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Mode structure of a semiconductor laser with feedback
from two external filters

P. Stowhski2, B. Krauskopf, S. Wieczorel

aDepartment of Engineering Mathematics, University of BrisUK
bSchool of Engineering, Computing and Mathematics, Unite s Exeter, UK

ABSTRACT

We study a semiconductor laser subject to filtered opticadifiack from two separate filters. This work is motivated by an
application where two fiber gratings are used to stabilizedtitput of a laser source. Specifically, we consider thetire

of the external filtered modes (EFMs), which are the basicstates of the system. The system is modelled by a set of
four delay differential equations with two delays that ave do the travel times of the light in each of the external thewi
Here, each filter is approximated by a Lorentzian and we asghat there is no interaction between the two filters.

We derive a transcendental equation for the EFMs as a fundfiche widths, detunings and the feedback strengths
of the two filters. With continuation techniques we inveateghow the number of EFMs changes with parameters. In
particular, we consider the equation for its envelope. BHmswvs us to determine regions in the plane of the two degsin
that correspond to one, two or three EFM components — dispdosed curves that are traced out by the EFMs as a
function of the feedback phase.

Keywords: semiconductor laser, filtered feedback, external filteredes

1. INTRODUCTION

Semiconductor lasers are very sensitive to the influencetefreal optical feedback, and stabilizing them has alwaenb
an important issue. It has been shown that filtered optiealdack (FOF) can improve the laser performahéeOn the
other hand, the influence of FOF on the laser can lead to otimeplicated dynamic3?

External cavities created by feedback loops allow the laseperate at various compound-cavity modes (continuous
wave solutions or cw-states). For the single FOF laser, #ieyalso called external filtered modes (EFMs), in analogy
with the external cavity modes (ECMs) of the laser subjecttoventional optical feedback (COF). It has been shown that
EFMs lie on closed curves in they,, N,)-plane, which are called the EFM-componehtShe EFM-components have
the form of an ellipse in théw,, Ny)-plane that is distorted by the influence of the filter profiléney are traced out by
the EFMs as the feedback phasg (of the electromagnetic field of the filter, relative to thddief the laser) is varied.

A detailed analysis of the dependence of the number of EFMpoments on the filter widtiA and the filter detuning

A (from the laser frequency) was performed in Ref. [6]. It skaWat in the(A, A)-space there is a region with two
EFM-components. A stability and bifurcation analysis ofM&-in Ref. [7] shows that a single FOF laser is very sensitive
to changes in feedback phaSg. Furthermore, the filter parameters (widthand detuning)) have a big influence on the
possible dynamic%? In a single FOF laser one can observe the well-known relaratscillations, but also the frequency
oscillations where the frequency of the laser oscillategenits intensity remains almost unchang@dAn experimental
study of the influence of a feedback phase and a filter detwnirte single FOF laser dynamics can be found in Ref. [8].
The limiting cases of small and biyand A were presented in Refs. [5, 6, 11].

In this work we study a semiconductor laser subject to FORftao filter loops (2FOF). The second filter gives
an extra set of control parameters, which can give additiooatrol over the laser output. For simplicity we disregard
all interactions between the filters. We assume that botrdilhave the same Lorentzian profile with the filter widths
A = Ay = As. Moreover, feedback rates andxs as well as delay times, andr, are set equal for both filter loops, that
iSk = k1 = ke, T = 71 = T2. In spite of these assumptions, the second filter signifigamiuences the dynamics of a
laser unit. In the 2FOF system maximally three EFM-comptsean appear: one around the solitary laser frequency, and
the other two around the two filter detuning frequencies hwfie tool of numerical continuation it is possible to detieren
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Figure 1. Sketch of a semiconductor laser with feedback from two Fabyt filter loops; other elements are beam splitters (BS) and
optical isolators (1ISO).

regions in thg A1, As)-plane where the 2FOF laser system has one, two or three EfMdanents. We show that, As
increases, the regions with more than one EFM-componentiksind finally disappear. This is consistent with the fact
that, asA — oo, the system reduces to the COF laser. However, a detailegarison with a laser with two COF loops
is beyond the scope of this paper.

2. MATHEMATICAL MODEL

Figure 1 shows a sketch of the 2FOF laser. The optical isd&asure that there is no COF back to the laser and that there
are no interactions between the filters and the laser. Thermmysan be described by rate equations for the complex dptica
field £ inside of the laser, the population inversidhof the laser, and two complex optical fields and F; of the filters.
Equations written in the frame of reference of a fixed sojitaser frequency take the dimensionless form:

dE

— = (L+ia)NOE®) + s Fi(t) + raFo(t), 1)
T% = P—N(t)—(1+2N®)|E®), (2)
% = ME(t—7)e % + (iAy — A)Fy (1), 3)
% = ME(t—7)e "% 4 (iAg — Ay)Fy(t). (4)

The parameter values for Egs. (1)—(4) are given in Table d aa@ in the range used in Ref. [6, 7]. The feedback terms
k1F(t) and ko Fy(t), with the feedback rates; and ks, model the coupling of the filter fields with the laser field.€Th
feedback phase@; andcg in Equations (3) and (4) represent the phase relationshipdes the laser and filters fields.
Throughout our analysis, laser chip parameters includiedinewidth enhancement factar the carrier decay rate T and
the pump parameter P are kept fixed at physically realisticesg



Parameter Meaning Value
« linewidth enhancement factor | 5
T carrier lifetimexphoton decay rate 100
P pump parameter 35
T =TTy external cavity round-trip times | 500
K = K1 = Ko feedback rates 0.506
c,, Co feedback phases 0.0
Ay, Ay filter detunings from 0.0t0 0.7
A, Ay, Ao filter widths 0.0, 0.015, 0.05 and 0.095

Table 1. System parameters.

Equations (1)—(4) are invariant under the exchange of tloefitters, that is, under the exchange of subscripts 1 and 2.
The feedback phase%; and Cg are (translationally) symmetrical under a shift of. 2Moreover, the system has &f-
symmetry in common with other optical feedback systems ofg-Kobayashi typé,given by the simultaneous rotations
of E, F, and F,.*>13 Obviously, setting one of the feedback rates to zero, either 0 or k, = 0, reduces the 2FOF
laser to the single FOF laser. Furthermore, setting the sarametersX, A, 7, C,) for both filters also reduces system
(1)—(4) to a single FOF laser with feedback rate- k1 + ka.

Equations (1)—(4) are a system of delay differential equst(DDESs) with two constant fixed delaysandr,. Hence,
its phase space is the infinite-dimensional space of camtimdiunctions over the maximal delay interval with values
in (E, N, F1, F»)-space. This makes the analysis of DDEs quite challengimgtuRately, the stability and bifurcation
theory for DDEs with fixed delays is well develogéand there are well-established numerical continuatiotst®or the
bifurcation analysis of DDEs.

3. EXTERNAL FILTER MODES

Mathematically, an EFM is a group orbit of ti -symmetry in(E, N, F;, F,)-space. Physically, an EFM has constant
intensity, inversion and frequency, and is given by

(E(t),N(t), Fi(t), Fa(t)) = (Ese™st, Ny, Flel@stto) pleilwstto)) 5)

Here,E,, F! andF? are fixed real values of the field amplitude of the laser field laoth filtered fields)V; is a fixed level
of inversion,w; is a fixed frequency, and,, ¢- are fixed phase shifts between the laser field and filteredsfield

3.1 Transcendental equation
To find EFMs, we substitute (5) into Egs. (1)—(4). Equatirg) end imaginary parfst® results in the equation:

\/A12 + (ws — Al)2 \/A22 + (ws — A2)2
where,
ws — A
¢1 = —wem —C) — arctan ( X 1) ,
A (7)
we —
¢y = —wsTy — C,? — arctan ( i 2) )

Equation (6) is a transcendental equation for the freq@snei the EFMs. In Eqg. (6) the terms in parentheses derive from
the first and the second filter. If one of them is set to zera) thg. (6) reduces to the transcendental equation from Ref. [6



for the frequencies of EFMs of the single FOF laser. To findftequenciesv, Eq. (6) needs to be solved numerically.
Oncew; is known, the values of the other state variables of the EFRisbe found as:

K11 cos(¢r) ra Az cos(p2)

N, = - n
VAP A7 /A0 4 o, - 20
[P—N,
Es = 1+2N5’ (9)

o E A\ ’ (10)

\/A12 + (ws — A1)2

(8)

F? = Eihs . (11)

\/A22 + (ws — Ag)®

It can be seen, that equations (8)—(12), like Eqgs. (1)-@),ke reduced to equations for a EFMs state variables for the
single FOF laser. For example, it is enough to Ayt= 0. We have already remarked that for a single FOF laser, the
EFMs lie on a curve that is a function of the feedback pl@sen case of two filtered feedback loops we are dealing with
a surface of EFMs which is a function O“t; anng. The EFM-components are sections of that surface for a $et od
C}orCz.

Following Ref. [6], we know that the number of EFM-comporsenbrresponds to the number of intervals given by
roots of the envelope of Eq. (6), which changes when we vayilter width or the filter detuning. The envelope of Eq.
(6) is obtained as the maximal and minimal values-afof the sine functions in Eq. (6). The valueswaf for both parts
of envelope of Eq. (6) can be found as roots of the equation:

F(ws) = WSQ(Alz + (ws — Al)z)(A22 + (ws — A2)2)

2 12
- (mAl\/A12+<ws—A1)2+H2A2\/A22+(w3—A2)2) (1+a2). 42

Similarly to system (1)—(4), equation (12) can be reducethéequivalent equation for the single FOF laser. However,
because of a term with square roots in Eq. (12), unlike in #eeof FOF, the derivation of simple analytical expressions
for the parametrisation of regions with different number&ffM-components in théA;, Ao, A;, Ay)-space does not
follow.

Figure 2 shows regions (grey) of negative values of Eq. (h)rojection onto théw,, A;)-plane. Here we fixed
Ao = 0.15, A = 0.015 for values of the other parameters as given in Table 1. Negatlues of Eqg. (12) are bounded by
its roots. Shaded intervals on theg-axis, located in between these roots, correspond to sepaFM-components. It can
be seen that indeed the maximal number of EFM-componentsdogiven parameter set is three. One of the minima of
function F'(w,) is always around the solitary laser frequengy= 0, the second is around the detuning frequency of the
second filterws = 0.15, and the third is moving from left to right as the detuninggiency of the first filter is increased.
We can observe that, whek, increases, the number of EFM-components changes. Filsaitges from two to three at
approximatelyA; = —0.34, next it decreases to two again, and then to one ardung= 0. As A; further increases,
so does the number of EFM-components: it is two arodnd= 0.25, then three and finally it settles back at two for
Ay > 0.34. The black dots in Fig. 2 are turning points Bfw,) with respect ta\,, see section 3.3.

3.2 EFM-components

Figure 3 shows EFMs in théu,, N)-plane. They are the solutions of Egs. (6)—(11) and tracelwmigrey curves as
function of the feedback phase of the filters whéfe= C?. Black dots show the positions of the EFMs &g} = C2 = 0.
These curves were found by continuation of the full systejr(@) in the continuation paramete@% andw,, under the
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Figure 2. Regions of negative values of Eq. (12)4or € [-0.35,0.35], A, = 0.15 andA = 0.015.

condition thatC, = C2. In Fig. 3 (a), whem\; = A, = 0, there is a single group of EFMs around the solitary freqyenc
of the laser. Panel (b) shows that faf = —0.12 andA, = 0, a second group of EFMs appears around the changed filter
detuning frequency. Panel (c) is almost theotation of panel (b) and was obtained by changing the sfgh;o Finally,
when we change both filter detuningsAq = —0.12 and Deltay = 0.12, three groups of EFMs appear: the first and the
second around the two filter detuning frequencies, and tingé #nound the solitary laser frequency. In accordance with
Fig. 2, as we vary the filter detunings, EFMs are forming owe, dr three components.

Note that in Fig. 3 (d) the EFM-component around the solitaser frequency is substantially smaller than the two
other EFM-components. This results from the interfererete/ben the two sine terms in Eq. (6). The insert shows that thi
EFM-component has a shape similar to the ellipse found foD& @ser. This shape of the EFM-component is a result of
the feedback from highly detuned filters modelled by re&dsivilat tails of the filter profiles. Consequently all freqoas
around the solitary laser frequency are fed back with apgprately the same very low feedback strength. This resembles
the effect of weak COR®

3.3 The number of EFM-components

Throughout this section we study the maximal number of EFviygonents. While the actual number of EFM-components
depends o\, A, s, 7 andC), the envelope of transcendental equation is not dependethiecfeedback phasg, or the
delay timer. In fact, the envelope of transcendental equation givesitions for the maximal possible number of EFM-
components. All calculations that follow have been perimdrforC[{ — C][,2 = 0. Taking into consideration the dependence
of the envelope on other parameters of the system is beyenstthpe of this paper.

Equation (12) is parametrised i, Ay, A; andA,. To determine regions in th@\;, As)-plane with different
maximal numbers of EFM components, we numerically solved #8) and its derivative with respect ég,. Points for
which F'(ws) =0 and% = 0 are shown in Fig. 2 as black dots. Note that solving the equoditir the envelope of Eq.
(6) and its derivative with respect to, gives the same results. To obtain solutions for differeies of A; andA,, we
solvedF (ws) and%ﬁs) by means of numerical continuation with the MATLAB packagBB-BiFTooL.’



oo2d S - 0024 ]

-0.0240 -+ D Lo . -0.024r S EERRRRES o

0.024

-0.024- - LT IR RTIREE SRR -0.024

-0.12 0 Wg 0.12 -0.12 0 Wy 0.12

Figure 3. Curves of EFMs in theu(, N;)-plane obtained by continuation. Black dots correspond to the discretef &-Ms for
C; = Cﬁ = 0 andA = 0.015. Shown are the cases of a single EFM-componentor= A, = 0 (a), two EFM-components for
A; = —0.12, Az = 0 (b), two EFM-components faf; = 0.12, As = 0 (c) and three EFM-components fdr; = 0.12, As =
—0.12 (d).

Figure 4 shows regions in thg\;, As)-plane with maximally one, two or three EFM-components (esaled by
numbers). The grey curves are the result of numerical coatian, and they bound regions with different numbers of
EFM-components, typically two of them. The intersectiotvad regions with maximally two EFM-components gives rise
to a region with maximally three EFM-components: one comiaBM-component around the solitary laser frequency and
one component around each of the filter frequencies. Therdift panels show how increasing the filter width changes the
dependence of the maximal number of EFM-components on tee diétunings. As we have already remarked, we only
analysed the case when both filters have the same profilasthat A; = A,. Figure 4 (a) shows the degenerate case for
A = 0 with no EFM-components. In all regions in panel (a) marked®pgs well as at the poink; = Ay = 0, there is
only one EFM at the solitary laser frequency. Maximally tvirmgée EFMs can be found only for casas = 0 or As =0
(vertical and horizontal lines), ah; = A, (diagonal). This picture changes dramatically whieis increased. In panel
(b) for A = 0.015 regions with different maximal number of EFM-componentsyia very regular pattern. It is mainly
the result of a very fast growth of the region with one EFM-gament around the solitary laser frequency. This region
originates from the point wher&; = A, = 0. The growth of this area wheh is increased, means that regions with three
EFM-components shrink and some of them disapear; see pgrfef (A = 0.05. Figure 4 (d) forA = 0.095 shows that,
when A is increased, all regions with three EFM-components disappnd regions with two EFM-components shrink
even further. Fol\ — oo the 2FOF laser reduces to a laser subject to a single COF {matt¢he COF laser does not
depend om\). This agrees with the observation that for sufficientlyg&, there is only a single EFM-component.
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Figure 4. Regions in theA, A»)-plane with a single EFM solution (0), a single EFM-component (1), two ied|l&FM-components
(2), and three isolated EFM-components (3). Panels (a)—(d) shodeftendence of these regions on the filter widlte= A1 = Ao;
from (a) to (d)A takes values\ = 0, A = 0.015, A = 0.05 andA = 0.095.

4. CONCLUSIONS

We have presented a study of the EFM structure of a semicemdiaser subject to two FOF loops. Our results show
that the presence of the second filter loop significantly eries the laser output. We showed how the maximal number
of EFM-components depends on filter detunidgsnd the filter widthA. To this end, we presented the transcendental
equation for frequencies of EFMs and analytical expression the other state variables of EFMs. With the tool of
numerical continuation we showed that a 2FOF laser can haxamally three EFM-components. Furthermore, we studied
how regions with different maximal numbers of EFM-compatsen the(A;, As)-plane depend oA. A more detailed



analysis of the dependence of the number of EFM-componeritseather parameters, as well as a stability and bifuroatio
analysis of EFMs of the 2FOF laser are the subject of ongasgarch.
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