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Mode structure of a semiconductor laser with feedback
from two external filters

P. Słowínski a, B. Krauskopfa, S. Wieczorekb

aDepartment of Engineering Mathematics, University of Bristol, UK
bSchool of Engineering, Computing and Mathematics, University of Exeter, UK

ABSTRACT

We study a semiconductor laser subject to filtered optical feedback from two separate filters. This work is motivated by an
application where two fiber gratings are used to stabilize the output of a laser source. Specifically, we consider the structure
of the external filtered modes (EFMs), which are the basic cw-states of the system. The system is modelled by a set of
four delay differential equations with two delays that are due to the travel times of the light in each of the external cavities.
Here, each filter is approximated by a Lorentzian and we assume that there is no interaction between the two filters.

We derive a transcendental equation for the EFMs as a function of the widths, detunings and the feedback strengths
of the two filters. With continuation techniques we investigate how the number of EFMs changes with parameters. In
particular, we consider the equation for its envelope. Thisallows us to determine regions in the plane of the two detunings
that correspond to one, two or three EFM components — disjoint closed curves that are traced out by the EFMs as a
function of the feedback phase.

Keywords: semiconductor laser, filtered feedback, external filtered modes

1. INTRODUCTION

Semiconductor lasers are very sensitive to the influence of external optical feedback, and stabilizing them has always been
an important issue. It has been shown that filtered optical feedback (FOF) can improve the laser performance.1,2 On the
other hand, the influence of FOF on the laser can lead to other complicated dynamics.3,4

External cavities created by feedback loops allow the laserto operate at various compound-cavity modes (continuous
wave solutions or cw-states). For the single FOF laser, theyare also called external filtered modes (EFMs), in analogy
with the external cavity modes (ECMs) of the laser subject toconventional optical feedback (COF). It has been shown that
EFMs lie on closed curves in the(ωs, Ns)-plane, which are called the EFM-components.5 The EFM-components have
the form of an ellipse in the(ωs, Ns)-plane that is distorted by the influence of the filter profile.They are traced out by
the EFMs as the feedback phaseCp (of the electromagnetic field of the filter, relative to the field of the laser) is varied.
A detailed analysis of the dependence of the number of EFM-components on the filter widthΛ and the filter detuning
∆ (from the laser frequency) was performed in Ref. [6]. It shows that in the(Λ, ∆)-space there is a region with two
EFM-components. A stability and bifurcation analysis of EFMs in Ref. [7] shows that a single FOF laser is very sensitive
to changes in feedback phaseCp. Furthermore, the filter parameters (widthΛ and detuning∆) have a big influence on the
possible dynamics.8,9 In a single FOF laser one can observe the well-known relaxation oscillations, but also the frequency
oscillations where the frequency of the laser oscillates while its intensity remains almost unchanged.10 An experimental
study of the influence of a feedback phase and a filter detuningon the single FOF laser dynamics can be found in Ref. [8].
The limiting cases of small and bigΛ and∆ were presented in Refs. [5,6,11].

In this work we study a semiconductor laser subject to FOF from two filter loops (2FOF). The second filter gives
an extra set of control parameters, which can give additional control over the laser output. For simplicity we disregard
all interactions between the filters. We assume that both filters have the same Lorentzian profile with the filter widths
Λ = Λ1 = Λ2. Moreover, feedback ratesκ1 andκ2 as well as delay timesτ1 andτ2 are set equal for both filter loops, that
is κ = κ1 = κ2, τ = τ1 = τ2. In spite of these assumptions, the second filter significantly influences the dynamics of a
laser unit. In the 2FOF system maximally three EFM-components can appear: one around the solitary laser frequency, and
the other two around the two filter detuning frequencies. With the tool of numerical continuation it is possible to determine
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Figure 1. Sketch of a semiconductor laser with feedback from two Fabry-Pérot filter loops; other elements are beam splitters (BS) and
optical isolators (ISO).

regions in the(∆1, ∆2)-plane where the 2FOF laser system has one, two or three EFM-components. We show that, asΛ
increases, the regions with more than one EFM-components shrink and finally disappear. This is consistent with the fact
that, asΛ → ∞, the system reduces to the COF laser. However, a detailed comparison with a laser with two COF loops
is beyond the scope of this paper.

2. MATHEMATICAL MODEL

Figure 1 shows a sketch of the 2FOF laser. The optical isolators ensure that there is no COF back to the laser and that there
are no interactions between the filters and the laser. The system can be described by rate equations for the complex optical
field E inside of the laser, the population inversionN of the laser, and two complex optical fieldsF1 andF2 of the filters.
Equations written in the frame of reference of a fixed solitary laser frequency take the dimensionless form:

dE

dt
= (1 + iα)N(t)E(t) + κ1F1(t) + κ2F2(t), (1)

T
dN

dt
= P − N(t) − (1 + 2N(t))|E(t)|

2
, (2)

dF1

dt
= Λ1E(t − τ1)e

−iC1

p + (i∆1 − Λ1)F1(t), (3)

dF2

dt
= Λ2E(t − τ2)e

−iC2

p + (i∆2 − Λ2)F2(t). (4)

The parameter values for Eqs. (1)–(4) are given in Table 1, and are in the range used in Ref. [6,7]. The feedback terms
κ1F1(t) andκ2F2(t), with the feedback ratesκ1 andκ2, model the coupling of the filter fields with the laser field. The
feedback phasesC1

p andC2
p in Equations (3) and (4) represent the phase relationship between the laser and filters fields.

Throughout our analysis, laser chip parameters including the linewidth enhancement factorα, the carrier decay rate T and
the pump parameter P are kept fixed at physically realistic values.
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Parameter Meaning Value
α linewidth enhancement factor 5
T carrier lifetime×photon decay rate 100
P pump parameter 3.5

τ = τ1τ2 external cavity round-trip times 500
κ = κ1 = κ2 feedback rates 0.506

C1
p , C2

p feedback phases 0.0
∆1, ∆2 filter detunings from 0.0 to 0.7

Λ, Λ1, Λ2 filter widths 0.0, 0.015, 0.05 and 0.095

Table 1. System parameters.

Equations (1)–(4) are invariant under the exchange of the two filters, that is, under the exchange of subscripts 1 and 2.
The feedback phasesC1

p andC2
p are (translationally) symmetrical under a shift of 2π. Moreover, the system has anS1-

symmetry in common with other optical feedback systems of Lang-Kobayashi type,3 given by the simultaneous rotations
of E, F1 andF2.12,13 Obviously, setting one of the feedback rates to zero, eitherκ1 = 0 or κ2 = 0, reduces the 2FOF
laser to the single FOF laser. Furthermore, setting the sameparameters (Λ, ∆, τ, Cp) for both filters also reduces system
(1)–(4) to a single FOF laser with feedback rateκ = κ1 + κ2.

Equations (1)–(4) are a system of delay differential equations (DDEs) with two constant fixed delaysτ1 andτ2. Hence,
its phase space is the infinite-dimensional space of continuous functions over the maximal delay interval with values
in (E,N,F1, F2)-space. This makes the analysis of DDEs quite challenging. Fortunately, the stability and bifurcation
theory for DDEs with fixed delays is well developed14 and there are well-established numerical continuation tools15 for the
bifurcation analysis of DDEs.

3. EXTERNAL FILTER MODES

Mathematically, an EFM is a group orbit of theS1-symmetry in(E,N,F1, F2)-space. Physically, an EFM has constant
intensity, inversion and frequency, and is given by

(E(t), N(t), F1(t), F2(t)) =
(

Ese
iωst, Ns, F

1
s ei(ωst+φ1), F 2

s ei(ωst+φ2)
)

. (5)

Here,Es, F 1
s andF 2

s are fixed real values of the field amplitude of the laser field and both filtered fields,Ns is a fixed level
of inversion,ωs is a fixed frequency, andφ1, φ2 are fixed phase shifts between the laser field and filtered fields.

3.1 Transcendental equation

To find EFMs, we substitute (5) into Eqs. (1)–(4). Equating real and imaginary parts6,13 results in the equation:

T (ωs) = −ωs −
√

1 + α2





κ1Λ1 sin(−φ1 + arctan(α))
√

Λ1
2 + (ωs − ∆1)

2
+

κ2Λ2 sin(−φ2 + arctan(α))
√

Λ2
2 + (ωs − ∆2)

2



 , (6)

where,

φ1 = −ωsτ1 − C1
p − arctan

(

ωs − ∆1

Λ1

)

,

φ2 = −ωsτ2 − C2
p − arctan

(

ωs − ∆2

Λ2

)

.

(7)

Equation (6) is a transcendental equation for the frequencies of the EFMs. In Eq. (6) the terms in parentheses derive from
the first and the second filter. If one of them is set to zero, then Eq. (6) reduces to the transcendental equation from Ref. [6]

3



for the frequencies of EFMs of the single FOF laser. To find thefrequenciesωs Eq. (6) needs to be solved numerically.
Onceωs is known, the values of the other state variables of the EFMs can be found as:

Ns = −





κ1Λ1 cos(φ1)
√

Λ1
2 + (ωs − ∆1)

2
+

κ2Λ2 cos(φ2)
√

Λ2
2 + (ωs − ∆2)

2



 (8)

Es =

√

P − Ns

1 + 2Ns

, (9)

F 1
s =

EsΛ1
√

Λ1
2 + (ωs − ∆1)

2
, (10)

F 2
s =

EsΛ2
√

Λ2
2 + (ωs − ∆2)

2
. (11)

It can be seen, that equations (8)–(12), like Eqs. (1)–(4), can be reduced to equations for a EFMs state variables for the
single FOF laser. For example, it is enough to putΛ2 = 0. We have already remarked that for a single FOF laser, the
EFMs lie on a curve that is a function of the feedback phaseCp. In case of two filtered feedback loops we are dealing with
a surface of EFMs which is a function ofC1

p andC2
p . The EFM-components are sections of that surface for a set value of

C1
p or C2

p .

Following Ref. [6], we know that the number of EFM-components corresponds to the number of intervals given by
roots of the envelope of Eq. (6), which changes when we vary the filter width or the filter detuning. The envelope of Eq.
(6) is obtained as the maximal and minimal values of±1 of the sine functions in Eq. (6). The values ofωs for both parts
of envelope of Eq. (6) can be found as roots of the equation:

F (ωs) = ωs
2(Λ1

2 + (ωs − ∆1)
2
)(Λ2

2 + (ωs − ∆2)
2
)

−

(

κ1Λ1

√

Λ1
2 + (ωs − ∆1)

2
+ κ2Λ2

√

Λ2
2 + (ωs − ∆2)

2

)2

(1 + α2).
(12)

Similarly to system (1)–(4), equation (12) can be reduced tothe equivalent equation for the single FOF laser. However,
because of a term with square roots in Eq. (12), unlike in the case of FOF, the derivation of simple analytical expressions
for the parametrisation of regions with different number ofEFM-components in the(Λ1, Λ2, ∆1, ∆2)-space does not
follow.

Figure 2 shows regions (grey) of negative values of Eq. (12) in projection onto the(ωs, ∆1)-plane. Here we fixed
∆2 = 0.15, Λ = 0.015 for values of the other parameters as given in Table 1. Negative values of Eq. (12) are bounded by
its roots. Shaded intervals on theωs-axis, located in between these roots, correspond to separate EFM-components. It can
be seen that indeed the maximal number of EFM-components forthe given parameter set is three. One of the minima of
functionF (ωs) is always around the solitary laser frequencyωs = 0, the second is around the detuning frequency of the
second filterωs = 0.15, and the third is moving from left to right as the detuning frequency of the first filter is increased.
We can observe that, when∆1 increases, the number of EFM-components changes. First it changes from two to three at
approximately∆1 = −0.34, next it decreases to two again, and then to one around∆1 = 0. As ∆1 further increases,
so does the number of EFM-components: it is two around∆1 = 0.25, then three and finally it settles back at two for
∆1 > 0.34. The black dots in Fig. 2 are turning points ofF (ωs) with respect to∆1, see section 3.3.

3.2 EFM-components

Figure 3 shows EFMs in the(ωs, Ns)-plane. They are the solutions of Eqs. (6)–(11) and trace outthe grey curves as
function of the feedback phase of the filters whereC1

p = C2
p . Black dots show the positions of the EFMs forC1

p = C2
p = 0.

These curves were found by continuation of the full system (1)–(4) in the continuation parametersC1
p andωs, under the
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Figure 2. Regions of negative values of Eq. (12) for∆1 ∈ [−0.35, 0.35], ∆2 = 0.15 andΛ = 0.015.

condition thatC1
p = C2

p . In Fig. 3 (a), when∆1 = ∆2 = 0, there is a single group of EFMs around the solitary frequency
of the laser. Panel (b) shows that for∆1 = −0.12 and∆2 = 0, a second group of EFMs appears around the changed filter
detuning frequency. Panel (c) is almost theπ-rotation of panel (b) and was obtained by changing the sign of ∆1. Finally,
when we change both filter detunings to∆1 = −0.12 andDelta2 = 0.12, three groups of EFMs appear: the first and the
second around the two filter detuning frequencies, and the third around the solitary laser frequency. In accordance with
Fig. 2, as we vary the filter detunings, EFMs are forming one, two or three components.

Note that in Fig. 3 (d) the EFM-component around the solitarylaser frequency is substantially smaller than the two
other EFM-components. This results from the interference between the two sine terms in Eq. (6). The insert shows that this
EFM-component has a shape similar to the ellipse found for a COF laser. This shape of the EFM-component is a result of
the feedback from highly detuned filters modelled by relatively flat tails of the filter profiles. Consequently all frequencies
around the solitary laser frequency are fed back with approximately the same very low feedback strength. This resembles
the effect of weak COF.16

3.3 The number of EFM-components

Throughout this section we study the maximal number of EFM-components. While the actual number of EFM-components
depends onΛ,∆, κ, τ andCp, the envelope of transcendental equation is not dependent on the feedback phaseCp or the
delay timeτ . In fact, the envelope of transcendental equation gives conditions for the maximal possible number of EFM-
components. All calculations that follow have been performed forC1

p −C2
p = 0. Taking into consideration the dependence

of the envelope on other parameters of the system is beyond the scope of this paper.

Equation (12) is parametrised by∆1, ∆2, Λ1 andΛ2. To determine regions in the(∆1, ∆2)-plane with different
maximal numbers of EFM components, we numerically solved Eq. (12) and its derivative with respect toωs. Points for
whichF (ωs) = 0 and dF (ωs)

dωs

= 0 are shown in Fig. 2 as black dots. Note that solving the equation for the envelope of Eq.
(6) and its derivative with respect toωs gives the same results. To obtain solutions for different values of∆1 and∆2, we
solvedF (ωs) and dF (ωs)

dωs

by means of numerical continuation with the MATLAB package DDE-BIFTOOL.17
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Figure 3. Curves of EFMs in the (ωs, Ns)-plane obtained by continuation. Black dots correspond to the discrete set of EFMs for
C1

p = C2

p = 0 andΛ = 0.015. Shown are the cases of a single EFM-component for∆1 = ∆2 = 0 (a), two EFM-components for
∆1 = −0.12, ∆2 = 0 (b), two EFM-components for∆1 = 0.12, ∆2 = 0 (c) and three EFM-components for∆1 = 0.12, ∆2 =
−0.12 (d).

Figure 4 shows regions in the(∆1, ∆2)-plane with maximally one, two or three EFM-components (as denoted by
numbers). The grey curves are the result of numerical continuation, and they bound regions with different numbers of
EFM-components, typically two of them. The intersection oftwo regions with maximally two EFM-components gives rise
to a region with maximally three EFM-components: one commonEFM-component around the solitary laser frequency and
one component around each of the filter frequencies. The different panels show how increasing the filter width changes the
dependence of the maximal number of EFM-components on the filter detunings. As we have already remarked, we only
analysed the case when both filters have the same profile, thatis Λ = Λ1 = Λ2. Figure 4 (a) shows the degenerate case for
Λ = 0 with no EFM-components. In all regions in panel (a) marked by0, as well as at the point∆1 = ∆2 = 0, there is
only one EFM at the solitary laser frequency. Maximally two single EFMs can be found only for cases∆1 = 0 or ∆2 = 0
(vertical and horizontal lines), or∆1 = ∆2 (diagonal). This picture changes dramatically whenΛ is increased. In panel
(b) for Λ = 0.015 regions with different maximal number of EFM-components form a very regular pattern. It is mainly
the result of a very fast growth of the region with one EFM-component around the solitary laser frequency. This region
originates from the point where∆1 = ∆2 = 0. The growth of this area whenΛ is increased, means that regions with three
EFM-components shrink and some of them disapear; see panel (c) for Λ = 0.05. Figure 4 (d) forΛ = 0.095 shows that,
whenΛ is increased, all regions with three EFM-components disappear and regions with two EFM-components shrink
even further. ForΛ → ∞ the 2FOF laser reduces to a laser subject to a single COF (notethat the COF laser does not
depend on∆). This agrees with the observation that for sufficiently largeΛ, there is only a single EFM-component.
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Figure 4. Regions in the(∆1, ∆2)-plane with a single EFM solution (0), a single EFM-component (1), two isolated EFM-components
(2), and three isolated EFM-components (3). Panels (a)–(d) show thedependence of these regions on the filter widthΛ = Λ1 = Λ2;
from (a) to (d)Λ takes valuesΛ = 0, Λ = 0.015, Λ = 0.05 andΛ = 0.095.

4. CONCLUSIONS

We have presented a study of the EFM structure of a semiconductor laser subject to two FOF loops. Our results show
that the presence of the second filter loop significantly influences the laser output. We showed how the maximal number
of EFM-components depends on filter detunings∆ and the filter widthΛ. To this end, we presented the transcendental
equation for frequencies of EFMs and analytical expressions for the other state variables of EFMs. With the tool of
numerical continuation we showed that a 2FOF laser can have maximally three EFM-components. Furthermore, we studied
how regions with different maximal numbers of EFM-components in the(∆1, ∆2)-plane depend onΛ. A more detailed
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analysis of the dependence of the number of EFM-components on the other parameters, as well as a stability and bifurcation
analysis of EFMs of the 2FOF laser are the subject of ongoing research.
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