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Abstract. The established relationship between the spacing distributions of highway traffic and those of

classical gas models is re-examined. Limitations in the statistics of the power law potential are identified,

and two modifications are proposed which alter the potential at respectively long and short ranges. An

improved fit with empirical data is demonstrated.

PACS. 05.10.Gg Stochastic analysis methods – 05.20.Gg Classical ensemble theory – 89.40.-a Transporta-

tion

1 Introduction

Studies [1–5] in recent years have examined the distribu-

tions of spacings in highway traffic, and have drawn links

to distributions from classical statistical physics models.

The spacing distribution can be related to the interaction

potential V (s) via methods from equilibrium statistical

physics [6,7], and this potential can be used to inform

microscopic traffic models. In a microscopic driven-agent

model we can describe the motion of an agent with the

general car-following (Langevin) equation [4,8]

dvi

dt
=

vmax − vi

τ
+ f(si) − γf(si−1) + ηi(t), (1)

where vi is the speed of agent i, si = xi − xi+1 is the gap

to agent i + 1 and f(s) := −V ′(s) denotes the interaction

force with the neighbouring agent. Finally γ = 0 gives the

case of forwardly directed interactions, whilst γ = 1 gives

symmetric (forward and backward) interactions, τ is an

adaptation time, and ηi(t) is a noise term.

In this short note we extend the work of Krbálek and

Helbing [4,5] who considered power law potentials V (s) =

s−α, where α is found by the best fit between the conse-

quent theoretical spacing distribution and empirical traffic

spacings. By analysing the fit with our data source (pro-

vided by inductance loops from London’s M25 orbital mo-
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torway), we find discrepancies with Krbálek and Helbing’s

results. We then exhibit two improvements to the power

law potential which include respectively an exponential

factor at large distances and a short range attractive re-

gion.

2 Power law potential: comparison with data

We follow [7] and consider a one-dimensional gas of N par-

ticles confined to a ring lattice of length L. Particles in-

teract through a repulsive two-body potential V (s) which

extends so that each particle can interact with its nearest

neighbours (on each side). The nearest neighbour spac-

ing distribution P (s), describing the probability of finding

a distance s between two neighbouring particles, is then

given by [5,7]

P (s) = Ae−cse−βV (s). (2)

We now choose V (s) = s−α and consider the fit of P (s)

against locally-averaged empirical spacing data as α is var-

ied.

The data we use is from the UK Highways Agency’s

MIDAS system on the M25 orbital motorway around Lon-

don. This system includes inductance loops embedded in

the road surface, which in standard operation collect one

minute averages of traffic flow statistics, such as flow, ve-

locity, occupancy etc. However, adjustments to the road-

side hardware allow the collection of a full (unaveraged)

individual vehicle data (IVD) set. Here we use data from

one inductance loop site, and after cleaning the data of

anomalous (unphysical) records, we estimate the spacing

of two consecutive vehicles by their time difference (i.e.,

their time headway) multiplied by the velocity of the fol-

lowing vehicle. In low density regimes, vehicle velocities

may be highly uncorrelated, in which case refinements of

this approach should be considered — a point which is

beyond the scope of this paper.

Since the parameter α is known to depend on the flow

regime (i.e., whether traffic is congested, or free flow etc.),

we take local mean spacings of 50 vehicles up- and down-

stream of each vehicle, from which we compute the local

density. The constants A and c are then fixed through

normalisation,

∫

∞

0

A exp
(

−
β

sα
− cs

)

ds = 1, (3)

and by rescaling the data via

∫

∞

0

As exp
(

−
β

sα
− cs

)

ds = 1, (4)

so that the mean spacing is one. For comparison with

data, the parameter β is chosen for best fit using the

least-squares method applied to the cumulative spacing

distribution, since this eliminates bin-size effects which

can occur with histogram data.

Following this procedure, Krbálek and Helbing [4] found

α = 4 to give the best agreement with data for free flow-

ing traffic (density ≤ 20 veh./km/lane), but found α = 1

to be best for high density traffic. However, Krbálek in a

later study [5] found α = 1 to give the best agreement

over all densities.

In contrast, we have found that no single value of α

gives significantly better agreement with the data than

others over a range of densities, but α = 1 is notably
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Fig. 2. Cumulative spacing distribution PC(s) for power law potential with α = 3 (- -). The parameter β has been fitted by

comparison with road traffic data (—). The two density regimes shown here are representative of fits over the full range, and

we can see broadly the change in the shape of the distribution with increased density. Because the empirical and theoretical

plots are so similar we shall henceforth just show difference plots, as in Figure 3.
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Fig. 3. Error plots for the cumulative spacing distribution for the power law potential with α = 3, showing the discrepancy

between the theoretical model and empirical data.
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Fig. 1. Deviation χ2 between spacing distributions from the

gas model with power law potential and empirical traffic data.

The α = 3 case (as plotted in Figure 2) is shown for comparison

with α = 1, 2.

worse than other values. In Figure 1 we see this demon-

strated by comparison of the χ2 deviation from the data

for α=1, 2 and 3. The best agreement appears to be for

α = 3, especially at densities around 40 veh./km/lane.

Comparisons of the cumulative spacing distributions with

data are shown for α = 3 in Figures 2 and 3.

In Figure 4 we show the fitted values of the inverse

temperature β plotted against density, for α = 3. We see

a broadly monotonic increase with density, which seems

intuitive but is in contrast with the result for α = 1

in [5], where β was seen to decrease between 35 and 50

veh./km/lane before increasing again. A possible reason

for our different findings is that [5] removes records corre-

sponding to trucks before analysis, whereas we include all

vehicles.
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Fig. 4. Values of β calculated to fit empirical data over a range

of density values for α = 3.

3 Refined power law potentials

To further examine the fit to data obtained from the power

law potential at different α values, we plot the spacing dis-

tributions on a logarithmic scale for two different traffic

densities in Figure 5. This enables us to see how well the

models capture the distribution in the tail. In accordance

with our findings from comparison of the χ2 deviations,

we see the worst fit for α = 1 (particularly for higher

density), and we find improvement for α = 2 and 3, with

little further improvement for α > 3. These results sug-

gest that α = 1 does not have a quick enough drop-off

in the potential — something that improves with higher

α. However, the improvement at large spacings for higher

α is weighed up against a poorer agreement with data at

low spacings, which is indicative of the high-α potentials

being too repulsive at short range. Also, since the fit to

the tail does not change significantly for α > 3, it seems

there is negligible interaction beyond a critical spacing —
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Fig. 5. Spacing distribution P (s) for the power law potential with different values of α. We show a logarithmic scale to examine

the fit to data (bars) in the tail of the distribution, and we see that the fit improves for larger α.

so perhaps a better solution would be a curtailed α = 1

potential.

3.1 Exponential cut-off

We can achieve a curtailed potential either by setting

a maximum range of interaction, or by multiplying the

power law potential by a rapidly falling function, such as

an exponential, giving V (s) = e−γss−α.

In Figure 6 we display the results for an exponentially

curtailed power law potential with α = 1, for which the

spacing distribution (2) is given by

P (s) = Ae−cseβ(s−1e−γs), (5)

which is now fitted to data by varying both β and γ. We

see smaller differences between the model and the data

than for the pure power law potential with α = 3. In

Figure 7 we show the fitted values of β and γ across the

full range of densities. The decay parameter γ remains
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Fig. 6. Error plots for the cumulative spacing distribution for power law potential with exponential curtailment, showing the

discrepancy between the theoretical model and empirical data.

above 3, even at high densities, giving a sharp drop-off

in the potential — at a third of the mean separation the

interaction potential has fallen by at least half.

3.2 Short range attraction

The exponential cut-off model assumes the low order (α =

1) power law potential to be a good model for closely-

spaced vehicles and seeks to correct the poor fit at larger

spacings. Another interpretation of the comparison be-

tween empirical data and power law potentials is that we

should consider α values which fit to the tail of the distri-

bution, and then modify the potential at short range.

We propose a form of the interaction potential which

has strong power law decay combined with a region of
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Fig. 7. Values of β (+) and γ (o) from fitting the potential

V (s) = e−γss−1 to empirical data. For very low density we see

large γ and small β, effectively switching off the interaction.

For higher densities (> 30 veh./km/lane) γ takes values in the

range 3 to 5.
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attraction at close range, namely

V (s) =
(1 − as)2

sb
. (6)

This form maintains ‘hardcore’ repulsion at very short

range (to avoid collisions), so that the attraction at longer

range tends to lead to regularly spaced platoons.

With choice (6) we have

P (s) = Ae−cseβ(1−as)2/sb

, (7)

where, as before, A and c are fixed by the normalisation

condition (3) and by setting the mean spacing to one (4).

This leaves the parameters β, a and b free for fitting. Fig-

ure 8 shows difference plots of the cumulative distribution

and empirical data at various densities, whereas Figure 9

shows the χ2 deviation between the model and data over a

range of densities and also shows comparison with the po-

tentials we considered earlier. In general, the short range

attraction model is best, especically in the density range

10 and 30 veh./km/lane. Of course, an extra free parame-

ter was varied here and so one should expect a better fit.

Thus further work should focus on whether the improve-

ment is statistically significant.

4 Conclusion

We have shown that the spacing statistics for the short-

range gas model with a simple power law interaction po-

tential are similar to those recorded in empirical road traf-

fic data, in agreement with previous work by Krbálek and

Helbing [4,5]. However, the form of the potential can be

modified to improve the fit with empirical data. We sug-
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Fig. 9. Comparison of χ2 deviations between traffic data and

the interaction potential given by the power law with α = 3

(×), with exponential curtailment (O), and with short range

attraction (2).

gest that a ‘traffic-like’ potential should drop off rapidly

with distance and include short range attraction.
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between the theoretical model and empirical data.


