From the theory of functional differential equations (Hale 1977), the phase space of the delayed 
systems is infinite dimensional. In order to represent the equation of motion in the infinite 
dimensional phase space of the continuous functions defined by the shift 

 ( ) : ( )t tθ θ= +y y ,    [ ,0]θ τ∈ − , 

one can transform the delay-differential equation (DDE) (8) into the operator differential equation 
(OpDE)  

  (9) 

where the linear operator   and the nonlinear operator  are defined by 

     

  

The superscript circle denotes derivative with respect to the ‘past time’ θ, which equals the 
derivative with respect to the (dimensionless) time 

 d( ) : ( ) ( )
d

o
t t tθ θ θ

θ
′= = +u u u . 

The OpDE formulation (9) corresponds to the DDE form (8), or to the traditional form (6) of the 
equation of motion and makes it possible to carry out a correct nonlinear analytical investigation via 
linear stability analysis, Centre Manifold reduction and Normal Form calculation. 
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3. Linear stability 

From an engineering point of view, the linear stability charts are preferred to be represented in a 
plane formed by the spindle speed and chip width. In the stable domains of these charts, those 
parameter regions are identified where stationary cutting is possible without chatter. These regions 
can be determined by the stability investigation of the linear part t′y =  ty  of the OpDE (9). The 

usual substitution of the exponential trial solution ( ) ( ) t
t eλθ θ=y s into the linear OpDE leads to the 

infinite dimensional eigenvalue/eigenvector problem 

 (  – λ ) s = 0, (10) 

where   denotes the unit operator. This provides the characteristic function  

 ( ) det( )D e λτλ λ −= − −I L R , 

for the complex characteristic exponents λ satisfying the characteristic equation 

 Ker{  – λ  } . (11) 2{ } ( ) 0 2 1 0D w λτλ λ κ λ −≠ ⇔ = ⇔ + + + − =0 we

If the infinitely many complex characteristic roots λk ( ∈k ) of the characteristic function (11) 
satisfy Re 0kλ <  for all k then the trivial solution (i.e., stationary cutting) is locally asymptotically 
stable; if there exists a k with Re 0kλ >  then it is unstable.  At the linear stability boundaries, the 
characteristic function (11) has purely imaginary complex conjugate roots ωλ i±= , 
where ∈ω + is the dimensionless angular frequency of the self excited vibrations arising close to 
the stability limit. 

By substitution of the purely imaginary characteristic roots into (11), the stability limits (so-called 
‘lobes’) can be expressed analytically as a parametric function of the frequency ω  (see, e.g., Stepan 
2001): 

 
2 2 2

stab 2
( 1) 4( )

2 ( 1)
w

2ω κ ωω
ω

− +
=

−
,  

22 1( ) arctan
2

j ωτ ω π
ω κ ω

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
,    

 ∈j +  and    ( ) 2 / ( )ω π τ ωΩ = ,    (1, )ω ∈ +∞  .   (12) 

The minimum value of the stability limits can be expressed in closed form by 

 min 2 (1 )w κ κ= + . 

The stability boundaries  will be normalized with respect to this minimal value stabw wmin in order to 
show stability charts independent of the small (~ 0.01) damping ratio parameter. These expressions 
provide the stability boundary curves (or lobes) stab ( )w Ω in Figure 3(a), while the (dimensionless) 
vibration frequency ω  against the cutting speed is given above the lobes at the stability limits in 
Figure 3(b). Note that the frequencies of the corresponding self-excited vibrations are all larger than 
the natural frequency of the system, that is, 1>ω . The lobe structure in Figure 3(a) is typical for 
delayed oscillators (see Hu & Wang 2002, Kyrychko et al. 2006). 
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4. Nonlinear investigation 

In this section, an overview of the applied algebraic and numerical techniques is given to clarify the 
dynamic effects of the nonlinear cutting force characteristics. First, the lengthy Hopf bifurcation 
calculation is summarized in order to provide analytical estimate for the nonlinear vibrations in the 
system. Then, numerical methods are used to check the different kinds of nonlinear behaviour and 
also to make the results more quantitatively more accurate.  

a) Hopf bifurcation calculation 

The fixed point becomes non-hyperbolic at the stability limit (Figure 3(a)) with increasing 
(dimensionless) chip width w that will be considered as a bifurcation parameter. At its critical value 

stab ( )w ω  in (11), two pure imaginary eigenvalues 1,2 iλ ω= ±  exist. As the bifurcation parameter w 
increases through )(stab ωw , these characteristic roots cross the imaginary axis with nonzero 
(actually, positive) speed since the implicit differentiation of the characteristic equation (11) gives  

 
2 2

1

stab 2i

( )d ( 1)( ) : Re 0,
d ( )w wλ ω

γ ωλ ωγ ω
ω γ ω=

⎛ ⎞ −⎜ ⎟= = 2
⎜ ⎟
⎝ ⎠ ( )

>

+

 

with the positive expressions 

 , (13)      0)1()()1(4)(4)( 22222
1 >−+++= ωωτωκωωτκωγ

    
4 2 4 3 2 2 2 2 2

2
2 2 2 2 2 2 2 2 2 2 2

( ) 16 ( ) 32 ( ) ( 1) 8 ( ) ( 1) (1 3 )

8 ( 1) (2 ( ) ) ( 1) (16 ( ) ( 1) ) 0 ,

γ ω κ τ ω ω κ τ ω ω ω κ τ ω ω ω

κ ω τ ω ω ω ω τ ω ω

= + − + − +

− + + − + − >

for all 1>ω , 0>κ . This means that the so-called transversality condition is fulfilled 
(Guckenheimer & Holmes 1983), and a Hopf bifurcation occurs along the linear stability limits. 
Consequently, a periodic orbit exists in a sufficiently small region of the fixed point. The 
stability/instability of this periodic motion depends on the super-/subcritical sense of the Hopf 
bifurcation. The Hopf bifurcation calculation results in the Poincare-Lyapunov constant (PLC) 

)(ωΔ  (<0 or >0) that determines the (super- or subcritical, respectively) sense of the bifurcation. 
For the bifurcation parameter w close enough to its critical value )(stab ωw , this also leads to the 
estimate  

 ( )stab
( )( , ) ( )
( )

r w w wγ ωω ω
ω

≈ − −
Δ

 (14) 

for the amplitude r of the corresponding approximately (2π/ω)-periodic motion that is located in the 
2-dimensional Centre Manifold embedded in the infinite dimensional phase space. At the origin, 
this Centre Manifold is tangent to the plane spanned by the real and the imaginary parts of the 
critical eigenvectors  of the operator A belonging to the critical eigenvalues 1,2s 1,2 iλ ω= ± . Thus, 
the periodic solution of the OpDE can be approximated as 

 1( ) ( ) ( , ) (cos ( ) Re ( ) sin ( ) Im ( ))t t r w t t 1θ θ ω ω θ ω θ= + ≈ −y y s s , (15) 

and consequently, the approximation of the periodic solution of the DDE (8) assumes the form 

8 



 

 .  1 1
( )

( ) (0) ( , ) ( Re (0)cos ( ) Im (0)sin( ))
( )t

x t
t r w t

x t
ω ω

⎡ ⎤
= = ≈ −⎢ ⎥′⎣ ⎦

y y s s tω

To determine the critical eigenvectors, it is easy to solve the boundary value problem defined by the 
infinite dimensional eigenvalue/eigenvector problem (10) at the borders of stability: 

(  iω ) s∓ 1,2 = 0 1,2
cos sin

( ) i
sin cos

ωθ ω
θ

θ
ω ωθ ω ωθ

⎡ ⎤ ⎡
⇒ = ±

⎤
⎢ ⎥ ⎢− ⎥
⎣ ⎦ ⎣

s
⎦

. (16) 

However, the calculation of the PLC )(ωΔ  is rather lengthy and not presented here. The calculation 
follows the same algebraic steps described for similar delayed oscillator examples in (Campbell & 
Bélair 1995; Stepan 1997; Nayfeh & Balachandran 1995; Kalmár-Nagy et al. 2001; Orosz & Stepan 
2004) and it can be found in (Dombovari 2006, Dombovari et al. 2007) in detail. The result is 

 1 22
3 2

2

( )1( ) ( 1) ( ) 3
2 (

δ ω
ω ω γ ω η η

δ ω

⎛ ⎞
Δ = − +⎜⎜

⎝ ⎠)
⎟⎟

>

, (17) 

where 

  
2 5 4 4 2 2 4 4 2 2

1

2 2 2 4 3 2 2 2 2 2 2 4 2

( ) 16 (48 ( ) 48 ( 1)) 384 ( ) ( 1)

48 ( ) ( 1) 64 ( 1) (1 17 ) 32 ( 1) (4 1),

δ ω κ ω κ τ ω ω κ ω ω κ τ ω ω ω

κ τ ω ω ω κ ω ω ω κ ω ω ω

= + − + − +

− + − + − − −

    2 2 2 2 2 2 2
2 1( ) ( ) ( 1) (36 ( 1) (4 1) ) 0 ,δ ω γ ω ω κ ω ω ω= − + − −

and the always positive 1( )γ ω , )(ωτ  and stab ( )w ω  are given by (13) and (12) respectively. Clearly, 
the sign of Δ(ω) depends on the possible negative values of 1( )δ ω . A lengthy but straightforward 
algebraic manipulation proves the following analytical estimate: 

 1

2

( )
1

( )
δ ω
δ ω

> − , for any ),1( +∞∈ω  and 0>κ . 

Actually, numerical investigation shows that the stricter estimate 1 2( ) / ( ) 0.36δ ω δ ω > −  holds as 
well. Also, the cutting force characteristics must always be increasing, which means for the 3 
parameters 1,2,3ρ  of the cubic polynomial cutting force  in qF (3) that 

 
2

22
inf 1 1 3 2

3

1( ) ( ) 0, 3 0
3

q qF F
h h w

h h
ρ

ρ ρ
ρ

∂ ∂ ⎛ ⎞
≥ = − > ⇔ −⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠

ρ ρ > . 

Using these estimates and the relations (7) between the parameters 2,3η  and the original 1,2,3ρ  
parameters of the nonlinear cutting force, lower bounds can be given for the PLC by 

 
2 2
02 2

3 2 1 3 22 2
1 2 0 3 0

( 1) ( )1 1( ) ( 1) ( ) (3 ) (3 ) 0
2 2 ( 2 3 )

h

h h

ω γ ω
ω ω γ ω η η ρ ρ ρ

ρ ρ ρ

−
Δ > − − = − >

+ +
2 . 
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Figure 4. In panel (a) three parameter points are marked at (a lower value) ω 1=1.005, at the minimum point  
ω 2=1.01 and at (a higher value) ω 3=1.1 dimensionless vibration frequency of the second lobe. In panel (b) both 
numerically and analytically approximated bifurcation diagrams are presented which emerge from the chosen 
bifurcation points for ωk , k=1,2,3. In the last panel (c) a planar projection of the unstable trajectories can be seen at the 
loss of contact parameters of the period-one branches where they just touch the ‘switching line’. (κ =0.01,  
h0 =  0.04 [mm]). 

Thus, the Hopf bifurcation is subcritical all along the stability lobes if the gradient of the cubic 
cutting force function is positive at the inflexion point. A negative derivative at a possible inflexion 
point on the cutting force characteristic is physically unreasonable because the system would have a 
‘static’ instability (a saddle-node bifurcation), which is rarely experienced in machine tool 
dynamics. As an important result of the above Hopf bifurcation calculation, it can be concluded that 
unstable oscillations exist around the locally stable stationary cutting when the chip width gets close 
to its critical value along the linear stability boundaries. This result is a generalization of the same 
conclusion of Kalmár-Nagy & Pratt 1999 and Wahi & Chatterjee 2005, which was derived for the 
power-law approximation of the cutting force, where hence the possibility of an inflexion point was 
excluded. 

b) Amplitude estimation of unstable oscillation 

The approximation of the unstable periodic motion gives useful information about the kind of 
perturbations which allow stationary cutting. The substitution of the eigenvectors (16) into the 
periodic solution estimate (15) gives 

 )(cos),()( twrtx ωω≈ , (18) 

while the substitution of the PLC (17) into the amplitude estimate (14) results in 

 2
stab2 2

1 2 32

( )2( , ) ( )
1 ( ) 3 ( )

r w w w
δ ω

ω ω
ω δ ω η δ ω η

≈ −
− +

. (19) 
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Figure 5 shows a realistic bifurcation diagram in case of orthogonal cutting. The ‘outside’ grey area represents the 
chattering motion when the tool leaves the surface of the work-piece at least once in every period. The sub-panel 
presents an estimated non-smooth nature of the surface in the chatter area. 

Clearly, unstable oscillations exist for stab ( )w w ω< , that is, when the chip width is smaller than its 
critical value. The corresponding dimensionless bifurcation diagrams at 3 points of the 2nd lobe of 
the stability chart are presented in Figure 4(b) by the curves denoted ‘analytical’. The curves 
represent unstable vibration amplitudes for stab/ ( )w w 1ω <  with different curvatures for different 
(dimensionless) cutting speeds. 

c) Path-following 

The approximation of the unstable limit cycle gets worse as the chip thickness parameter gets far 
below its critical value at the stability limit. Moreover, below a certain limit, the unstable periodic 
orbit does not exist at all since the vibration amplitudes become so large that the tool actually loses 
contact with the work-piece. In order to check the range of validity (and also the correctness) of the 
analytical treatment, the continuation software DDE-BIFTOOL (Engelborghs et al. 2002) was applied 
to follow the closed unstable orbits in the parameter space. This software uses the collocation 
method to solve the boundary value problem of the returned closed orbits of a delayed system.  

The corresponding unstable periodic orbits are represented by their amplitude curves denoted 
‘numerical’ in the dimensionless bifurcation diagram of Figure 4(b). The results of the path-
following method show very good quantitative agreement with the analytical results of the  
Hopf bifurcation calculation in the region stab0.9 / ( ) 1w w ω< ≤ . 

5. The region of bi-stability 

As explained above, the identified unstable periodic motion exists only for that parameter region of 
the chip thickness where the tool does not leave the work-piece. This region is called ‘bi-stable’ or 
the unsafe zone because the vibrations will settle to the locally stable stationary cutting ‘inside’ the 
unstable orbit only, while ‘outside’ the unstable orbit the vibrations will grow until the motion 
settles to a large-amplitude complex oscillation that involves repeated loss of contact between the 
tool and the work-piece (see Figure 5).  

In order to find the boundaries of the unsafe zone where the unstable periodic orbits exist, one can 
consider the projection of the infinite dimensional phase space, that is, the projection to the plane 
( 1 1( ), (0)t ty yτ− ), or equivalently, to the plane ( ( ), ( ))x t x tτ−  of the delayed and the actual 
dimensionless perturbations. These projections of the unstable orbits (both their analytical and 
numerical approximations) are presented in panel (c) of Figure 4 for chip width parameters )(loss ωw  
where they just touch the so-called ‘switching line’ 1 1(0) 1 ( )t ty y τ= + −  that represents the first loss 
of contact between the tool and the work-piece. 
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Figure 6. In panel (a) the relative widening of the bi-stable region is presented for cubic and power-law cutting force 
characteristics. (dashed: analytical solution, continuous: computed by DDE-BIFTOOL, dots: results of Tobias’ 
measurements (Shi & Tobias 1984)). In panel (b) three intersections are shown with respect to the desired chip 
thickness h0 of the 4th lobe and its unsafe zone (grey area). Here κ = 0.01.   

The definition (5) of the actual chip thickness provides a simple algebraic formulation for the 
condition of the loss of contact in the form 

 0( ) / 0 ( ) ( ) 1h t h x t x t τ= ⇒ − − = ,   for some , (20) 0>t

which determines the ‘switching line’ of slope 1 shifted by 1 in Figure 4(c). Substituting the 
analytical estimate (18) of the critical unstable periodic motion into (20) at the critical chip width 
parameter )(loss ωw  and using formulae (12) for the linear stability limit yields 

 

( )loss

2 2
loss

loss 2 2 2 2

stab

( ) ( ) ( , ( )) cos( ) cos( ( ))

( , ( )) sin ( ( )) (1 cos( ( )) cos( )

( , ( ))
( 1) 4 cos( ).

( )

x t x t r w t t

r w t

r w
t

w

τ ω ω ω ω τ ω

ω ω τ ω τ ω ω ψ

ω ω
ω κ ω ω ψ

ω

− − ≈ − − =

+ − +

− + +

=    

With the help of the amplitude estimate (19), the loss of contact condition (20) can be reformulated 
in terms of the chip thickness parameter  as a function of the frequency parameter lossw ω used to 
parameterize the stability lobes: 

 
2

1 2 2 3
loss stab

2

( ) 3 ( )1( ) ( ) 1
2 ( )

w w
δ ω η δ ω η

ω ω
δ ω

⎛ ⎞+
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 . 

These values of the chip width are also depicted in Figure 4(b) marked with tiny circles and by the 
text ‘switching point’ for the 3 different cases of cutting speeds. These values, which characterize 
the loss of contact parameters, are in the range of 0.9 – 0.92. This range is in agreement with the 
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range measured experimentally by Shi & Tobias 1984. This means that the bi-stable or unsafe zone 
is within the range 

 loss stab( ) ( )w w wω ω< <  ,   

and the curves representing the unstable orbits in Figure 4(b) are extended hypothetically to the left 
of the switching points at loss ( )w ω , since they do not exist for loss ( )w w ω< . 

Finally, the bi-stable regions can also be represented in the stability charts. The shaded regions 
below the stability lobes in Figure 6(b) can be determined easily with the help of the ratio of the 
width of the bi-stable region relative to the critical chip width parameter at the linear stability limit: 

 
2

loss 1 2 2 3
bist

2

( ) ( ) ( ) 3 ( )1( )
( ) 4 ( )

w w
w

w
ω ω δ ω η δ ω

ω
ω δ ω

− +
= =

η
. (21) 

Note that the parameters 2,3η  of the nonlinear cutting force characteristics depend strongly on the 
theoretical chip thickness h0 as indicated by formulae (7). Consequently, the size of the bi-stable 
region also depends on h0 as it can be observed also in Figure 6. In case of the power-law 
approximation, the width of this bi-stable region does not vary at all. 

Figure 6(b) shows the size of the bi-stable region in % according to formula (21) as a function of 
the chip thickness h0 where the nonlinear cutting force parameters 1,2,3ρ  are fixed at the values of 
Figure 2(b) taken from (Shi & Tobias 1984). The experimental results from (Shi & Tobias 1984) 
are denoted by dots and they match the analytical prediction closely. This is remarkable since the 
conventional power-law characteristics provide a constant ~ 4 % width for the bi-stable region. The 
most critical theoretical chip thickness hcr, where the size of the bi-stable region is maximal, can be 
calculated analytically by 

 1
cr

2
h

ρ
ρ

= − .  

In the meantime, the quantitatively more accurate path-following method determined the switching 
points more precisely, and the real size of the maximal bi-stable zone is shown to be about half the 
size of the analytical estimation (see Figure 6). This value is nevertheless at about 50 %, which is 
circa 12 times larger than the one predicted by the power-law formulation.  

6. Conclusions 

Stationary cutting force measurements indicate that the nonlinear cutting force characteristics often 
involve an inflexion point in the otherwise monotonous increasing function of chip thickness. The 
conventional power-law approximation of the empirical cutting force is not able to describe this 
inflexion point. We have analysed the effect of this inflexion point from the nonlinear dynamics 
viewpoint when a cubic polynomial approximation of the cutting force characteristics is used. 

The conventional power-law approximation has several advantages from the viewpoint of the 
optimal design of the parameters of the technology, but it has serious disadvantages from the 
viewpoint of predicting machine tool chatter. On the one hand, the application of the power-law in a 
Newtonian equation of machine tool vibration violates the uniqueness of the solution in forward 
time and also causes unpredictable errors during the numerical simulation of large amplitude 
oscillations between the tool and work-piece. On the other hand, the missing inflexion point results 
in the prediction of a uniform and thin bi-stable region along the stability limits that does not 
depend on the mean (or theoretical) chip thickness. This bi-stable region jeopardises the chatter-free 
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cutting even for stable stationary cutting processes designed and optimized by linear theory; and the 
power-law approximation of the cutting force heavily underestimates the real size of this zone. 

With the help of realistic cubic polynomial approximations of the nonlinear cutting force, we have 
proved the uniform subcriticality of the Hopf bifurcations along all the linear stability limits of 
regenerative cutting processes. The only mathematical prerequisite for this subcriticality is the 
natural positive slope of the cutting force characteristics at the inflexion point. 

Furthermore we have estimated the width of the bi-stable region analytically. It was shown that its 
size varies along the stability limits and this bi-stable region could be much larger than expected 
before. While the linear stability boundaries increase slightly for increasing values of the theoretical 
chip thickness, for both power-law and cubic polynomial cutting forces, the size of the bi-stable 
region increases for much (actually, about 12 times) larger values in case of the presence of an 
inflexion point in the cutting force characteristics than the size of the bi-stable region predicted by 
the power-law approximations of the cutting force. The analytical results were checked by 
continuation software, and the above conclusions were confirmed by existing experimental results 
of the specialist literature (Shi & Tobias 1984) that were re-visited and re-examined from the 
nonlinear dynamics points of view.  
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Figure captions 

Figure 1. Panel (a) shows the arrangement of the machine tool–work-piece system in orthogonal cutting. Panel (b) 
illustrates a planar mechanical model.  

Figure 2. Panel (a) illustrates the power and the cubic forms of the empirical nonlinear cutting force characteristics. 
Panel (b) shows the result of Tobias’ classical measurements (Shi & Tobias 1984) in the case of full immersion milling 
with a face mill with an even number of teeth. Panel (c) shows the fitted cubic cutting force characteristics measured by 
Endres in case of turning (Endres & Loo 2002). Panel (d) shows static cutting force measurements made using 
orthogonal cutting conditions (see, Acknowledgement). 

Figure 3. In panel (a) the linear stability chart can be seen in normalised, dimensionless technological parameter space 
(w/w , Ω). In panel (b) the dimensionless frequencies ω of the self excited vibrations are presented at the limits of 
stability. (Here κ = 0.01.) 

min 

Figure 4. In panel (a) three parameter points are marked at (a lower value) ω =1.005, at the minimum point  
ω =1.01 and at (a higher value) ω =1.1 dimensionless vibration frequency of the second lobe. In panel (b) both 
numerically and analytically approximated bifurcation diagrams are presented which emerge from the chosen 
bifurcation points for ω , k=1,2,3. In the last panel (c) a planar projection of the unstable trajectories can be seen at the 
loss of contact parameters of the period-one branches where they just touch the ‘switching line’. (κ =0.01,  
h =  0.04 [mm]). 
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k 

0 

Figure 5 shows a realistic bifurcation diagram in case of orthogonal cutting. The ‘outside’ grey area represents the 
chattering motion when the tool leaves the surface of the work-piece at least once in every period. The sub-panel 
presents an estimated non-smooth nature of the surface in the chatter area.Figure 6. In panel (a) the relative widening of 
the bi-stable region is presented for cubic and power-law cutting force characteristics. (dashed: analytical solution, 
continuous: computed by DDE-BIFTOOL, dots: results of Tobias’ measurements (Shi & Tobias 1984)). In panel (b) 
three intersections are shown with respect to the desired chip thickness h  of the 4  lobe and its unsafe zone (grey area). 
Here κ = 0.01.   
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