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Basins of attraction in nonsmooth models of gear rattle

Joanna F. Mason ∗ †, Petri T. Piiroinen ‡, R. Eddie Wilson †, and Martin E. Homer †.

March 14, 2008

Abstract

This paper is concerned with the computation of the basins of attraction of a simple one
degree-of-freedom backlash oscillator using cell-to-cell mapping techniques. This analysis is
motivated by the modelling of order vibration in geared systems. We consider both a piecewise
linear stiffness model and a simpler infinite stiffness impacting limit. The basins reveal rich
and delicate dynamics, and we analyse some of the transitions in the system’s behaviour in
terms of smooth and discontinuity-induced bifurcations. The stretching and folding of phase
space are illustrated via computations of the grazing curve, and its pre-images, and manifold
computations of basin boundaries using DsTool (Dynamical Systems Toolkit).

1 Introduction

Rattle is a potential problem in any geared system. In quiet operation, meshing gears are expected
to be in permanent contact. However, gear teeth are typically manufactured with a clearance,
known as the backlash, and consequently meshing teeth may repeatedly lose and re-establish
contact and thus rattle. This behaviour is known as a backlash oscillation.

An idealised equation of motion for a symmetric 1:1 pair of meshing spur gears (see [Halse et al.,
2007; Mason et al., 2007]) takes the form

Φ′′ + δΦ′ + 2κB(Φ) = 4πδ − 4π2ε cos(2πt) − 2πδε sin(2πt), (1)

where Φ denotes the relative rotational displacement of the gears, and δ and κ denote non-
dimensionalised damping and stiffness coefficients respectively. Moreover ε describes the non-
dimensional amplitude of an external forcing effect which acts order one, i.e., at a frequency equal
to the gross rotation rate of the gears. As written here, the forcing models eccentric mounting of
the gears, but similar formulations could be used to describe oscillation in the driving torque of
the system. Here, that driving torque is held constant and is represented by the non-dimensional
4πδ term on the right-hand side of the model. Furthermore, we suppose that the system is in
quasi-steady operation, so that on average the constant drive torque balances the damping, and
we consider only small oscillations about a constant running speed.

Model (1) is closed by prescribing the restoring torque between the gear pair, for which we use the
nonsmooth backlash function

B(Φ) =






Φ − β, Φ ≥ +β,
0, |Φ| < β,
Φ + β, Φ ≤ −β,

(2)
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Figure 1: Some periodic solutions of Eqs. (1,2) for representative machine parameters κ = 1000,
δ = 6 × 10−4, β = 6 × 10−4 and ε = 1 × 10−4 with the backlash boundaries Φ = ±β overlaid in
dotted lines. These solutions are linearly stable and coexist with a quiet solution (not shown) in
which the gears are in permanent contact with Φ ≥ +β. Here note that the duration of contacts
(for which Φ ≥ +β or Φ ≤ −β) is extremely short, which motivates modelling the contacts by pure
impacts.

where 2β is the non-dimensional backlash width.

From the point of view of gear mechanics specialists, Eqs. (1,2) represent an over-simplified system,
since we have neglected the parametric forcing effect (i.e., time-dependent stiffness) which operates
at the tooth-meshing frequency (see for example [Theodossiades and Natsiavas, 2000; Blankenship
and Kahraman, 1995]), by assuming that it is decoupled from the much slower order vibration
operating at the gross rotation rate. Our interest is that Eqs. (1,2), which we call the piecewise
linear model, constitute a piecewise smooth dynamical system (see [di Bernardo et al., 2007] for a
review of this area) which has the potential for complex dynamics.

In fact, one may find a bound on the forcing term (see [Halse et al., 2007; Mason et al., 2007])

ε < ε
(1)
crit :=

2δ

κ

√
(κ − 2π2)2 + π2δ2

4π2 + δ2
, (3)

which if satisfied, permits a ‘quiet’ solution for which Φ ≥ +β for all time. This is simply the
sinusoidal solution of a periodically forced linear oscillator, which we call the permanent linear
contact (PLC) solution. However [Halse et al., 2007] found that even when Eq. (3) is satisfied,
there may coexist families of periodic solutions that ‘rattle’, in the sense that Φ ≥ +β does not
hold for all time, see Fig. 1. Moreover, some of these rattling solutions are linearly stable and
consequently real applications have the potential for intermittency or unreliability. The t → ∞
dynamics depend upon the initial data, which in practice is difficult to control since it depends on
fine details of the operating conditions and how a machine is run up from rest.

It is therefore a matter of practical concern to establish which linearly stable solutions dominate
the t → ∞ dynamics. Consequently, this paper is concerned with the computation of basins of
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attraction for Eqs. (1,2) using cell-to-cell mapping techniques [Hsu and Guttalu, 1980; Hsu, 1987].
Moreover, our approach is motivated by an analysis of vibrations in the gearing mechanism of a
Roots blower vacuum pump, which is a lightly damped system with very high stiffness. In this
application, the rescaled damping δ, half backlash β and eccentricity ε are all small (∼ 10−4), and
the rescaled stiffness parameter κ is large (∼ 103). These parameters present a computational
challenge for two independent reasons. Firstly, the large stiffness value introduces a small time-
scale which must be resolved. Secondly, the small damping value gives rise to long transients and
slender features in basin diagrams. This latter problem is severe for the parameter values quoted
here, and consequently in this paper we work with scaled-up values for the purposes of illustration.
However, we expect the qualitative details of the structures and transitions we observe to persist
at more realistic parameter values.

As we observed in Fig. 1, in the large stiffness (large κ) limit, solutions tend to spend the majority
of their time in the regime which we shall call freeplay (where |Φ| < β), and in fact the duration
of contacts scales like 1/

√
κ. This motivates an impacting contact model [Halse et al., 2007] with

coefficient of restitution one as a formal κ → ∞ limit. As an alternative to Eqs. (1,2), we may
thus analyse

Φ′′ + δΦ′ = 4πδ − 4π2ε cos(2πt) − 2πδε sin(2πt), |Φ| < β, (4)

with perfectly elastic impact events at times timp

Φ′(timp+) = −Φ′(timp−) when |Φ(timp)| = β. (5)

Here Φ′(timp−) = limt↑timp
Φ′(t) and Φ′(timp+) = limt↓timp

Φ′(t) are the velocities immediately
before and after impact respectively. The perfect elasticity implies the absence of chattering
(essentially, an infinite number of impacts in a finite time) which significantly simplifies our analysis
and computations.

The impacting model is simpler to analyse than Eqs. (1,2) but has the disadvantage that it does
not capture quiet solutions for which Φ ≥ +β for all time. Consequently a proper understanding of
the relative dominance of quiet and rattling behaviour can only be achieved by analysing Eqs. (4,5)
in comparison with Eqs. (1,2). Other authors [de Souza and Caldas, 2001; de Souza et al., 2004,
2005] have computed basins of attraction for an impacting contact gear model and established
the existence of chaotic regimes. But we go further and use Eqs. (1,2) to calculate the basins of
attraction for quiet solutions — a matter of some importance from the engineering point of view.

Furthermore, we also describe more computationally-efficient methods by which the basins of
attraction may be produced. In particular, we calculate stable manifolds, which form the basin
boundaries, using Man1D, a module of DsTool [Back et al., 1992; Krauskopf and Osinga, 2000;
England et al., 2004]. To our knowledge this is the first time that this package has been used to
analyse a one degree-of-freedom backlash oscillator system such as the one described here

The outline of the paper is as follows. We begin by describing in detail the reduction of the
impacting contact Eqs. (4,5) and full piecewise linear Eqs. (1,2) models to Poincaré maps, applied
at the section Φ = +β, in Secs. 2 and 3 respectively. These impact maps considerably simplify
the analysis, visualisation and computations that follow. In particular, they enable the direct
application of the cell-to-cell mapping technique, which we introduce in Sec. 4. Section 4 also
describes our refinements to the cell-to-cell mapping technique, that we employ to minimise the
effect of long transients. Basins of attraction for several ranges of parameter values (which all satisfy
Eq. (3)) are computed in Sec. 5. We observe complicated dynamics and we present an explanation
of some of the transitions in the system’s behaviour in terms of smooth and discontinuity-induced
bifurcations. In addition, in Sec. 6 we discuss the important role that the discontinuity in our
system plays in the intricate stretching and folding of the phase space. Finally, in Sec. 7, we
provide some concluding remarks and identify areas for further work.
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2 Reduction to Map: Impacting Limit

The models Eqs. (1,2) and Eqs. (4,5) are non-autonomous single degree-of-freedom nonlinear os-
cillators with phase space (t, Φ, Φ′). In this paper we analyse their dynamics via their reduction
to Poincaré maps. In such periodically forced systems, the usual approach is to reduce to a
two-dimensional stroboscopic map which generates a sequence (Φ0, Φ

′
0), (Φ1, Φ

′
1), (Φ2, Φ

′
2), . . ., at

t = 0, 1, 2, . . .. However, for our system it is more natural to use one of the impact conditions as
the Poincaré section. This is because the impacting system Eqs. (4,5) is linear between impacts,
and consequently we may exploit its explicit solution

Φ(t) = c1 + c2e
−δt + ε cos 2πt + 4πt, (6)

since this proves to be more efficient than solving the ordinary differential equation Eq. (4) by
time integration. Note that a solution of Eqs. (4,5) consists of a sequence of segments described by
Eq. (6) with the constants c1 and c2 repeatedly reset at impacts when Φ = ±β. Although Eq. (6)
gives Φ explicitly in time, the task of finding times at which impact conditions Φ = ±β apply
reduces to the numerical solution of transcendental equations.

We now consider the itinerary of impacts. When Φ′ = 0, Eq. (4) yields

Φ′′(t) = 4πδ − 2πε(4π2 + δ2)
1
2 cos(2πt + ξ), (7)

where ξ is a phase shift. This expression is always positive provided

ε < ε
(2)
crit :=

2δ

(4π2 + δ2)
1
2

(∼ δ

π
as δ → 0). (8)

For sufficiently large κ, we have ε
(1)
crit < ε

(2)
crit, hence enforcing Eq. (3) guarantees the positivity of

Φ′′ at smooth local extrema. Hence local maxima of Φ are only possible at Φ = +β where Φ′

is discontinuous, but local minima may be achieved smoothly for |Φ| < β or discontinuously at
Φ = −β, or (rarely) when Φ = −β and Φ′ = 0 simultaneously.

Let us now consider the fate of trajectories with initial data −β < Φ ≤ +β and Φ′ < 0. Such
a trajectory must impact at some subsequent time with either Φ = +β or Φ = −β. To see this,
assume the contrary, in which case Eq. (6) applies for all time, yielding Φ → +∞ > +β as t → ∞
and hence a contradiction. In the case where the next impact is with Φ = −β, the velocity will
reverse to a non-negative value. The subsequent impact after this one must be with Φ = +β,
since if the next impact were with Φ = −β, a (smooth) local maximum would be required. Hence
solutions must repeatedly return to the Φ = +β impact boundary, although they need not ever
visit the Φ = −β boundary.

Thus Φ = +β defines a natural Poincaré section, and we work with a two-dimensional impact map
P on (t, v) ∈ [0, 1) × (0,∞) which describes times and velocities of impacts. Here time t is taken
modulo one due to the period one forcing. By convention, we take v = Φ′(t−) = −Φ′(t+) > 0 for
the velocity coordinate at impact at time t. Later, when the piecewise linear model Eqs. (1,2) is
used, trajectories cross the surface Φ = +β and this idea needs refinement.

We now turn our attention to the structure of the impact map under consideration. To summarise
our discussion above, there are two main outcomes (see Fig. 2) for a given initial condition with
Φ = +β and Φ′ = −v0 < 0 at time t0:

Case (a) The next impact is with Φ = +β, see Fig. 2(a).

Case (b) The next impact is with Φ = −β and the next but one impact is with Φ = +β, see
Fig. 2(b).
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ΦA ΦB

Φ Φ Φ

β β β

t t t

−β −β −β

t0 t0 t0 t1t1t1

t̂t̂

Figure 2: Sketches of the three different types of trajectory. From left to right : (a) illustrates a
trajectory whose next impact is with the Φ = +β boundary, (b) a trajectory whose next impact is
with the Φ = −β boundary before it re-impacts the Φ = +β boundary and (c) a grazing trajectory
that grazes the Φ = −β boundary.

Furthermore, we have:

Case (c) The trajectory grazes the Φ = −β boundary with zero velocity before re-impacting the
Φ = +β boundary, see Fig. 2(c).

In fact, case (c) separates cases (a) and (b) in the sense that if data (t0, v
∗
0) give rise to case (c),

then (t0, v0) is case (a) if v0 < v∗0 or is case (b) if v0 > v∗0 . This may be proven by a monotonicity
argument which establishes that if Φ1 and Φ2 are solutions of Eq. (6) with initial data Φ1(t0) =
Φ2(t0) = β and Φ′

1(t0) = −v1 and Φ′
2(t0) = −v2 with v2 > v1, then Φ1(t) > Φ2(t) for all t > t0. The

monotonicity principle itself may be established by noting that Φdiff(t) := Φ1(t) − Φ2(t) satisfies
Φ′′

diff +δΦ′
diff = 0 from Eq. (4), together with Φdiff(t0) = 0, and so Φdiff(t) = A[1−exp(−δ(t− t0))].

For a given t0, it follows that there is a unique v∗0(t0) which satisfies case (c). Three example
trajectories leaving the Φ = +β boundary at the same time with different initial velocities are
illustrated in Fig. 3(a).

The remainder of this section describes how we construct the impact map on (t, v) pairs and how
we tackle the resulting transcendental equations robustly. Section 2.1 sets up and solves systems of
equations which define the grazing curve v∗(t) described by case (c). Once this curve is computed,
any given data (t, v) may be classified as case (a) (described in Sec. 2.2) or case (b) (described in
Sec. 2.3). Note that the construction for case (b) poses particular difficulties since it consists of
two trajectory segments, hence two impact times and two distinct root finding procedures.

2.1 Solution for the grazing curve

We begin by constructing trajectories that impact the Φ = −β boundary with zero velocity,
see Fig. 2(c). Solutions of this type start at the Φ = +β boundary at time t0 with velocity
Φ′(t0+) = −v∗0(t0) (to be determined) and graze the Φ = −β boundary at time t̂ with zero
velocity. Hence from Eq. 6 we have

(Φ(t0) =) c1 + c2e
−δt0 + ε cos 2πt0 + 4πt0 = β, (9)

(Φ′(t0) =) − δc2e
−δt0 − 2πε sin 2πt0 + 4π = −v∗0 , (10)

(Φ(t̂) =) c1 + c2e
−δt̂ + ε cos 2πt̂ + 4πt̂ = −β, (11)

(Φ′(t̂) =) − δc2e
−δt̂ − 2πε sin 2πt̂ + 4π = 0, (12)
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Φ

β

−β

t

(a) v0 < v∗0

(c) v0 = v∗0

(b) v0 > v∗0

t

v

vmin

vmax

0 1

case (a)

case (b)

case (c)

(a) (b)

Figure 3: (a) Example trajectories of type (a), (b) and (c) leaving Φ = +β at the same time.
Solid lines represent true trajectories, and the dashed lines, a trajectory ignoring the impact with
Φ = −β. (b) The division of (t, v) space into regions characterised by trajectories of type (a) and
(b), by the grazing curve, (c).

as a system of four equations in the unknowns c1, c2, t̂ and v∗0 . However, it is ultimately only v∗0
that is of interest.

If we subtract Eq. (11) from Eq. (9) and use Eq. (12) to substitute for c2 we obtain a single equation

1

δ
(4π − 2πε sin 2πt̂)(eδ(t̂−t0) − 1) + ε(cos 2πt0 − cos 2πt̂) + 4π(t0 − t̂) − 2β = 0, (13)

to solve numerically for t̂ as a function of t0. The only remaining question concerns the counting
of solutions and whether the solver finds the correct root. In this case provable robustness is not
critical because the grazing curve v∗(t) is computed in full prior to the basin computation, and a
failure to find the correct root t̂ for individual values of t0 can be identified by visual inspection.
However, in our examples no such problems occurred.

In fact, for each time t0, it turns out that two values t̂ satisfy Eq. (13), but only one of these
satisfies t̂ > t0. In the first instance we therefore solve Eq. (13) via the Newton method (see for
example [Dahlquist and Björck, 1974]) with an initial guess t0 + 1/2, and we have found that this
converges to the correct root in all the cases that we have tried. Once t̂ has been calculated for
a single value of t0, we compute further t0, t̂ pairs using a ‘continuation’ type method where t0
is stepped in small increments and the solution t̂ at one t0-value is used as the Newton solver’s
initial guess for the next t0-value. Each t̂-value can then be converted to a corresponding velocity
v∗0 using Eq. (10), and an interpolating curve (t, v∗(t)) is thus constructed. As we have discussed,
this grazing curve acts as the separatrix of the trajectories whose next impact is with either the
Φ = +β or Φ = −β boundary, see Fig. 3(b).
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2.2 Case (a) : next impact with Φ = +β

We now analyse trajectory segments of the form shown in Fig. 2(a), and thus we develop the
impact map P for data P (t0, v0) = (t1, v1) with v0 < v∗0(t0). We have

(Φ(t0) =) c1 + c2e
−δt0 + ε cos 2πt0 + 4πt0 = β, (14)

(Φ′(t0+) =) − δc2e
−δt0 − 2πε sin 2πt0 + 4π = −v0, (15)

(Φ(t1) =) c1 + c2e
−δt1 + ε cos 2πt1 + 4πt1 = β, (16)

(Φ′(t1−) =) − δc2e
−δt1 − 2πε sin 2πt1 + 4π = v1, (17)

cf. Eqs. (9-12). If we subtract (14) from (16), we solve f(t1) = Φ(t1)−Φ(t0) = 0 for t1 in terms of
fixed t0, which may be may be expanded using Eq. (15) to substitute for c2, to give

f(t1) =
1

δ
(4π + v0 − 2πε sin 2πt0) (e−δ(t1−t0) − 1) + ε(cos 2πt1 − cos 2πt0) + 4π(t1 − t0) = 0. (18)

By using the relationship with Φ, we have f(t0) = 0 and f ′(t0) < 0; moreover we have limt→∞ f(t) =
+∞. It follows that there is a unique root t1 > t0 which may be bracketed by successive doubling.
Then either interval bisection or the method of false position will find the root robustly.

However, for δ small, a convexity argument may be used to establish the robust convergence of
the Newton method. Note that f(t) is not globally convex, even though it has a unique local
minimum. To see this, we use Eq. (6) to derive

Φ′′(t) = δ2c2e
−δt − 4π2ε cos 2πt, (19)

which displays oscillatory behaviour as t → ∞. However, since

c2 =
4π + v0 − 2πε sin 2πt0

δ
eδt0 , (20)

a sufficient condition for convexity is given by

t < tmax := t0 +
1

δ
loge

[
δ(4π + v0 − 2πε sin 2πt0)

4π2ε

]
. (21)

Then tmax > t0 is established by showing that the argument of the logarithm exceeds one, for
which it suffices that

ε < ε
(3)
crit :=

δ

π + δ/2
∼ δ

π
, (22)

cf. Eq. (8), which thus generally holds throughout this paper. The interest however is in the limit
δ → 0 with Eq. (22) maintained, for which tmax → ∞. In this case, successive doubling may be
used to establish an interval which verifiably brackets the desired root t1 and on which Φ and
hence f are convex. The Newton method thus displays robust one-sided second order convergence
for any initial guess in this interval which is to the right of the root.

2.3 Case (b) : next impact with Φ = −β

We now proceed to construct trajectories that impact the Φ = −β boundary before re-impacting
the Φ = +β boundary. Trajectories of this type consist of two pieces (see Fig. 2(b)), so two
root finding procedures are required, to find the times of impact with the Φ = −β and Φ = +β
boundaries respectively.

The first section of trajectory (ΦA) starts from the Φ = +β boundary with initial times and
velocities (t0, v0) and then impacts the Φ = −β boundary with unknown times and velocities
(t̂, v̂). In addition to Eqs. (9) (replacing v∗0 by v0), (10) and (11) we have

Φ′(t̂) = −δc2e
−δt̂ − 2πε sin 2πt̂ + 4π = v̂. (23)

7



If we subtract (9) from (11) and use (10) to substitute for c2, we have

1

δ
(4π + v0 − 2πε sin 2πt0) (e−δ(t̂−t0) − 1) + ε(cos 2πt̂ − cos 2πt0) + 4π(t̂ − t0) + 2β = 0. (24)

However (see Fig. 3(a)) this equation has two roots via its relationship to Φ and we seek only the
left-most one for which a convexity argument applied to Φ may be used to establish the robust
performance of the Newton method. To see this, note

Φ′(tmax) = 4π
(
1 − πε

δ

)
− 2πε sin 2πtmax, (25)

which is positive for ε sufficiently small and less than δ/π. Here tmax is given by Eq. (21). It
follows that the local minimum of Φ is to the left of tmax, and since t̂ is to the left of the local
minimum, Φ and hence f are convex on the interval [t0, t̂]. Hence for an underestimate of t̂ such
as t0 + 2β/v0, the Newton method will give robust one-sided convergence to t̂. The corresponding
impact velocity can then be found from Eq. (23) which is then reversed for the initial data of the
second part of the trajectory.

The second piece of trajectory (ΦB) leaves the Φ = −β boundary with known times and velocities
(t̂,−v̂) and impacts the Φ = +β boundary with unknown times and velocities (t1,−v1).

Φ(t̂) = ĉ1 + ĉ2e
−δt̂ + ε cos 2πt̂ + 4πt̂ = −β, (26)

Φ′(t̂) = −δĉ2e
−δt̂ − 2πε sin 2πt̂ + 4π = −v̂, (27)

Φ(t1) = ĉ1 + ĉ2e
−δt1 + ε cos 2πt1 + 4πt1 = β, (28)

Φ′(t1) = −δĉ2e
−δt1 − 2πε sin 2πt1 + 4π = −v1. (29)

If we subtract (26) from (28) and use (27) to substitute for ĉ2, we have

1

δ

(
4π − v̂ − 2πε sin 2πt̂

)
(e−δ(t1−t̂) − 1) + ε(cos 2πt1 − cos 2πt̂) + 4π(t1 − t̂) − 2β = 0, (30)

to solve for t1, for which the convergence issues are similar to those for case (a) discussed above.
Note that for small δ, the trajectory is approximately reversible in time and hence 2t̂−t0 constitutes
a good initial guess for t1. Once t1 is found, the corresponding impact velocity v1 is given by Eq.
(29).

We have now constructed a complete map P for the impacting contact model Eqs. (4,5), and we
proceed to construct a similar map for the piecewise linear model Eqs. (1,2).

3 Construction of P for the Piecewise Linear Model

To calculate the Poincaré map P for the piecewise linear model we can adapt the impact map
described above by replacing elastic impacts with the backlash boundaries with excursions into
one of the linear stiffness regimes. We refer to the Φ ≥ +β regime as linear contact, and the
Φ ≤ −β regime as torque reversal. As before we construct a map in time and velocity at the point
of departure (Φ′ < 0) from the Φ = +β boundary to the next such departure, noting attraction to
permanent linear contact if no such departure exists.

In contrast to the impacting contact model, where the robustness of our numerical procedures
can be guaranteed, here we have to proceed by formal arguments which nevertheless appear to
converge to the correct root in all cases that we have examined. Details of proofs have not been
attempted.

Consider a trajectory with initial data −β < Φ ≤ +β and Φ′ < 0. As before, such a trajectory
must impact either Φ = +β or Φ = −β at some subsequent time. We note that any crossing of
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Figure 4: Sketches of three example trajectories departing from Φ = +β with Φ′ > 0. From left
to right: (a) the trajectory oscillates between linear contact and freeplay, (b) trajectory returns to
freeplay (within one gross rotation) after several maxima and minima in linear contact, (c) the
trajectory stays in permanent linear contact.

the Φ = −β boundary from freeplay must be followed by another crossing of Φ = −β back into
freeplay, by the following argument.

At a turning point Φ′ = 0 in Φ ≤ −β we have

Φ′′ = −2κβ + 4πδ − 2κΦ − 2πε(4π2 + δ2)
1
2 cos(2πt + ξ), (31)

where ξ is a phase shift. This expression is always positive provided

ε <
2δ − (β + Φ)

(4π2 + δ2)
1
2

. (32)

Since Eq. (3) holds and Φ ≤ −β in this regime, this bound is always satisfied and there can be no
local maxima in the torque reversal regime.

Let us now consider trajectories where Φ > +β and Φ′ > 0, i.e., a trajectory in the linear contact
regime with positive velocity. There can be many maxima and minima of Φ before the trajectory
re-crosses the Φ = +β section and returns to the freeplay region, if it in fact does ever return. We
assume that if a trajectory does not re-cross Φ = +β within one gross rotation that it will never
re-cross and it will remain in the linear contact regime for all time, i.e., permanent linear contact.
Some example trajectories with initial data Φ = +β and Φ′ > 0 are illustrated in Fig. 4.

To locate exit points from the linear contact regime, and hence re-crossings of Φ = +β, we must
first find the maxima (and minima, if any) within it. Unfortunately, it is not possible to find these
maxima and minima in closed form. However, we can calculate good approximations, motivated
by the relative sizes of terms, as outlined below.

The general solution of Eq. (1) in the linear contact regime has the form

Φ(t) =
√

A2 + B2e−
δt

2 cos(qt + ζ) + β +
2πδ

κ
+ p cos(2πt + λ), (33)

where A and B are constants of integration which can be expressed in terms of the initial conditions,
and

ζ = arctan

(
−A

B

)
, (34)

q =

√
2κ− δ2

4
≈

√
2κ, (35)

p = −πε

√
4π2 + δ2

(κ − 2π2)2 + π2δ2
≈ −2π2ε

κ
, (36)

λ = arctan

(
δ(κ − 2π2) − 2π2δ

πδ2 − 2π(κ − 2π2)

)
≈ − δ

2π
. (37)
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To determine if an exit from the linear contact regime is possible we must find the turning points
of Eq.(33). We require tm such that Φ′(tm) = 0, i.e.,

−q
√

A2 + B2e−
δtm
2 sin(qtm + ζ) − δ

2

√
A2 + B2e−

δt

2 cos(qtm + ζ) − 2πp cos(2πtm + λ) = 0. (38)

Eq. (38) cannot be solved in closed form. However, if we examine both the frequencies and
amplitudes of the three sinusoidal terms we can identify the leading order terms. We note that the
first two terms of Eq. (38) oscillate significantly faster, O(

√
κ) than the third term, O(1) and hence

there is a decoupling of time scales. In addition, the amplitude of the first term, is proportionately
considerably larger than that of the second, by a ratio O(

√
κ) to O(δ).

Hence, as a good approximation to the solution of Eq. (38) we solve:

sin(qtm + ζ) = 0, (39)

⇒ tm =
mπ − ζ

q
, (40)

where m ∈ Z. Equation (40) is a maximum of Eq. (33) if m is odd and a minimum if m is even.

We can then use tm to to determine if a crossing of Φ = +β exists within one gross rotation (namely
if there exists a Φ(tm) < +β with m even) and further to bracket such a crossing. Due to the
possibility of multiple crossings of Φ = +β, we cannot guarantee that Newton’s method will locate
the correct (i.e. the first) root, and hence we employ instead a combination of interval bisection
and secant methods. That is, we use Eq. (40) to approximate the first minimum of Φ < +β, as well
as the previous maximum, which together bracket the root. Equation (33) then gives the exact
values of Φ′ at the interval endpoints; if both are negative the secant method should locate the
crossing of Φ = +β with superlinear convergence. If the gradients are of different sign, however,
we can use interval bisection until the gradients are of the same sign; the secant method can then
be applied with confidence.

A similar method can be used to find the minimum in Φ ≤ −β to locate an initial guess for the
exit point from the torque reversal regime.

Our method (for initial conditions departing from Φ = +β with negative velocity) can be sum-
marised as follows.

• Identify whether the the next crossing is with Φ = +β or Φ = −β using the pre-computed
grazing curve.

• If the next crossing is with Φ = −β:

– Locate the next crossing of Φ = −β using the Poincaré map for the impacting contact
model.

– Approximate the minimum that occurs in Φ ≤ −β.

– Temporarily neglect the existence of the freeplay region, and approximate the next
maximum (note that this maximum is non-physical)

– The root of Φ = −β is bracketed by this minimum and the maximum.

– Apply the secant method to locate the crossing.

• Use the Poincaré map for the impacting contact model to locate the next crossing of Φ = +β.

• To determine whether the trajectory remains in permanent linear contact, or not:

– Temporarily neglect the existence of the freeplay region, and approximate the first
minimum that occurs in |Φ| < β within one gross rotation (note that this minimum is
non-physical). If there is no such minimum this initial condition is marked as one that
results in PLC.
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– Approximate the previous maximum.

– The root of Φ = +β is bracketed by this minimum and the maximum.

– Use Eq. (33) to find the exact gradients of Φ at the interval endpoints.

– If the gradients of both points are negative, use the secant method to locate the crossing
of Φ = +β.

– If the gradients at these points are of different signs, use interval bisection until the new
endpoints are both negative. Apply the secant method to locate the crossing.

Having constructed the Poincaré map P for the full piecewise linear model Eqs. (1,2), in addition
to that for the impacting contact model, Eqs. (4,5), we now proceed to describe how they are used
to compute the basins of attraction of solutions of these models.

4 Cell-to-Cell Mapping in Nonsmooth Systems

Our objective is to calculate the basins of attraction of both the full piecewise linear (Eqs. (1,2))
and impacting contact (Eqs. (4,5)) gear rattle models, by the brute-force simulation of a large
number of initial conditions. To this end, we employ the method of cell-to-cell mapping [Hsu and
Guttalu, 1980; Hsu, 1987], applied to the Poincaré maps P defined in Secs. 2 and 3. The region of
interest (in this instance a closed bounded subset of the domain of P , namely the time and velocity
(t, v) of departures from Φ = +β) is divided into a uniform rectangular grid of cells, where each
cell has a unique cell number associated with it.

The centre point of each cell (tc, vc) corresponds to one set of initial data. The dynamics of the
system are described by a mapping, in our case the Poincaré map P : (ti, vi) 7→ (ti+1, vi+1). This
mapping can then be applied to each initial condition to yield a ‘cellular’ form of the Poincaré map,
which we call a cell-map Pcell : (tci , v

c
i ) 7→ (tci+1, v

c
i+1) which maps cell-centres to cell-centres (or,

equivalently, cells to cells). The cell-map is a composition of the Poincaré map P , and a ‘correction’
map Pcorr that maps points to the nearest cell-centre (see Fig. 5(a)). We now know to which cell
in the grid each initial condition maps. The implicit assumption is that all points within a given
cell map to the same cell; a finer grid gives better accuracy, but requires more computation. In
principle, as we let the cell-size tend to zero, the cell-map will converge to the Poincaré map itself.

As there are a finite number of cells in this framework, every cell in the cell-map is either a
periodic attractor or maps outside the grid. One implication of this is that chaotic solutions
cannot be directly identified, but can be inferred as being solutions of large period, which increases
as cell-size tends to zero.

Solutions with small damping, δ, as is characteristic for the systems we study, suffer from particu-
larly long transients. In order to determine the long term behaviour we adapt Hsu’s method. We
apply the Poincaré map to each initial condition and record the terminal positions. We then repeat
this procedure many times using the ‘uncorrected’ terminal points as the new starting conditions.
That is, we compute Pcorr(P

k(tc, vc)), rather than P k

cell(t
c, vc); see Fig. 5(b). This method is akin

to long time integration to eliminate transients but is computationally much cheaper, yet more
accurate than a simple iteration of the cell-map. We need to be careful in choosing the number of
applications, k, of the Poincaré map to ensure that the correct periodicity is calculated. A simple
way to do this, without the need for any extra computer code, is to choose k to be a large prime
number. In this way the true periodicity of each basin of period less than k (from the point of
view of the cell-map) is calculated.

To extract efficiently the global properties from the mapping, algorithms described in [Hsu and
Guttalu, 1980; Hsu, 1987] can be employed to determine all the information that we require for
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Figure 5: Schematic illustrations of (a) the cell-map Pcell, and (b) the map we use to minimise
the effect of long transients Pcorr ◦ P k, where the Poincaré map P is applied k times (here k = 4)
followed by the correction map, Pcorr to re-centre the terminal point.

constructing the basins of attraction. For each cell there are three possibilities: the cell is a periodic
cell, i.e., this cell belongs to a periodic orbit; the cell is mapped outside the grid, or the cell is
mapped into a periodic cell. For each cell the algorithm assigns: a group number (basin number),
a periodicity number (the number of impacts of Φ = +β before the trajectory repeats itself), and
a step number (the number steps of it takes to map this particular cell into a periodic cell). Note
that there are as many group numbers as there are periodic orbits, and that a step number of zero
implies a periodic cell.

In what follows, we will use the cell-to-cell mapping technique to explore the solution of the gear-
rattle models by computing their basins of attraction. For the purposes of visualisation, we colour
each basin according to its itinerary, i.e., the pattern of impacts that occur with both backlash
boundaries. Shorter itineraries are represented by shorter wavelength (bluer) colours. At the two
extremes of the colour scale; dark blue denotes behaviour akin to permanent linear contact and
red, chaotic behaviour. This results in a uniform colour scale across the results below; the same
colour in more than one picture denotes the same solution type.

To identify the many different periodic solutions, we use the notation introduced in [Halse et al.,
2007] to identify some different types of periodic solution. We let P (m, n+, n−) denote a peri-
odic solution, of period m ∈ Z, where n± denote the number of times per period that the orbit
impacts/crosses the Φ = ±β boundaries respectively. Whilst this notation is useful it does not
classify all solution types, or identify the order in which impacts of Φ = +β and Φ = −β occur.

It is important to emphasise here the subtle difference between periodicity and impact periodicity.
As we use an impact-based map, the periodicity that we calculate is the impact periodicity; this
is the number of times the trajectory impacts Φ = +β before repeating. For example, in one time
period t ∈ [0, 1] a solution may impact Φ = +β twice (with different velocities) before repeating,
therefore having an impact periodicity of two.

5 Basins of Attraction Computations

To investigate changes in the dynamics of the gear rattle models as system parameters are varied,
we perform three sets of numerical experiments: we vary stiffness, eccentricity and damping in
turn, and observe how the existence of solutions changes, by producing basins of attraction and
bifurcation diagrams. Each basin of attraction plot presented in this section (Figs. 6–10 and
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Figure 6: Basins of attraction for the piecewise linear model, Eqs. (1,2), when δ = 0.6, β = 0.6,
ε = 0.1 and varying stiffness κ (indicated below each panel). Each plot has time on the x-axis and
velocity on the y-axis. The grazing curve is overlaid in white. Computations were performed using
the cell-to-cell mapping techniques described in Sec. 4.

Figs. 12–16) illustrates the cell map Pcorr ◦ P k computed on a regular grid of 1000 × 1000 cells,
each cell representing a different initial condition. As described above, k is chosen to be a large
prime; here we use k = 1499, as we find that using a larger prime does not result in any visible
changes in the basins. In each case, the grazing curve is overlaid in white, and the scale is chosen
so that transitions either side of the grazing curve can be observed.

5.1 Varying stiffness

We begin by examining the effect of varying stiffness κ in the piecewise linear model, Eqs. (1,2), with
fixed damping δ = 0.6, eccentricity ε = 0.1, and backlash β = 0.6. We have chosen these parameters
as scaled-up versions of the realistic machine parameters. The results of these computations are
shown in Fig. 6; we show the basins of attraction where stiffness changes by an order of magnitude
between each panel, increasing from κ = 100 to κ = 100000.

We also compare the dynamics of the piecewise linear model, Eqs. (1,2), and impacting contact
model Eqs. (4,5), at the same values of δ, β and ε. The basins of attraction are shown in Fig.
7, for both models, when the stiffness has been taken to be an order of magnitude bigger again
(κ = 1000000). Fig. 7 also illustrates several common solution types under the two different models:

• PLC solutions are represented in dark blue.
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Figure 7: Basins of attraction for the PWL model (top) Eqs. (1,2) and impacting contact model
(bottom) Eqs. (4,5). In both models δ = 0.6, β = 0.6, ε = 0.1, and for the PWL model κ = 1×106.
The periodic and chaotic attractors are overlaid on the basins in white (×) and black respectively.
Time histories, Φ(t) versus t, of the periodic and chaotic attractors for both models are illustrated
next to the corresponding basin of attraction.
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• A chaotic region is shown in speckled dark red.

• A basin of P (1, 1, 0) solutions, very close to grazing, is shown in pale blue.

• A basin of P (1, 2, 0) solutions, which is revealed only by the PWL model, is shown in blue.

The time histories of these solutions are all labelled with arrows. The periodic attractors are
overlaid on the basins of attraction in white (×). To generate the chaotic attractors (since these
cannot be directly identified using cell-to-cell mapping) we repeatedly apply the Poincaré map to
an initial condition in the chaotic regime, remove the transients, and plot the impact times and
velocities on the basin of attraction in black.

We observe from Fig. 7 that the basins of attraction for the impacting contact model and full
piecewise linear model as κ → ∞ are very similar, except for one small basin as already noted. In
the case of the impacting contact model, the basin of PLC solutions is replaced by one where the
solution has multiple, very low velocity impacts with Φ = +β. Fig. 6 shows that the qualitative
agreement between the PWL and the impacting contact models improves as κ increases. We shall
therefore exclusively work with the impacting contact model for the remainder of this paper. We
defer the full analysis of the differences between two models for future work.

5.2 Varying eccentricity

We now go on to examine the effect of varying eccentricity ε in the impacting contact model
Eqs. (4,5) with fixed damping δ = 0.6 and backlash β = 0.6. The results of these computations are
shown in Fig. 8; we show the basin of attraction plots where eccentricity increases in increments
of 0.0055 from 0.056 to 0.1.

We note that although the PLC bound, Eq. (3), is satisfied, there are several coexisting solutions.
As ε decreases, the dynamics decrease in complexity as expected. At ε = 0.067 (Fig. 8(c)) there
are only two basins, corresponding to solutions which repeatedly impact Φ = +β with very low
velocity (akin to PLC) and solutions of type P (1, 1, 0). As ε decreases further the basin of P (1, 1, 0)
solutions shrinks until it completely disappears and PLC takes over. This occurs at the predicted
bound for the existence of P (m, 1, 0) solutions,

ε >
m2δ2

6
− m4δ4

360
+ O(δ6), (41)

computed in [Halse et al., 2007; Mason et al., 2007]. Substituting the values of ε and δ used in
the simulation we find the bound for the existence of P (1, 1, 0) solutions, ε > 0.05964, is in good
agreement with our results, see Fig. 8. However, in practice ε and δ are of similar magnitude, and
it is very difficult to eliminate rattling solutions by reducing eccentricity.

5.3 Varying damping

We now proceed to examine the effect of varying damping in the impacting contact model Eqs. (4,5)
with fixed eccentricity ε = 0.1 and backlash β = 0.6. The results of these computations are shown
in Fig. 8; we show the basin of attraction plots where damping increases in increments of 0.025
from 0.5 to 0.7.

We make several observations:

• The plots decrease in complexity as damping increases until all initial conditions result in
behaviour akin to PLC, as in Fig. 9(i).
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Figure 8: Basins of attraction for the impacting contact model, Eqs. (4,5), for δ = 0.6, β = 0.6
and varying eccentricity, between ε = 0.056 and ε = 0.1. Each plot has time on the x-axis and
velocity on the y-axis. In case (a) all initial conditions result in behaviour akin to permanent linear
contact.
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Figure 9: Basins of attraction for the impacting contact model, Eqs. (4,5), for β = 0.6, ε = 0.1 and
varying damping, between δ = 0.5 and δ = 0.7. Each plot has time on the x-axis and velocity on
the y-axis. In case (i) all initial conditions result in behaviour akin to permanent linear contact.
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Figure 10: (a) Bifurcation diagram of a P (1, 2, 0) solution, in the impacting contact model,
Eqs. (4,5), of impact velocity against damping, for fixed β = 0.6 and ε = 0.1. As damping in-
creases this solution is destroyed in a saddle-node bifurcation at δ = 0.5997 (the stable and unstable
branches are plotted in solid and dashed lines respectively). Basins of attraction (b) before, (c) at,
and (d) after the saddle-node bifurcation. The attracting and saddle-type P (1, 2, 0) solutions (×
and + respectively) are overlaid. As damping increases these move closer to each other until they
collide in a saddle-node bifurcation (c) at δ = 0.5997. (d) The basin is destroyed by δ = 0.6.

• As damping increases, between δ = 0.575 (Fig. 9(d)) and δ = 0.6 (Fig. 9(e)), a solution of
type P (1, 2, 0) is destroyed. Similarly between δ = 0.5 (Fig. 9(a)) and δ = 0.525 (Fig. 9(b)),
a P (1, 3, 0) orbit is destroyed.

• The chaotic region in Fig. 9(e), in speckled red, that we illustrated earlier, see Fig. 7, is
periodic for lower values of damping, e.g. in Fig. 9(b) (orange) and Fig. 9(d) (yellow).

To understand some of the mechanisms by which solutions are created and destroyed, we plot
one-parameter bifurcation diagrams of impact velocity, v, as damping, δ, is varied. To generate
these bifurcation diagrams the Poincaré map is applied to an initial condition many times, and for
each damping value the last twenty impact velocities are plotted. To ensure that the same orbit
is followed we use ‘pseudo continuation’: the time and velocity at impact from value of δ are used
as the initial conditions for the next value of δ.

Initially, we investigate the basin that disappears between δ = 0.575 and δ = 0.6. In Fig. 10(a) we
plot both the P (1, 2, 0) attractor and saddle in red at δ = 0.575. We apply the continuation-type
method to the impact time and magnitude of velocity at the attractor. By increasing damping
(until δ = 0.6) we obtain two branches of solutions which we plot in solid black lines. The location
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Figure 11: Bifurcation diagram of impact velocity against damping for the impacting contact model,
Eqs. (4,5) , for β = 0.6 and ε = 0.1, plotted for increasing (green) and decreasing (black) δ.
An example of coexisting attractors is labelled at (A). Examples of period-doubling and a grazing
bifurcation are labelled at (B) and (C) respectively.

of the saddle as damping is varied is calculated using DsTool (Dynamical Systems Toolkit) [Back
et al., 1992] and its branch is plotted as dashed black lines. At δ = 0.5997 we find a saddle-node
bifurcation, i.e., a collision of the attractor and unstable saddle, resulting in the destruction of
this orbit and the disappearance of this basin. The basins of attraction before, at, and after the
saddle-node bifurcation are also shown in Figs. 10(b), 10(c) and 10(d) respectively, with attractors
(×) and saddles (+) overlaid.

We now examine how the P (3, 3, 2) periodic orbit that exists at δ = 0.5, with basin of attraction
coloured orange in Fig. 9(a), changes as δ increases. We apply the continuation-type method
described above, increasing δ until δ = 0.6, and plot the magnitude of the velocity of departure
from Φ = +β after transients have died away for successive values of δ; shown in green in Fig. 11.
We then apply the same continuation method in reverse, using the final impact time and velocity
at δ = 0.6, decreasing δ until δ = 0.5. The magnitude of the velocity of departure is overlaid on
Fig. 11 in black. We observe coexisting solutions (e.g. at A) as well as both period-doubling (e.g.
at B) and discontinuity-induced bifurcations (e.g. at C). We proceed to investigate points A, B
and C in more detail.

At δ = 0.527, marked as A on Fig. 11, there is a chaotic attractor (black) which coexists with a
P (3, 3, 2) attractor (green). The basins of attraction at this value of δ are plotted in Fig. 12(a).
The coexisting attractors are depicted as intertwined dark and light orange basins, and their
corresponding time histories are shown in Figs. 12(b) and 12(c).
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Figure 12: (a) Basins of attraction for the impacting contact model, Eqs. (4,5), when δ = 0.527,
β = 0.6, ε = 0.1. A P (3, 3, 3) and a chaotic attractor are overlaid on the basins in white (×)
and black respectively. Time histories, Φ(t) versus t, of (b) stable P (3, 3, 2) periodic motion (light
orange basin), and (c) the coexisting chaotic motion (dark orange basin).

Finally, we examine the P (2, 2, 1) periodic orbit, at δ = 0.575. This orbit period-doubles at
δ = 0.5819 (marked as B on Fig. 11) to become a P (4, 4, 2) orbit. It then undergoes a discontinuity-
induced bifurcation at δ = 0.5922 (marked as C on Fig. 11) where the orbit collides with the grazing
curve, to be replaced by the chaotic attractor whose basin surrounds the grazing periodic orbit.
Basins of attraction and the time histories (of the attractors described above) for values of δ before
and at the discontinuity-induced bifurcation are shown in Figs. 13(a) and 13(b) respectively.

In summary, we have found that small changes in damping can cause a plethora of smooth and
discontinuity-induced bifurcations. As damping increases enough, however, we see that all initial
conditions result in behaviour akin to permanent linear contact. Despite the desirability of PLC
from a machine-design point of view, significantly increased damping is not a viable engineering
solution, as power consumption is directly proportional to the damping and hence increasing δ
would make a machine more expensive to run. It seems inevitable, therefore, that any design
solution will have to take account of the coexistence of different types of rattling solutions, and
that the basins of attraction may be a useful tool to help understand their structure.

6 Basin Boundary Computations

Although we have been concerned with time-efficient computation of basins of attraction, they are
still expensive to compute. We now explore two alternative methods to gain insight about the
location of the basin boundaries for the impacting contact model: calculation of the pre-images of
the grazing curves, and the computation of stable manifolds.
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Figure 13: Basins of attraction of the impacting contact model, Eqs. (4,5), with fixed β = 0.6 and
ε = 0.1 and (a) δ = 0.575 and (b) δ = 0.5922. A P (2, 2, 1) and a P (4, 4, 2) attractor are overlaid
on the basins in black (×) in (a) and (b) respectively. Time histories, Φ(t) versus t, of (c) a stable
P (2, 2, 1) solution at δ = 0.575 and (d) a grazing P (4, 4, 2) solution at the discontinuity-induced
bifurcation at δ = 0.5922.

21



6.1 Pre-image grazing curves

Much of the intricate structure of the basins of attraction can be explained by the impact-induced
discontinuities in the map. These discontinuities can introduce a considerable sensitivity to initial
conditions, i.e., a stretching of the phase space, which in particular can be observed around the
grazing curve. Other authors have already studied this in detail (see, for example [Budd et al.,
1995; Budd and Dux, 1994a,b; Lamba and Budd, 1994]).

Recall that the grazing curve is defined by trajectories that depart Φ = +β at time t with velocity
Φ′ = −v∗, and whose next contact with Φ = ±β is a graze with Φ = −β (i.e., with velocity Φ′ = 0).
We can then define pre-images of this curve in (t, v) space with respect to the Poincaré map P ;
namely the first pre-image are those initial conditions (t, v) that lead to a graze following one more
impact with Φ = +β (possibly via an impact with Φ = −β), the second pre-image are those initial
conditions (t, v) that graze following two further impacts with Φ = +β, and so on.

As an example, in Fig. 14 we overlay the first and second pre-images of the grazing curve for
δ = 0.6, β = 0.6 and ε = 0.1 on the corresponding basins of attraction.

Pre-images of the grazing curve can also provide insight on which initial conditions will eventually
be affected by the discontinuity and how the phase space is divided. As previously discussed, the
grazing curve acts as a separatrix of trajectories whose next impact is with either Φ = +β or
Φ = −β. Similar conclusions can be drawn from the pre-image grazing curves. For example the
first pre-image consists of two curves. The first piece of curve (above the grazing curve) represents
trajectories that initially impact Φ = +β, and then graze Φ = −β. This acts as a separatrix
between trajectories whose second impact is with either Φ = +β or Φ = −β.

6.2 Manifold computations

It is well known that for smooth systems, the stable manifolds of saddle points form the basin
boundaries [Guckenheimer and Holmes, 1983]. We suspect that this will also be true for our,
nonsmooth, system.

First, we locate saddle points using explicit construction techniques described in [Halse et al., 2007;
Mason et al., 2007]. We then calculate manifolds numerically using DsTool [Back et al., 1992] with
the extension package, Man1D, discussed in [Krauskopf and Osinga, 2000; England et al., 2004].
As an example, we calculate the saddles and corresponding manifolds for δ = 0.6, β = 0.6 and
ε = 0.1. The unstable P (1, 1, 0) saddle can be located analytically, whilst the unstable P (1, 1, 1)
saddle is calculated numerically.

In Fig. 15 we overlay the P (1, 1, 0) and P (1, 1, 1) saddles (at A and B) and their corresponding
manifolds (magenta and green respectively) on the relevant basins of attraction. We discover that
these manifolds do indeed form the basin boundaries, at least to the resolution of our computations.

We now examine the manifold and pre-image curves, and their correspondence with the boundaries
of the basins of attraction, more closely. In Fig. 16 we overlay the grazing curve (white), the first
and second pre-images of the grazing curve (black and yellow) and the stable manifolds (magenta
and green) on a zoomed section of the basin of attraction. We observe that the stable manifolds
form the basin boundaries exactly, whilst the grazing curve and its pre-images only approximate
some of the locations of the basin boundaries. However, the pre-image grazing curves are cheap to
compute as we can use the Newton solvers constructed in Sec. 2 with time reversed. In contrast,
computing the stable manifolds requires a good deal more computation. Firstly, the saddles have
to be calculated, and secondly DsTool requires the inverse of the Poincaré map as well as the
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Figure 14: The grazing curve (white) and first and second pre-images of the grazing curve (black and
yellow respectively) overlaid on the basin of attraction for the impacting contact model Eqs. (4,5)
for δ = 0.6, β = 0.6 and ε = 0.1. The pre-images were computed using the Newton solvers
constructed in Sec. 2 with time reversed.
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Figure 15: The stable manifolds of the P (1, 1, 0) saddle at A (magenta) and the P (1, 1, 1) saddle at
B (green) overlaid on the basin of attraction for the impacting contact model Eqs. (4,5) for δ = 0.6,
β = 0.6 and ε = 0.1. The manifolds were generated with DsTool [Back et al., 1992; Krauskopf and
Osinga, 2000; England et al., 2004].
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Figure 16: A zoomed section of the grazing curve (white), the first and second pre-images of the
grazing curve (black and yellow) and the stable manifolds (magenta and green) overlaid on the
basin of attraction for the impacting contact model Eqs. (4,5) for δ = 0.6, β = 0.6 and ε = 0.1.

Poincaré map itself.

If we plot the manifolds over a larger range of v, (Fig. 17) an intricate pattern of stretching and
folding is revealed. Trajectories with a high initial velocity gradually lose energy through damping,
until they are attracted into the region of interest, v ∈ [0, 7].

7 Conclusions

In this paper we have examined techniques to efficiently compute basins of attraction for both a
(smooth) piecewise linear model and an impacting contact model of a simple one degree-of-freedom
backlash oscillator. The application that we have considered is a model of order vibration in gears
in lightly-damped quasi-steady operation. We used cell-to-cell mapping techniques to explore how
basins change as system parameters are varied. The basins that we have computed reveal complex
dynamics with rich and delicate structure. We find stable periodic solutions, and in some cases
chaotic regions, that correspond to rattling behaviour. Moreover, these solution types coexist
with a quiet solution in which gears remain permanently in contact. The purpose of the basin
computation has been to analyse the relative dominance of competing linearly stable solutions in
the t → ∞ dynamics.

We have compared the basins of attraction when three key parameters have been varied, namely the
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Figure 17: The stable manifolds of Fig. 15 plotted over an extended velocity scale to illustrate the
intricate stretching and folding.
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stiffness, eccentricity and damping. In the large stiffness limit, we have shown that the impacting
contact model is in very good agreement with the full piecewise linear model, validating its use
as a computationally efficient scheme. We have found that even small changes in the forcing and
damping parameters can give rise to complex dynamics and one-parameter bifurcation diagrams
have illuminated some of the key mechanisms for transitions in the system’s behaviour. Finally,
as eccentricity is reduced, or damping increased, the basin diagrams simplify in structure, and we
have shown how the quiet solution, for which gears remain in permanent linear contact, dominates
the dynamics.

In addition to the basin computations, we have also computed the grazing curve and its pre-images
since these play an important role in the stretching and folding of phase space. Furthermore, we
have used DsTool to compute the one-dimensional stable manifolds of saddle point periodic orbits,
thus accessing basin boundaries directly. We have found that the stable manifolds and grazing
curves wind round each other in interesting ways which are worthy of further investigation from a
theoretical point of view. Furthermore, nonsmooth numerical bifurcation tools (e.g., the TC-HAT
[Thota and Dankowicz, 2007] extension to AUTO) could be applied to obtain a more detailed
understanding of the bifurcations of periodic orbits themselves.

Finally, from the point of view of applications such as the Roots blower vacuum pump, we need
to extend the work presented here to deal with much smaller values of damping and forcing, and
this presents a significant computational challenge. Preliminary computations have indicated a
much more intricate picture: basins diminish in size and more periodic orbits are created (through
saddle-node bifurcations) as parameters are decreased.

In Sec. 1, we noted that some real geared systems exhibit noisy operation only intermittently. Our
basin of attraction diagrams indicate that only a small change in the initial data is required to
move from a basin that corresponds to quiet operation to a basin that corresponds to rattle. A
sufficiently large disturbance, which could be caused by any number of external factors, provides
one possible explanation for the observed intermittency. From a practical perspective it would be
interesting to see if there is a viable method of reducing the machine’s sensitivity to perturbations.
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