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ABSTRACT

We consider a semiconductor laser device, where the active region consists of parallel stripes in the longitudinal
direction. In the composite cavity model, the stripes are coupled via the transversal modes of the entire
compound laser device. By calculating the spatial mode profiles we accurately account for the frequency
detuning between the modes as well as for the gain and coupling of the individual modes, which are determined
by spatial overlap integrals of the mode profiles. In particular, we show the nonlinear dependence of these
quantities on the geometry of the laser device. The temporal dynamics of the composite cavity modes are
described by corresponding rate equations. Bifurcation analysis of these rate equations, which are coupled to
the spatial mode equations, unravels the dynamics of a twin-stripe laser. We identify different locking regions
as well as regions with possibly chaotic dynamics.

Keywords: composite cavity laser, photonic lattice, coupled lasers, dynamics and bifurcations, numerical
continuation

1. INTRODUCTION

Laser arrays are of broad interest because of their possible applications, for example, for high-power beam
generation, frequency stabilization, as high frequency optical clocks, or for chaos generation. In many of these
applications one is interested in specific dynamical properties such as continuous-wave operation, stable intensity
oscillations or chaotic dynamics. Due to their versatility, semiconductor laser structures can be designed that,
depending on parameters such as the coupling strength between the individual components, show all of these
different dynamics.

From the fundamental point of view, coupled lasers are examples of coupled nonlinear oscillators that are
well accessible experimentally. Therefore, they are studied intensively for their synchronization properties and
dynamical complexity. See for example Refs. [1; 2; 3; 4] for some recent examples of the dynamical complexity
observed in coupled laser systems.

The design and analysis of coupled semiconductor lasers has attracted considerably attention; see for example
[5; 6; 7]. Recent technological developments allow for the fabrication of more complex and smaller semiconductor
laser structures, where different geometries result in various types of optical coupling within the laser device.
Specifically, in the twin-stripe laser there are two active regions separated by a passive section. The active
sections are coupled via the evanescent optical field in the transversal direction. Different modelling approaches
have been used, including partial differential equation models and ordinary differential equation models, with
phenomenologically introduced coupling parameters; see, for example, Refs. [8; 9; 10]. In particular, simple
rate equation models treat the active sections of a laser device as individual lasers, which are coupled by
phenomenologically included coupling terms. Although this approach has been successfully used to reproduce
experimentally observed behavior under weak coupling conditions, there are fundamental limitations of this
approach due to the physically nonlinear nature of the coupling. These nonlinearities become already apparent
in systems of with only two coupled active sections.

This paper investigates a compound cavity mode approach to modelling the general setup of a twin-stripe
laser as shown in Figure 1. Namely, the individual stripes are coupled by the transverse modes of the entire
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Figure 1. Sketch of the refractive index structure of a twin-stripe laser, where nA and nB are the refractive indices
of stripe A and B, respectively. The active stripes are separated by a passive section with refractive index n1, and
surrounded by cladding layers with refractive indices n2 and n3, respectively.

composite-cavity system. Within the framework of semi-classical laser theory, we decompose the spatial de-
pendence (the composite-cavity modes profiles) and the time dependence (the complex-valued electrical filed
amplitude) of the laser device [11; 12]. In particular, the coupling between the different stripes is included
intrinsically in the composite cavity mode structure, which makes this approach valid for arbitrary coupling.
We perform a bifurcation analysis of composite cavity modes for different geometries and refractive indices of
laser stripes. Such a comprehensive analysis identifies the spatio-temporal dynamics of the composite cavity
modes.

This paper is structured as follows: In Section 2 we describe the modeling approach; in particular, we review
the key steps that allow us to separate spatial and temporal components of the electrical field. In Section 3 we
calculate the spatial mode profiles for the twin-stripe laser. This accurately determines the frequency detuning
as well as the coupling and gain coefficients for the composite cavity modes as a function of the laser cavity
geometry. In Section 4 we determine the locking region for the twin-stripe laser as a function of the distance
2d between the laser stripes and the difference ∆w between the widths of the two individual laser stripes. We
finish with conclusions in Section 5.

2. RATE EQUATION MODEL AND SPATIAL DEPENDENCE

In classical electrodynamics, electromagnetic radiation is described by Maxwell’s equations [13]. Together with
Ohm’s law, Maxwell’s equation can be written in a single partial differential equation for the electrical field
~E(~r, t), which is driven by the macroscopic polarization ~P (~r, t) of the medium,

~∇× (~∇× ~E) + µ0σ
∂ ~E

∂t
+ µ0ǫ(~r)

∂2 ~E

∂2t
= −µ0

∂2 ~P

∂2t
. (1)

The constants µ0, σ, ǫ(~r) are the permeability, the conductivity, and the permittivity of the medium respectively.
This wave equation describes the propagation of the electric field in a medium. By assuming that there
are no dipoles in the medium (apart from those induced by the electric filed) so that ~∇~P ≈ 0 and, hence,
~∇× (~∇× ~E) = −∇2 ~E, and by restricting to scalar fields, we can simplify the wave equation to

−∇2E(~r, t) + µ0σ
∂E(~r, t)

∂t
+ µ0ǫ(~r)

∂2E(~r, t)

∂2t
= −µ0

∂2P (~r, t)

∂2t
. (2)

This partial differential equation describes the spatio-temporal dynamics of the optical filed E(~r, t) and the
field induced microscopic polarization P (~r, t). A widely-used approach to solving Eq. (2) in semi-classical
laser theory is to expand the laser field as a linear superposition of the so-called composite-cavity modes. In
particular, we assume that the electrical field E(~r, t) can be written as

~E(~r, t) =
1

2

∑

a

Aa(t)Ua(~r) , (3)
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where Ua(~r) are the eigenmodes of the composite cavity; the composite-cavity modes and the subscript a refers
to the index triple a = (k, l,m) for the three spatial dimensions. The composite-cavity modes are solutions of
the homogeneous Helmholtz equation,

[

~∇2 + µ0ǫ(~r)Ω
2
a

]

Ua(~r) = 0 . (4)

The spatial mode profile is determined by the spatial structure of the semiconductor; more specifically, by the
boundary conditions given by the function ǫ(~r). In many cases it is reasonable to assume that these boundary
conditions do not change in time. Therefore, Eq. (4) can be solved independently. The solutions Ua(~r) form
a complete set of orthogonal functions, which forms the basis of our modal expansion of the optical field. In
particular, it can be shown that the Ua(~r) obey the orthogonality relation

∫ ∞

∞

d~rǫ(~r)Ua(~r)Ua′(~r) = N δa,a′ , (5)

where N is a normalization constant that can be chosen arbitrarily. In Section 3 we show the solutions of
Eq. (4) for the twin-stripe laser.

Furthermore, we assume that the complex amplitude Aa(t) can be separated as

Aa(t) = Ea(t)e−i[νat+Φa(t)] , (6)

where Ea(t) is the slowly varying real-valued amplitude, Φa(t) is the slowly varying real-valued phase of the
electrical field, and νa is an conveniently chosen constant.

Hence, the expansion of the electrical field can be written as

~E(~r, t) =
1

2

∑

a

Ea(t)e−i[νat+Φa(t)]Ua(~r) + c.c. . (7)

Similarly, the expansion for the microscopic polarization of the active medium can be written as

~P (~r, t) =
1

2

∑

a

Pa(t)e−i[νat+Φa(t)]Ua(~r) + c.c. , (8)

where Pa(t) is the complex-valued slowly varying component of the microscopic polarization associated with
the ath composite cavity mode. This takes into account a possible phase shift between the optical field and
induced microscopic polarization. In these equations c.c. stands for complex conjugation.

Inserting the expansions for the electric field and the polarization of the medium without the complex
conjugate into the wave equation (2) and multiplication with ei[νat+Φa(t)] yields

1

2

∑

a

Ea(t)Ω2
aµ0ǫ(~r)Ua(~r)

+µ0σ
1

2

∑

a

[

Ėa(t) − i
[

νa + Φ̇a(t)
]

Ea(t)
]

Ua(~r)

+µ0ǫ0
1

2

∑

a

[

Ëa(t) − 2i
[

νa + Φ̇a(t)
]

Ėa(t) − iEa(t)Φ̈a(t) − Ea(t)
[

νa + Φ̇a(t)
]2

]

Ua(~r)

= − µ0
1

2

∑

a

[

P̈a(t) − 2i
[

νa + Φ̇a(t)
]

Ṗa(t) − iPa(t)Φ̈a(t) − Pa(t)
[

νa + Φ̇a(t)
]2

]

Ua(~r) ,

(9)

where we used the Helmholtz equation (4) in the first term. Projecting onto the passive cavity eigenmodes
Ua′(t) and integrating over the whole space yields

−Ėa(t)νa =
∑

a′

[

Ea(t)
νaσ

2ǫ0
+

ν2
a

2ǫ0
Im [Pa(t)]

]

Ma,a′

Ea(t)µ0Ω
2
aN − Ea(t)µ0

[

νa + Φ̇a(t)
]2

N =
∑

a′

µ0ν
2
a

ǫ0
Re [Pa(t)]Ma,a′ .

(10)
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The two equations are obtained by identifying real and imaginary parts in Eq. (9). Since we assumed that Ea(t),
Pa(t), and Φa(t) are slowly varying in time compared to the optical frequency and that the losses are small, we
neglected all terms containing Ëa(t), Φ̈a(t), P̈a(t), Ėa(t)Φ̇a(t), σĖa(t), σΦ̇a(t), Φ̇a(t)Ṗa(t), Φ̇a(t)Pa(t), Ṗa(t).
Moreover, we have introduced the modal integrals,

Ma,a′ =

∫ ∞

∞

d~rUa(~r)Ua′(~r) . (11)

In general, this integral is nonzero for a 6= a′, which means that there is always some cross-coupling between
the modes. However, the off-diagonal terms are typically small and can be neglected, that is,

Ma,a′ ≈ Mδa,a′ . (12)

Finally, we can approximate

Ω2
a −

[

νa + Φ̇a(t)
]2

=
[

Ωa + νa + Φ̇a(t)
] [

Ωa − νa − Φ̇a(t)
]

≈ 2νa

[

Ωa − νa − Φ̇a(t)
]

. (13)

These simplifications allow us to write a set first-order nonlinear differential equations determining the
dynamics of the slowly varying real-valued amplitude and the slowly varying real-valued phase of the electrical
field, namely

Ėa(t) = −
σ

2ǫ0
Ea(t) −

νa

2ǫ0
Im [Pa(t)]

M

N
,

Φ̇a(t) = (Ωa − νa) −
νa

2ǫ0

Re [Pa(t)]

Ea(t)

M

N
.

(14)

Compare, for example, with [14, p. 237] or [15, p. 100]. It should be noted that Eq. (14) contains the
eigenfrequency Ωn of the nth compound cavity mode, which requires solving Eq. (4).

In the remaining part of this section we give equations for the microscopic polarization P (~r, t). For a
quantum-mechanical two-level system the equation of motion for the ath polarization mode can be written as

Ṗa(t) = [i(νa − ω) − ΓP ]Pa(t) −
iµ2

ab

~

∑

a′

Ea′(t)e−iΨ
aa′ (t)

∑

Si

ǫ(Si)N (Si)(t)

∫

Si

d~rUa(~r)Ua′(~r) , (15)

where ω is the transition frequency, ΓP the polarization decay rate, µab the dipole transition matrix element,
and Ψaa′(t) = (νa − νa′)t + Φa(t) − Φa′(t); see for example Ref. [16]. In Eq. (15) Si refers to the active stripes
of the laser device, i.e., the summation goes over all stripes and the integration over the area of stripe Si.
Finally, we have introduced the population inversion NSi(t) within stripe Si, where we assume that NSi(t) has
no spatial dependence. The dynamics of the population inversion within the Sith stripe is given by

ṄSi(t) = Λ(Si) − ΓNNSi(t) +
1

~

∑

a

Ea(t)Im [Pa(t)] . (16)

Here Λ(Si) is the pump rate and ΓN the decay rate of the population inversion, which we assume to be constant
for the whole laser device.

Taken together, Eqs. (4) and (14)–(16) describe the dynamics of the multi-stripe laser array in the so-called
class-C laser approximation. More specifically, for semiconductor lasers the polarization decay rate ΓP is much
larger than the decay rates of the optical field ΓE , and the inversion ΓN . This allows for adiabatic elimination
of the polarization, i.e., the time dependence of the polarization P (t) can be obtained directly from Eq. (15).
Finally, in order to properly model a semiconductor laser device, we have to identify the local gain and refractive
index changes in Eqs. (15) and replace them with the phenomenological formulas for semiconductor material.
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Figure 2. Mode profiles for the same refractive index difference (nB − nA), but different distances between the laser
channels; specifically for nB = 3.47, nA = 3.4711, d = 0.36 in panel (a), and nB = 3.47, nA = 3.4711, d = 6.09 in
panel (b).

Casting the equations in dimensionless form and restricting to two active stripes, we can write the model
equations as

Ėn = −γEn + γ
∑

k=1,2







∑

Si=A,B

[

CSi

kn(1 + βNSi) cos (Φkn) − βCSi

knαSi(1 + NSi) sin (Φkn)
]







Ek ,

Φ̇n = Ωn + γ
∑

k=1,2







∑

Si=A,B

[

βCSi

knαSi(1 + NSi) cos (Φkn) + βCSi

kn(1 + βNSi) sin (Φkn)
]







Ek

En

,

ṄSi
= ΛSi

− (NSi
+ 1) −

∑

n,m

CSi

nm(1 + βNSi
) cos (Φnm)EmEn .

(17)

In Eqs. (17) time t is rescaled with respect to the carrier decay time; compare with Ref. [17]. The remaining
dimensionless parameters are the linewidth enhancement factor α, the pump parameter Λ, the gain coefficient
β, and the ratio γ = ΓE/(2ΓN ) of the optical field and population decay rates. We assume that all these
parameters are identical for both stripes, and we set them to realistic values of α = 3.0, Λ = 2.0, β = 8.4087,
and γ = 10.0. Furthermore, the constants CSi

kn describe the modal integrals

CSi

kn =
n2
Si

N

∫

Si

dxXk(x)Xn(x) . (18)

They can be reduced to one dimension, where Xk(x) represent the mode profiles in the lateral x-direction; see
Eq. (19). This require solving the spatial mode problem given by Eq. (4).

3. COMPOUND LASER MODES

The twin-stripe laser consists of two active regions — two stripes A and B parallel to each other. The stripes
can differ in their transversal geometry and in their respective refractive indices. Figure 1 shows a sketch of
the refractive index structure of a twin-stripe laser.

Because of the geometry of the twin-stripe laser we can assume, that the solutions Ua(~r) of the homogeneous
Helmholtz equation (4) can be factorized as

Uk,l,m(~r) = Xk(x)Yl(y)Zm(z) . (19)
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transversal distance d between the two stripes.
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By substituting this ansatz into the Helmholtz equation we get

1

Xk

∂2Xk

∂x2
+

1

Yl

∂2Yl

∂y2
+

1

Zm

∂2Zm

∂z2
+ µǫ(x)Ω2

k,l,m = 0 , (20)

which can be separated into the x-, y- and z-components, yielding

[

∂2Z

∂z2
+ k2

z

]

Z(z) = 0 ,

[

∂2Y

∂y2
+ n2(y)k2

y

]

Y (y) = 0 ,

[

∂2X

∂x2
+ k2n2(x) − k2

z

]

X(x) = 0 .

(21)

In particular, for the y-, and z-directions we assume single mode operation, with the lowest-order mode in the
y-direction. In case of an edge emitting laser the wave number in the z-direction (longitudinal direction) is
typically on the order of a few hundred.

For the x-direction, however, we have to solve the boundary value problem, where n(x) describes the
variations of the refractive index in the x-direction. For a laser device with two stripes we make the following
ansatz

X(x) =























Gep2(x+d+wA) if x ≤ −d − wA ,
A sin [pA(x + d + wA)] + B cos [pA(x + d + wA)] if −d − wA < x ≤ −d ,
Ce−p1(x+d) + Dep1(x−d) if −d < x ≤ d ,
E sin [pB(x − d)] + F cos [pB(x − d)] if d < x ≤ d + wB ,
He−p2(x−d−wB) if d + wB ≤ x .

(22)

Ansatz (22) gives the conditions for the constants p1, p2, pA, and pB , namely

p2
2 + n2

2k
2 − β2 = 0 ,

−p2
A + n2

Ak2 − β2 = 0 ,

p2
1 + n2

1k
2 − β2 = 0 ,

−p2
B + n2

Bk2 − β2 = 0 .

(23)

The amplitudes A–G are determined from the requirement that X(x) is continuous, yielding

at x = −dA : G = B ,
at x = −d : A sin (pAwA) + B cos (pAwA) = C + De−2dp1 ,
at x = d : Ce−2dp1 + D = F ,
at x = dB : E sin (pBwB) + F cos (pBwB) = H ,

(24)

and that dX
dx

is continuous, yielding

at x = −dA : p2G = pAA ,
at x = −d : pA [A sin (pAwA) − B cos (pAwA)] = p1

[

−C + De−2dp1

]

,
at x = d : p1

[

−Ce−2dp1 + D
]

= pBF ,
at x = dB : pB [E sin (pBwB) − F cos (pBwB)] = −p2H .

(25)
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Hence, the compound-cavity mode amplitudes A–G can be determined successively

G = N ,

A =
p2

pA

G ,

B = G ,

C = −
pA

2p1
[A cos (wApA) − B sin (wApA)] −

1

2
[A sin (wApA) − B cos (wApA)] ,

D =
1

2
e2dp1

{[

A −
pA

p1
B

]

sin (wApA) −

[

pA

p1
A + B

]

cos (wApA)

}

,

E =
p1

pB

[

D − Ce−2dp1

]

,

F = Ce−2dp1 + D

H = −
pB

p2
[E sin (wBpB) + F cos (wBpB)] ,

(26)

whereas the propagation constants are determined by the transcendental equation

F

[

pB

p2
sin (pBwB) − cos (pBwB)

]

= E

[

pB

p2
cos (pBwB) − sin (pBwB)

]

. (27)

Equations (26) and (27) have to be solved numerically to determine the frequency Ωn of the nth compound
cavity mode and its amplitudes A–G.

For the two-stripe laser the two lowest-order modes for different distances d between the stripes are shown
in Figure 2; the values for the refractive indices are given in the figure caption. In Figure 2 the gray curve
corresponds to the mode with the low frequency, whereas the black curve is the mode with high frequency.
Since there is a small mismatch between the refractive indices of the two stripes, the mode profiles are not
exactly symmetric or anti-symmetric. For small distance d the overlap between the modes, and therefore the
coupling, is rather large; see Figure 2(a). Furthermore, it can be seen that the amplitudes of the same mode in
the different stripes have almost the same magnitudes. In the limit d → 0 the composite-cavity modes become
the modes of a single large cavity. On the other hand, if the distance d between the stripes is large, which
means that the coupling between them is small, the modes are concentrated in a single stripe. This can be seen
in Figure 2(b), where mode 1 is concentrated in stripe A and mode 2 is concentrated in stripe B. In the limit
d → ∞ the composite cavity modes become the modes of two individual uncoupled lasers.

Figure 3 shows the ratio between the amplitudes of the two lowest-order modes in stripe A in the plane of
transversal distance d and refractive index mismatch ∆n between the laser stripes. This ratio can be interpreted
as an estimation for the coupling strength between the two modes. It can be seen that the coupling depends
nonlinearly on both: d and ∆n. In particular, for large distances d, the coupling immediately drops to zero for
∆n 6= 0. This situation corresponds to two individual uncoupled modes. Since, the two modes are located in
the two different laser stripes, again this can be interpreted as two individual uncoupled lasers. On the other
hand, for small distances the ratio between the amplitudes decreases only slowly with |∆n|. In this case the
coupling is rather strong which leads to comparable magnitudes of the mode amplitudes in the different stripes
over a long interval of refractive index differences (nB − nA).

4. LOCKING REGION

As we have seen in the previous section the mode profiles and therefore the frequency detuning as well as the
coupling and gain coefficients which are determined by the modal integrals Eq. (18) depend nonlinearly on the
geometry of the laser device. Thus, in order to accurately account for these dependencies, the rate equation
model Eq. (17) for the total optical field and inversion of the laser device needs to be solved simultaneously
with the modal problem Eqs. (23), (26) and (27). To reveal the bifurcation structure and the dynamics of this
system we use numerical continuation with AUTO [18].
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Figure 5 shows a two-parameter bifurcation diagram, where the transversal distance d and the detuning
∆w between the stripes are the free parameters. It should be noted that changing these parameters change the
frequencies Ωn and the coupling coefficients CSi

kn, which need to be determined from the set of transcendental
equation for the spatial mode profiles Eqs. (23), (26) and (27). The hatched regions in Figure 5 indicate stable
continuous-wave (cw) emission of the laser device. These regions are bound by saddle-node (S) bifurcations
and Hopf (H) bifurcations as labeled in the figure. In particular, there is a stable region for small distances
d — small d corresponds to strong coupling between the modes. In this region there is only one dominant
mode and the laser emits in this mode. As d is increased this cw-state undergoes a Hopf bifurcation which for
large detuning ∆w, leads to beating between the two modes. There is a second region of stable cw-emission
for large d. In this region both modes have comparable intensities and are phase locked. This region is bound
by saddle-node bifurcations towards increasing |∆w| and by a Hopf bifurcation towards decreasing d. These
two regions of stable cw-emission are separated by a region of complicated dynamics for intermediate values
of d. A comprehensive study of the bifurcation structure, also in dependence on other parameters such as the
linewidth enhancement factor α, is the subject of ongoing research.

5. CONCLUSIONS

We have investigated the dynamics of a laterally coupled semiconductor laser structure — the so-called twin-
stripe laser. In the framework of semi-classical laser theory we considered a compound cavity mode model,
which accurately takes into account the spatial structure, and the resulting frequency detuning and the coupling
coefficients for each compound cavity mode. The temporal dynamics for each mode is determined by rate
equations for the modal fields and the inversions of the stripes. We showed, that the compound cavity mode
frequency as well as the gain and coupling coefficients depend nonlinearly on the geometry of the stripes and
the distance between them. This shows the need for a composite cavity mode model which, intrinsically takes
these effects into account.

A bifurcation analysis of the composite cavity mode model was performed to determine the dynamics of
the twin-stripe laser. In particular, we found two distinct regions with stable continuous-wave emission: one
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for small distances and on for large distances between the stripes. Further investigation of the dynamics of this
system will concentrate on the overall bifurcation structure, which will reveal in more detail parameter regions
of stable as well as of complex dynamics of the twin-stripe laser.
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