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A Comparison of the Properties of Radiating 
Boundary Conditions in the FDTD Method for 

Finite Discretisation and Non-Planar Waves 

C. J. Railton and E. M. Daniel 

A6stract- The availability of effective radiating boundary conditions 
(RBCs) for use with the Finite Difference Time Domain (FDTD) method 
is essential for the efilcient application of the technique to scattering and 
radiation problems. The majority of published analyses of the behaviour 
of various RBCs are restricted to the case of plane wave incidence and 
infinitely h e  discretisation, situations which never occur in practice. In 
this contribution, the behaviour of RBCs in realistic situations is presented 
and it is shown that the plane wave behaviour is not a good guide as to 
the behaviour in practical cases. The best RBC for use in general cases 
is discussed. 

I. INTRODUCTION 

The Finite Difference Time Domain (FDTD) method is enjoying a 
considerable rise in popularity for the analysis of complex geometries 
such as antennas and scatterers. This is partly due to the increase 
both in the availability of computer power and the complexity of 
structures for which analysis is desired. The vast majority of problems 
to which FDTD is being applied involve open structures which, in 
turn, require the use of radiating boundary conditions (RBCs) to 
correctly terminate the computational domain. 

Over the last few decades, a number of RBCs have been proposed 
and several are in common use. The RBCs most often referred to in 
the literature are those derived by Engquist and Majda [I] with the 
discretisation given by Mur [2]. These are based on an approximation 
of the outgoing wave equation by linear expressions using either a 
Taylor or a Pad6 approximation. Recently the second order RBC 
has been extended for application to a non-uniform FDTD grid and 
to inhomogeneous material. An alternative RBC has been proposed 
by Higdon [4] and this has recently been applied to the termination 
of dispersive waveguides [5]. Other RBCs have been proposed by 
Lindman [6], Reynolds [7] and Liao et al. [8] but these appear to be 
less popular. An alternative approach has been followed by Fang and 
Mei, [9], [lo] who use RBCs to estimate both the E and the H field at 
a point on the boundary and then combine the results in such a way as 
to improve the overall accuracy. The technique has been referred to 
as the Super Absorbing Correction (SAC). Deveze et. al. also use a 
combination of the E and H field estimates in order to reduce the order 
of the derivatives which neeed to be evaluated. Another technique, 
used mainly for scattering problems, includes estimating the angle of 
incidence of the wave by calculation of the Poynting vector [ 121 and 
using this information to optimise the RBC parameters. 

Although all of these RBCs have been used in conjunction with the 
FDTD method, little information has been given regarding the relative 
merits of the different techniques. The information which does exist, 
eg. [13], [14], [15], is largely restricted to the behaviour of the RBCs 
with a single incident plane wave although in [14] a line source 
was also considered. In practice, plane wave incidence is a situation 
which never occurs. Little guidence exists, therefore, concerning 
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how to choose the best RBC for a particular real problem. In this 
contribution, the results of a theoretical and numerical investigation 
into the behaviour and computational efficiency of some existing 
algorithms are presented, for the more realistic cases of an electric 
dipole in free space and above a ground plane. In addition the 
effects of coarse discretisation and non-uniform discretisation on the 
effectiveness of the different RBCs is investigated. 

11. THEORETICAL BACKGROUND 

Of the available second order RBCs which have been described in 
the literature, the most widely used are those due to Mur [2], Hidgon 
[4] and the super-absorbing RBC eg. [9], [lo]. In [16] it is shown 
that in the limit of infinitesimal discretisation each of these discrete 
operators is an implementation of (1) or equivalently (2 ) ,  where the 
parameters IC and U may be freely chosen. 

SZE S2E S2E S2E 
- = U -  + ku2 
6 t 2  6t6x 

v2k s2E - = 0 (2 )  
v 6 'E+ -- 

6t2 1 - v 2 k / C Z  Sxt 1 - v 2 k / C 2  Sx2 

Thus, if the mesh is fine enough, the performance of each of these 
second order RBCs will be identical. If, however, a realistic value 
of unit cell size is used, the performance of the RBCs may be 
significantly different. This was shown to be the case for plane wave 
incidence in [17]. In order to ascertain the behaviour of the RBCs 
for non-planar waves, we start from the finite difference description 
of each. These can be expressed in the form A(E(T ,  t ) ,  H ( r ,  t ) )  = 0 
where the functions A are given for Mur's RBC, Higdon's RBC and 
the super RBC in equations (3)-(5) respectively for the case where 
the absorbing plane is y-z. 

where 
262 

U S t  + 62 
c1=- vSt - 62 c2=- 
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equivalently 

62 - cCos01St s x  - ccosez6t 
yz = 6x + cCos026t 6x + cCos016t y1 = 

The super RBC, which consists of a first order estimate of both the 
tangential E and H fields together with the basic FDTD algorithm 
can be expressed as (5). 

where 

St 
E:"d = E:(O, y, z )  - - 

H,"+1/2(0,y+6y/2,z) - H?1'2(0,y- 6y/2,z) 
6Y 

(5)  ) Hyl - H;+1/z(6x/2, y, z )  
SX + 

HY1 = H,"-'/' ( 6 4 2 ,  Y, .) 

+ C1 (H,"+1/2(6x/2, y, z )  - H,"-'/'(-6x/2, y, 2)) 

That the application of the SAC to a first order RBC does none other 
than yield a second order RBC is demonstrated in [lo] although there 
the effect is described in different terms. The lower curve in Fig. 9 of 
[IO] representing the performance of a first order RBC with SAC is 
almost identical to the upper curve of Fig. 10 in [IO] which represents 
the performance of a second order RBC without SAC. Similarly the 
lower curve in Fig. 8 in [ 101 is almost identical to the upper curve in 
Fig. 9 in [ 101, showing that applying the SAC to a perfectly reflecting 
boundary is an effective, although unorthodox, method of obtaining 
a first order RBC. It is likely, however that the SAC, if applied to 
second order Mur or Higdon RBCs, would yield a high order scheme 
which would be more stable than the Mur or Higdon algorithm of 
equivalent order. 

If a wave of the form Ea(x ,  y, 2, t )  is incident on these discretised 
RBC's then we may define the reflection coefficient by as in (6). 

RBC In y-z plane 

\ \ \ \  J 
\ 

\\ 

Fig. 1. Geometry for the Theoretical RBC Analysis. 

where 

The upper signs correspond to Ez  and the lower signs correspond 
to E'. 

From (7) we can find the values of Ez and E' at each of the points 
in space required by (3), (4) or (5), depending on which RBC is under 
consideration, in order to calculate the values of the function A. The 
value of R may then be calculated using (6). 

111. THEORETICAL ANALYSIS OF RBC BEHAVIOUR 

where E"(-x, y , z , t )  is the corresponding image wave form (See 
Fig. 1). This coefficient is a function of the space and time discreti- 
sation used in the algorithm as well as the type of RBC used and the 
spatial distribution of the incident fields close to the boundary plane. 
For example, for the elementary dipole source, which is used in the 
tests to be described, the fields are given by (7)(See for example [ 181). 

I Sin0Cosd CosBCosq!~ 
SinBSinq5 Cos0Sin4 

-Sin0 
-Sin4 
cos9 

(7) second order €&Cs is still small. Where the absorbing plane is 

e(fPsz+PyY+Pzz+P.t) 

In order to assess the effectiveness of the second order RBCs under 
practical conditions, tests were carried out for the following cases: 
(i) 20 GHz dipole in free space, RBCs placed in the near field at 

(ii) 20 GHz dipole in free space, RBCs placed in the far field at 9 cm. 
(iii) 20 GHz dipole 3 mm above a ground plane, RBCs placed at 9 

Tests were carried out using the second order RBCs of Mur, Higdon 
with two different sets of parameters and the SAC. In addition the 
behaviour of Mur's first order RBC is plotted for comparison. Very 
fine (A/200), fine (X/20) and coarse ( X / l O )  unit cell sizes were 
used in order to assess the effect of finite discretisation on the RBC 
performance. The geometry of the structure under analysis is shown 
in Fig. 1 and the results of the tests are shown in Figs. 2-6. 

(i) For the case where the RBC is placed in the near field of the 
dipole, there is no significant difference in the performance of the 
second order algorithms. In particular, the choice of parameters 
for Higdon's RBC has no effect in this case. 

(ii) The behviour of the RBCs when in the far field of the dipole is 
very similar to that when the incident wave is plane. 

(iii) For the case of the dipole above a ground plane and the absorbing 
plane parallel to the ground plane (Fig. 5) ,  the performance of 
the RBCs is slightly worse but the difference between the various 

9 mm. 

m. 

From these results we may make the following observations: 
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Fig. 2. Theoretical performance of RBCs with single 20 GHz dipole source 
using uniform 120 grid. 
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Fig. 4. Theoretical performance of RBCs with single 20 GHz dipole source 
and uniform /200 grid. 

normal to the ground plane ( Fig. 6 ), the SAC performs somewhat 
better. 

(iv) In the far field, the use of a coarser discretisation leads to a 
deterioration of both Mur's RBC and the SAC. Higdon's RBC 
is almost unaffected. In the near field coarser discretisation has 
little effect on any of the RBCs. 

IV. NUMERICAL TRIALS OF THE RBCs 
In order to see if the foregoing theoretical properties were achieved 

in an actual FDTD run and to assess the overall performance of the 
RBCs in a more complex situation, FDTD runs were carried out 
using the three dimensional geometry whose cross-section is shown 
in Fig. 7. Unlike the theoretical results presented above, the results 

Reflection Coefficient (dB) 
I MurRmt 

I I -  

-40 I 
01 U 4.0 04 1.2 U 1M 17-0 1- 15.2 1 M  

Y ("1 
Fig. 6. Theoretical performance of RBCs with a 20 GHz dipole over a ground 
plane with a uniform DO grid (z = 9 mm). 

4 BOmm c 

Fig. 7. Geometry for the Numerical RBC Analysis of a single dipole source. 

from these runs include the effects of multiple reflections from the 
boundaries and the comers of the computational domain. In addition, 
the effects of non-uniform gridding and of inhomogenous media can 
be ascertained. 

The first structure used to test the RBCs was that of an infinitesimal 
dipole surrounded by air and oscillating at 20 GHz which could be 
compared to the theoretical predictions described in the previous 
section. This was implemented by exciting the E, component at 
the centre of the 18mm cubic mesh with a raised cosine modulated 
sinusoid. In order to find the level of reflection, a control run, 
consisting of a much larger ( 60 rnm cube ) mesh was used. The 
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Reflection Coefflcient (dB) Reflection Coefficlent (dB) r---- 
-1 0 
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TABLE I 
MESH PARAMETERS FOR THE TEST ON A UNIFORM GRID 

Number of Width of 
box (mm) cells 

per axis 
Unit cell 

size 

Control run 0.75 80 60 
Test run 0.75 24 18 

dimensions of this control run were sufficiently large to ensure 
that no reflection from the boundaries would enter the test region 
corresponding to the region for the test runs. The fields in the test 
region of the control run are, therefore, the true solution to the 
problem. The fields measured during the test runs are the sum of the 
true solution and the spurious reflections from the RBCs. Subtracting 
the test run results for the various RBCs from the control data 
yields the error. By taking the Fourier Transform of the error and 
of the control data and dividing one by the other, a value for the 
reflection coefficient as a function of frequency is obtained. The mesh 
parameters for both the control and the test runs are given in Table I. 
These region sizes correspond to a space step of X/20 for the source 
frequency used. 

For the control run, the wavefront will hit the centre of each 
boundary first. The shortest path back to the test region for the 
reflections is from the points A to B marked in Fig. 7. For the 
dimensions given in Table I, the path from the source through A 
to B is 51 mm long. Within the test models the shortest path lengths 
for multiple reflections between adjacent boundaries are less than 51 
mm. Hence the control is large enough that the behaviour of the 
RBCs including these multiple reflections can be seen. 

For the space step used the time step is dt = 1.37 pS therefore 
124 iterations were needed before the first reflections entered the test 
region of the control run. Hence, the fields in a plane through the 
source, in the z - y plane were recorded up to 100 iterations. Five 
test runs were completed; for Mur's first and second order RBCs, the 
SAC, with k = 0.65 and Higdon's second order RBC, for the angles 
(0", 0") and (lo", 40"). 

Fig. 8 shows the reflection coefficients at the boundary nodes 
along y-z plane. Here it can be seen that the overall behaviour of 
each of the second order RBCs is similar although the variation 
along the boundary is slightly different. As before, the choice of 
81 and 82 for Higdon's RBC has virtually no effect on the reflection 
coefficient. 

Comparing Fig. 8 to Fig. 2, we see that although the results 
are similar, there some differences in detail between the theoretical 

Boundary for Control Run8 

Boundary for Teal Runs 

Y 

L 

Ground plane 

Fig. 10. Geometry for dipole over a ground plane. 

predictions and the FDTD run. These are due to the fact that in the 
latter, the reflections from all six RBC planes are observed whereas 
in Fig. 2, the reflection coefficient, as defined in (6), from a single 
RBC plane is calculated. 

In order to assess the effect of using a coarser mesh, similar tests 
were carried out using a unit cell size of 6 mm, or X / l O .  The results 
are shown in Fig. 9. Here it can be seen that an overall degredation 
of approximately 5 dB has occured. 

The Effect of using Non-Vnlnifonn Grids in Homogeneous Media A 
second set of tests was performed, only this time the test runs used 
a graded grid. The test runs used only 1/9 of the nodes used in the 
fine uniform grid. The non-uniform mesh used for the control and 
test runs is shown in Table 11. 

In order to apply Mur's second order RBC to a non-uniform grid, 
we must use a generalised form of (3). This can be achieved by 
making use of the discretisation expressed in operator form as (8). 

Referring to Fig. 12, it can be shown that the equation relating to 
E,I is given by (9). 
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TABLE II 
MESH PARAM~ERS USED IN THE GRADED G m  TESTS 

Region number Control run region Test run region size 
size (nun) ("1 

2 6 3 
3 6 3 
4 6 6 
5 6 
6 3 
7 3 
8 6 
9 6 
10 6 
11 6 
12 3 

I 1 YwRnt 
Reflection C d d e n t  (de) 

1 I -  

LA '2 
- 0  I A i D  1 2 ' 1 6  17.9 

id 46 76  10.6 tS.0 *@.S 

Y ("1 
Fig. 11. Numerical performance of RBCs to a uniform 20GHz dipole and 
a non-uniform grid. 

where 
v6t - 6 s  26s c1 = ~ 

v6t + 6x 

26y16yz(vbt + 6x) 
c3 = 

c2 = Z T Z  
v6x(6t)2 v6x(6t)2 

c4 = 2 6 ~ 1 6 ~ 2  (v6t + 62) 

(9) 

The reflection coefficients along the y - t  boundary plane are shown 
in Fig. 11. 

It is desirable that an RBC, when used with a graded grid, shall be. 
no worse than when a uniform grid using the graded grid's largest 
step size is used. The gain in accuracy at the centre of the mesh due 

- 
d z l v  

Fig. 12. Non-uniform FDTD mesh. 

TABLE Ill 
&=IC OPERATIONS AND EXTRA MEMORY 

PER UNIT CELL REQUIRED BY mC'S 

Number of 
Number of arithmetic reds per 

RBC operations equivalend field 
additions component 

for history 
Mur's First Order 6 2 
Mur's Second Order 35 4 
Super Absorbing Boundary 29 4 
Higdon's Second Order 25 6 

to the finer grid may otherwise be negated by the higher levels of 
boundary reflections. Comparing Fig. 2 and Fig. 3 with Fig. 11 we see 
that for all RBCs tested, the reflection coefficient for the graded grid 
is similar to that of the uniform grid. Thus the use of graded grids, at 
least in this case, presents no problems when used with these RBCs. 

V. THE COMPUTATIONAL OVERHEADS INCURRED BY RBCs 
To date, comparisons of RBCs have largely concentrated on their 

reflection coefficients and their stability. Although authors have 
alluded to the memory and CPU time used, to the authors' knowledge 
no detailed comparison between the major discrete RBCs has been 
given. Now that the relative performances of several different RBCs 
have been compared, it is important to discuss the penalties that each 
incurs. Although, if a near cubic computational domain is used, the 
overall effect of computational efficiency of the RBCs is small, for 
the case where the domain is small in one dimension, such as would 
be the case for a planar antenna array, the ratio of boundary cells to 
interior cells is high enough to call for more careful consideration of 
the overheads involved in the RBCs. 

A. The Field History 
At each boundary, two tangential field components are estimated. 

Table 111 shows how many real numbers are needed to store the 
history of the field components for the major discrete RBCs under 
consideration. This is a count per node of the extra memory needed 
over and above the data already available, and is independent of the 
grid algorithm used. 

A first glance shows that the second order RBCs need at least 
twice the memory of Mur's first order RBC, which is not unexpected. 
Immediately, it can be seen that the second order Higdon RBC incurs 
a 50% greater memory penalty than the other second order RBCs. 

B. Number of Operations 
Table III shows the number of operations per node per E field 

component estimated for the same group of discrete RBCs. The 
coefficients are assumed to have been pre-calculated. For the total 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 42. NO. 2, FEBRUARY 1994 281 

overhead a multiplication or a division has been taken to be equivalent 
to four additions. Of all the second order operators, the Higdon’s RBC 
is the fastest, that is, less operations are needed. All require more than 
twice the number of operations as the first order RBC. 

VI. DISCUSSION OF THE PERFORMANCES OF THE ~ C S  
From the analyses and numerical tests presented we may make the 

following observations: 
When used in the near field of a dipole or a pair of dipoles there 
is little difference in the performance of the second order RBC 
algorithms. Where differences do exist, they are not predictable n 
priori. In particular, the choice of RBC parameters has negligible 
effect on performance. This implies that the use of techniques for 
optimising the parameters of the RBC, such as the calculation of 
the Poynting vector, [12], is unlikely to be of benefit when carried 
out in the near field of an antenna or scatterer. 
In the far field of a dipole, the RBCs behave much more like 
they would with plane wave incidence. For finite discretisation 
Higdon’s RBC is superior to Mur’s RBC and the SAC. In this 
case the choice of parameters does make the expected difference. 
The use of graded grids leads to no deterioration in the perfor- 
mance the RBCs tested. 
The memory requirement for Higdon’s RBC is approximately 
50% greater than that of the other RBCs tested, the computational 
load is least for Higdon’s RBC and greatest for Mur’s RBC, the 
ratio being 1.4:l. 
From the results presented here and in [16], [17] we conclude 
that where the boundary of the computation domain is in the 
far field of a radiator or terminates a waveguiding structure that 
Higdon’s RBC gives the best overall efficiency. If the boundary 
is in the near field of a radiatior than the SAC gives best overall 
efficiency. 

VII. CONCLUSION 
In this contribution we have presented examples of the properties 

of several well used second order RBCs when used in the near and far 
fields of a dipole with and without a ground plane. It has been shown 
that their behaviour is very different to the commonly cited theory 
for plane wave incidence. In addition a comparison of the required 
computer resources for the different algorithms has been made. In 
the case of the boundary being in the near field of a radiator, which 
occurs often in practice, the RBCs behave similarly and the choice 
depends only on required computer resources. In this respect, the 
SAC is superior to Higdon’s RBC and Mur’s RBC. For waveguide or 
feedline termination, Higdon’s RBC is capable of better performance 
although it does demand more computer resources than the other 
RBCs tested. 
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