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Abstract

We present a numerical investigation of a two-plane automatic ball balancer (ABB) for rotating
machinery. This device consists of a pair of circular races that are set perpendicular to the shaft in
two distinct planes. Within each race are a series of balancing balls which move to compensate any
mass imbalance arising from rotor eccentricity or misalignment. We build upon an earlier bifurcation
analysis of the steady state dynamics to consider device asymmetries such as non equal ball masses
and we also investigate the effect of the rotor run-up.

1 Introduction

An automatic ball balancer (ABB) is a device which reduces vibrations in rotating machinery by com-
pensating for the mass imbalance of the rotor. The ABB consists of a series of balls that are free to
travel around a race which is set at a fixed distance from the shaft. During balanced operation the balls
find such positions that the principal axis of inertia is repositioned onto the rotational axis. Because the
imbalance does not need to be determined beforehand ABB’s are ideally suited to applications where
the amount of imbalance varies with the operating conditions. For example, automatic balancers are
currently used in optical disk drives, machine tools and washing machines.
The first study of an ABB was carried out by Thearle in 1932 [1], and Lee and Van Moorhem demon-
strated the existence of a stable balanced steady state at rotation speeds above the first critical frequency
in a theoretical and experimental analysis [2]. However, in some cases the ABB may not balance the
system even when operating at supercritical rotation speeds [3]. In 1977, Hedaya and Sharp [4] extended
the autobalancing concept by proposing a two-plane device that can compensate for both shaft eccen-
tricity and shaft misalignment, see Fig 1. Misalignment induces tilting vibrations and so models based
on a 4DOF rotor which include gyroscopic effects must be considered [5, 6, 7]. In a previous study we
use Lagrange’s method and rotating coordinates to derive an autonomous set of governing equations [8].
A symmetric system is then considered and numerical continuation techniques are used to map out the
stability boundaries of the balanced state in various parameter planes. The setup on a real machine is,
however, usually asymmetric, for example the balls may have different masses or the balancing planes
may not be equally spaced. Here we shall extend our work by considering the effect of these asymmetries
and in addition we shall investigate the influence of the rotor run-up [9].
The rest of this paper is organised as follows. In section 2 we present and discuss the equations of
motion for the ABB. The steady states of the system are considered in section 3, and we focus on using
numerical bifurcation theory to investigate the effect that the physical parameters have on their stability.
The effects of the rotor run-up are then investigated in section 4 and finally we draw conclusions and
discuss possible directions for future work in section 5.

∗Corresponding author. E-mail: david.rodrigues@bristol.ac.uk
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2 Equations of motion

The setup of the ABB is illustrated in Fig. 1, and is based on a rigid rotor which has been fitted with
a two-plane automatic balancer. The rotor has mass M , moment of inertia tensor diag[Jt, Jt, Jp], and
is mounted on two compliant linear bearings which are located at S1 and S2. The automatic balancer
consists of a pair of races that are set normal to the shaft in two separate planes. Each race contains two
balancing balls of mass mi, which move through a viscous fluid and are free to travel, at a fixed distance
Ri from the shaft axis. The position of the ith ball is specified by the axial and angular displacements
zi and αi, which are written with respect to the Cξηz rotor axes.

l2

l1

z1,2

z3,4

α1

α2

α3

α4

R3,4
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C
ξ

η

z

S1
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Fig. 1: Schematic diagram of a two-plane automatic balancer.

The equations of motion have been derived in [7, 8] using Lagrange’s method and they can be written
in the inertial space frame as

Mq̈ + (C − iϕ̇0G) q̇ + Kq = (ϕ̇2
0 − iϕ̈0)fIe

iϕ0 +
4

∑

k=1

(ϕ̇2
k − iϕ̈k)fbk

eiϕk , (1)

J̃pϕ̈0 + crϕ̇0 +

4
∑

k=1

cb(ϕ̇0 − ϕ̇k) + ℑ((q̈ · fI)e
−iϕ0) = L(ϕ̇0), (2)

mkR2
kϕ̈k + cb(ϕ̇k − ϕ̇0) + ℑ

(

(q̈ · fbk
) e−iϕk

)

= 0, k = 1, . . . , 4. (3)

Here q = [X + iY, φY − iφX ]
T

is the (complex) vector of the vibrational degrees of freedom1, ϕ0 is the
rotor angle and ϕk = ϕ0 +αk is the angular displacement of the kth ball. The mass, gyroscopic, damping
and stiffness matrices are given respectively by

M =

[

M 0
0 Jt

]

+

4
∑

k=1

[

mk mkzk

mkzk mkz2
k

]

, G =

[

0 0
0 Jp

]

, C =

[

c11 c12

c12 c22

]

, K =

[

k11 k12

k12 k22

]

,

and the mass imbalance and ball vectors are given by

fI =

[

Mǫeiβ1

χ (Jt − Jp) eiβ2

]

and fbk
=

[

mkRk

mkRkzk

]

, k = 1, . . . 4.

Here ǫ and χ are the rotor eccentricity and misalignment respectively and β1,2 are the fixed phases of

these imbalances with respect to the rotor ξ axis. In addition, J̃p = Jp +Jtχ
2 +Mǫ2 is the modified polar

1As defined in [10]
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moment of inertia, L(ϕ̇0) is the driving torque generated by the motor and cr is the torque damping.
Finally cb is the viscous damping of the balls in the race as they move through the fluid. We note that
by taking mk = 0 in (1), we recover the equations of motion for a four degree of freedom rotor [10]. Also,
by setting the tilt angles φx = φy ≡ 0, the system reduces to the equations of motion for the planar
automatic balancer [11]. The form of the governing equations suggest that automatic balancing can be
viewed as a synchronization phenomena of coupled rotors [12]. For smooth operation we require that the
ball speeds ϕ̇k synchronize with the rotor speed ϕ̇0 and furthermore that the phases of the balls ϕk −ϕ0

are such that their forcing cancels out, or at least reduces, the forcing from the rotor imbalance.
It is usual to assume that the motor can provide enough torque to realise a given angular velocity profile
and so we shall impose the spin speed Ω(t) = ϕ̇0(t) instead of considering (2) with a given driving
torque. Also in order to aid the stability analysis we can use the transformation r = qe−iϕ0 to rewrite
the equations of motion in the rotating frame to give

Mr̈ + [C + iΩ(2M − G)] ṙ +
[

K − Ω2 (M − G) + i
(

Ω̇M + ΩC
)]

r

= (Ω2
− iΩ̇)fI +

4
∑

k=1

[

(Ω + α̇k)
2
− i

(

Ω̇ + α̈k

)

fIe
iαk

]

,

mkR2
k(Ω̇ + α̈k) + cbα̇k + ℑ

{[(

r̈ + 2iΩṙ −
(

Ω2
− iΩ̇

)

r
)

· fbk

]

e−iαk

}

= 0, k = 1, . . . , 4.

(4)

In the remainder of this paper we shall investigate the model given by equation (4), however we note
that many effects such as bearing anisotropy, geometric defects and dry friction between the race and
balls are not included. We refer the interested reader to [13, 14, 15].

3 Bifurcation analysis of the balanced steady state

Steady state solutions are obtained by setting all time derivatives in the equations of motion (4) to zero.
Moreover, if we also set the vibrational coordinates r = 0, we arrive at the following condition for a
balanced steady state

fI +

4
∑

k=1

fbk
eiαk = 0. (5)

Of course this equation simply states that the forces and moments acting on the rotor due to the imbalance
and balancing balls must be in equilibrium. The solution is physically unique and exists provided that
the balls have a mass large enough to cope with the imbalance. The ball positions α = α

∗ can be
determined in closed form but the equations are long and so are not presented here. Next we shall use
the continuation package AUTO [16] to compute bifurcation diagrams showing the regions of stability in
various parameter planes. The boundaries of stability are formed by Hopf bifurcations which mark the
onset of rotor vibrations.
Unless otherwise stated, for the rest of this study we shall consider an ABB model with the following
parameters

M = 1, Rk = R = 1, k11 = 1, l1 = l2 = 3, z1,2 = z3,4 = 2,

mk = m, K =

[

1 0
0 9

]

, c = 0.02 where C = cK and c̄b ≡
cb

m
= 0.01.

(6)

The first three constraints are simply rescalings which make the equations identical to the nondimension-
alised version. The stiffness and damping values are based on a rotor with two equal isotropic bearings
where the center of mass is located at the midspan and the shaft has a length of six times the race radius.
The approximate critical frequencies for the cylindrical and conical whirls occur respectively at

Ω1 =

√

k11

M
≡ 1, and Ω2 =

√

k22

Jt − Jp
. (7)
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Fig. 2: Bifurcation diagrams showing stable regions of the balanced state (shaded) in the case of a static
imbalance. The eccentricity ǫ is varied against Ω, whilst m is kept equal to ǫ so that α

∗ remains constant.
Panel (a) is a bifurcation diagram for a ‘disk’ type rotor Jp > Jt and panel (b) is for a ‘long’ type rotor
Jp < Jt. Similar diagrams for the ‘long’ type rotor are shown in (c) where one of the balls has a mass
20% greater than the others and in (d) where z1,2 = 1 and z3,4 = 3 so that the balancing planes are not
equidistant from the midspan.

Figure 2 shows stability diagrams for the static imbalance case (i.e. an imbalance with no misalignment
χ = 0). The eccentricity ǫ, is plotted against Ω, whilst we also vary the ball mass so that m = ǫ. Thus,
the mass of the balls scales with the imbalance and the balanced state α

∗ does not change value. A
logarithmic scale is used for the vertical axis so that a wide range of eccentricities can be considered. Panel
(a) shows the situation for a ‘disk’ type rotor where Jp > Jt, here there is no stable region of balanced
operation because the influence of the gyroscopic term is such that the eigenfrequency corresponding to
the conical whirl is always greater than the rotor speed Ω. This means that there is no conical critical
speed Ω2 and thus no associated self-aligning process2, hence the ABB is not stabilised with respect to
conical motions. The method of direct separation of motion has been used by Sperling et al. [12] to
derive this result and in addition they discuss how it relates to Blekhman’s generalised self-balancing
principle [17]. From a practical viewpoint however, the prognosis for the autobalancing of ‘disk’ type
rotors is not as bad as it may first seem. Because the conical mode has no associated critical speed,
‘disk’ rotors often need only to be balanced with respect to the static unbalance and a single plane ABB
can be used to provide a partial unbalance compensation [18].

2Self aligning is the phenomena whereby a rotor will tend to rotate about its principal axis of inertia at supercritical
rotation speeds.
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Next we illustrate in panel (b) the case for a ‘long’ rotor where Jp < Jt. We have taken Jt = 3.25 and
Jp = 0.5 which corresponds to a solid cylindrical rotor with a height of six times its radius. For these
values the critical speed corresponding to the conical whirl occurs at Ω2 ≃ 1.81. Here there are several
regions of balanced operation though for applications the main area of interest occurs where there is a
large connected stable region for small eccentricities and supercritical rotation speeds. The Hopf curve
which bounds this region asymptotes towards Ω = Ω2 as ǫ → 0, hence there is no stable region in the
subcritical regime. We note at this point that these results for the stability of the balanced state are
only valid locally and there most likely exists competing dynamics in much of the stable range. We shall
now investigate how asymmetries of the ABB device can effect its stability. Panel (c) shows the situation
where one of the balls has a mass 20% greater than the other balls. We see that the stable regions
remain largely unchanged, however extra Hopf instability curves are present. These arise because the
introduction of a different ball mass breaks the symmetry of the system. Another factor which must be
noted is that unequal balls cannot counterbalance each other by settling to opposite sides of the race.
Thus the overall capability of the ABB is reduced as unequal balls will inevitably add an imbalance
to a rotor that is already well balanced [19]. Next the diagram in panel (d) shows the case where the
balancing planes are not equally spaced from the midspan. We have taken z1,2 = 1 and z3,4 = 3, and
again the main point to note is the robustness of the stable region for low eccentricities and supercritical
rotation speeds. We shall now return to the symmetric ABB setup but consider a rotor that suffers from
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Fig. 3: Bifurcation diagrams in the case of a ‘long’ rotor with a dynamic imbalance. Panel (a) is for
a race damping value of cb = 0.01 and panel (b) is for a higher race damping value of cb = 0.1. The
limit cycle which emanates from the Hopf bifurcation marked by a × is continued in panel (c) and the
indicated one-parameter sweeps in Ω are illustrated in Figs. 4 and 5.
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a dynamic imbalance (i.e. an imbalance with both an eccentricity ǫ and a misalignment χ). Similar plots
to those of Fig. 2 are illustrated in Fig. 3 for the dynamic imbalance case with m = ǫ + χ, ǫ = χ and
a constant phase β1 = 1. In panel (a) the race damping parameter is cb = 0.01 whereas for panel (b)
the race damping value is increased to cb = 0.1. As a result much of the complicated structure in the
high eccentricity regime is smoothed out although the main influence of this parameter is manifest in
the transient dynamics and in the size of the basin of attraction of the balanced state. The limit cycle
which is born at the marked Hopf bifurcation for cb = 0.01 and m = 0.01 is continued in panel (c), here
Ā is the average rotor vibration at points one unit length from the midspan. The Hopf bifurcation is
supercritical and so there is a (small) region where the limit cycle is stable. In a controlled experiment
we would expect to see small oscillations of the balls about their balanced positions before the balls
would desynchronize with the rotor. For smaller values of the imbalance, say ǫ + χ = 1× 10−4, the Hopf
bifurcation is subcritical and the transition to the desynchronized state would be immediate. The ability
to follow the desynchronized limit cycles with continuation software is a work in progress.

4 The effect of the rotor run-up

In this section we consider the effect of the rotor run-up on the vibrations of the system. In Fig. 4 we
plot the absolute ball speeds ϕ̇k against the rotor speed Ω for the sweep shown in Fig. 3 (b) with the
race damping value of cb = 0.1. The mass of the balls is m = 1 × 10−4 and we slowly increase the rotor
speed over a time scale of t = 1× 104 corresponding to approximately 3 hours. Here we can see that the

0 1 2 3
0

1

2

3

Ω

conical

cylindrical

ϕ̇k

Fig. 4: Diagram showing the ball speeds ϕ̇k against rotor speed Ω for the dynamic imbalance case with
cb = 0.1 and m = 1 × 10−4.

ball speeds initially synchronize with the rotor, however as the rotor approaches and passes through its
critical speeds the balls tend to ‘stall’ and synchronize with the rotor eigenfrequencies. As the rotation
speed is increased still further the balls again resynchronize with the rotor. If the race damping value
is too low, say cb = 0.01, then the balls may never resynchronize with the rotor and they stay at the
eigenfrequency speed. This behaviour was first analysed in [20] and is similar to the Sommerfeld effect
in which a rotating machine with an insufficiently powerful motor has difficulty in passing through the
critical speeds.
The optimization of the velocity profile for a particular application lies outside the scope of this paper,
however we shall now consider a more realistic rotor run-up that we can model by the Hill function

Ω(t) = Ωmax
tn

tn
1/2

+ tn
. (8)

This function is plotted in Fig. 5 (a) for the parameter values (Ωmax, t1/2, n) = (3, 10, 3), note that
Ω ≈ 0.9Ωmax for t = 20. We use this rotor run-up to perform the indicated sweep through Fig. 3
(a) for the race damping value of cb = 0.01. The results are shown in Fig. 5 (b) and (c), initially the

6



0 400 800 1200 1600
−2.5

−2

−1.5

−1

−0.5

0

0.5

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

0 400 800 1200 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Ω (a)

(b) (c)Ā
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Fig. 5: Simulations which in include the effect of rotor run-up. Panel (a) shows the considered angular
velocity profile and panels (b) and (c) display respectively the amplitude of rotor vibrations Ā and the
relative ball speeds α̇k = ϕ̇k − ϕ̇0.

balls speeds lag behind behind the rotor but eventually the balls catch up synchronizing with the rotor,
furthermore they have phases which compensate for the rotor imbalance. It is interesting that there is
a period of increased vibrations as the balls approach the rotor speed ϕ̇0. This occurs because the balls
desynchronize with each other before resynchronizing with the rotor. However, the resulting vibrations
can be significantly reduced if the race damping parameter is increased to say cb = 0.1. Ideally a value
of cb should be chosen so that the balls are close to being critically damped [21], however realising this
aim in practice may prove difficult. If the balls undergo non-synchronous motions and complete many
circuits of the race then energy will be dissipated in the fluid causing it to heat up and its viscosity to
decrease.

5 Conclusion

We have used rotating complex coordinates to present a simple model for a rigid rotor with a two-plane
ABB. Stability charts obtained by numerical continuation of the Hopf bifurcation curves together with
simulations show that the considered device can effectively eliminate imbalances arising from both shaft
eccentricity and shaft misalignment. Furthermore, the introduction of ball mass asymmetry or balancing
planes that are not equally spaced has little effect on the stable region provided that the machine is
operating in the supercritical regime with typical values for the eccentricities3. Our investigations of
the rotor run-up highlights the phenomena of non-synchronous motions near critical speeds and also the
presence of increased vibrations as the balls desynchronize with each other in order to resynchronize
with the rotor speed. To eliminate the non-synchronous motions completely one could envisage using a
partitioned race [22] or a clamping mechanism where the balls would be fixed until supercritical rotation
speeds are reached [1].

3For machine tools and aircraft gas turbines ǫ ≃ 1 × 10−5
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We plan to continue the present work by investigating the symmetry properties of the bifurcations which
give rise to the balanced state. Normal form theory and the equivariant branching lemma can then be
used to give explicit conditions for the stability of the bifurcating solutions. The global stability properties
of the system will also be investigated through the use of Lyapunov functions and experimental work is
currently in progress in order that we may verify our findings and determine the influence of other effects
such as ball-race interactions and rotor flexibility.
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