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Abstract. We present a numerical method for finding and continuing
heteroclinic connections of vector fields that involve periodic orbits. Specifically,
we concentrate on the case of a codimension-d heteroclinic connection from a
saddle equilibrium to a saddle periodic orbit, denoted EtoP connection for short.
By employing a Lin’s method approach we construct a boundary value problem
that has as its solution two orbit segments, one from the equilibrium to a suitable
section Σ and the other from Σ to the periodic orbit. The difference between their
two end points in Σ can be chosen in a d-dimensional subspace, and this gives rise
to d well-defined test functions that are called the Lin gaps. A connecting orbit can
be found in a systematic way by closing the Lin gaps one-by-one in d consecutive
continuation runs. Indeed, any common zero of the Lin gaps corresponds to an
EtoP connection, which can then be continued in system parameters.

The performance of our method is demonstrated with a number of examples.
First, we continue codimension-one EtoP connections and the associated
heteroclinic EtoP cycles in the Lorenz system. We then consider a three-
dimensional model vector field for the dynamics near a saddle-node Hopf
bifurcation with global reinjection to show that our method allows us to complete
a complicated bifurcation diagram involving codimension-one EtoP connections.
With the example of a four-dimensional Duffing-type system we then demonstrate
how a codimension-two EtoP connection can be found by closing two Lin gaps in
succession. Finally, we show that our geometric approach can be used to find a
codimension-zero heteroclinic connection between two saddle periodic orbits in a
four-dimensional vector field.

AMS classification scheme numbers: 34C37, 37M20, 65L10, 34C60

1. Introduction

Vector fields arise as mathematical models of choice in numerous application areas;
see, for example, textbooks such as [19, 25, 37] as entry points to the extensive
literature. To determine the possible dynamics of a vector field under consideration
one needs to find the attracting, repelling and saddle-type compact invariant objects,
in particular, equilibria and periodic orbits, together with the stable and unstable
manifolds of the saddle-type objects. The global dynamics can then be determined
from the arrangement of stable and unstable manifolds and how it changes with
parameters. Important in this context are homoclinic and heteroclinic orbits, which



Continuing heteroclinic connections involving periodic orbits 2

arise as intersection curves between stable and unstable manifolds of the same or of
two different saddle objects. As such, they are also referred to as global or connecting
orbits. One associates a codimension with a connecting orbit by saying that it is of
codimension d if it generically exists at isolated points in d-dimensional parameter
space; here, a codimension-zero connecting orbit refers to a robust intersection of the
respective stable and unstable manifolds. It is now well established that connecting
orbits are closely related to significant changes of the global dynamics, including the
appearance of chaotic dynamics; see again [19, 25, 37]. Furthermore, heteroclinic
cycles of codimension d ≥ 1 may act as organizing centres for the dynamics, meaning
that their study allows conclusions on the qualitative dynamics nearby. Therefore, it
is crucial to find and follow them in system parameters. Due to the global nature of
connecting orbits, this task generally requires the use of advanced numerical methods.

The development of numerical methods for the continuation of homoclinic and
heteroclinic orbits has been an active field of research [3, 4, 5, 11, 12, 18, 23, 26]. Today,
homoclinic and heteroclinic orbits to equilibria can readily be continued, for example,
with the HomCont [5] part of the well-known continuation package Auto [15]. The
underlying idea is to represent the connecting orbit as the solution of a boundary
value problem over a finite time interval by imposing projection boundary conditions,
which ensure that the two endpoints lie in the stable and unstable eigenspaces of the
respective equilibria; see, for example, [4, 12]. This makes it possible to explore and
understand complicated bifurcation diagrams involving homoclinic and heteroclinic
orbits to equilibria; recent examples include the study of global bifurcations in a
semiconductor laser system [40] and in models of calcium dynamics in cells [6].

This paper is concerned with the next logical step: the continuation of connecting
orbits involving saddle periodic orbits. One distinguishes two types of such orbits:
connections from a saddle equilibrium to a saddle periodic orbit, which we refer to
as EtoP connections, and heteroclinic connections between the same or two different
periodic orbits, or PtoP connections for short. Codimension-one EtoP connections
are of particular relevance, because their existence can be inferred from the occurence
of certain codimension-two bifurcations of connections to equilibria. An example is
a Shilnikov-Hopf bifurcation where the saddle focus involved in a codimension-one
homoclinic orbit undergoes a Hopf bifurcation; see [6, 20, 40]. Another example is
the possibility that homoclinic bifurcations of a saddle equilibrium may accumulate
on a heteroclinic EtoP cycle of an equilibrium and a saddle periodic orbit. This
phenomenon was studied theoretically in [33] and then found near a saddle-node Hopf
bifurcation with a global reinjection mechanism [22].

We present here a Lin’s method approach to finding and continuing heteroclinic
connecting orbits involving periodic orbits. We concentrate on the case of codimension-
d EtoP connections, but our approach can also be applied to PtoP connections. Lin’s
method [28] is an analytical theory that can be used to analyze the recurrent dynamics
near, for example, homoclinic orbits or heteroclinic cycles; see also [21, 33, 34, 35, 41].
The main result in the present context is that for any value of the system parameter
there are two well-defined orbit segments from the equilibrium to a suitable section Σ
and from Σ to the periodic orbit, whose difference lies in a d-dimensional subspace;
see section 2 for details. This gives rise to d well-defined test function, which are
also called the Lin gaps. The sought-after codimension-d EtoP connection can then
be found by closing each of the Lin gaps one by one via suitable continuation runs.
The two orbit segments are represented as solutions of a boundary value problem
subject to projection boundary conditions. Near the equilibrium we use a well-
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established condition [4] as implemented in HomCont [5], while the projection
boundary condition near the periodic orbit is adapted from the method in [17].
All boundary value problems are solved with the continuation package Auto in the
flavours Auto2000 [15] and Auto07p [16]. Once a codimension-d EtoP connection
has been detected as a common zero of the d test functions, it can readily be continued
in additional system parameters. Furthermore, by considering the corresponding
EtoP heteroclinic cycle, other global orbits that bifurcate from it, for example, a
codimension-zero homoclinic orbit of the periodic orbit, can be found and continued
as well.

A number of other methods for the continuation of EtoP and PtoP connections
have been proposed recently [3, 9, 13, 32]. They have in common that the connecting
orbit is represented as a single orbit segment over a finite time interval by imposing
suitable boundary conditions at the periodic orbit. A common difficulty is that of
finding an initial approximate connecting orbit that satisfies the boundary value
problem. The seminal work by Beyn [3] introduces a general setup in terms of
suitable projection boundary conditions and establishes corresponding error bounds.
Pampel [32] further analyses and implements the EtoP connection scheme and uses it
to compute the codimension-one EtoP connection in the Lorenz system; here an initial
connecting orbit is obtained by continuation (in a system parameter) of intersection
curves of the stable and unstable unstable manifold in a suitably chosen plane. Dieci
and Rebaza [9, 10] follow the general approach of [3] and combine it with the method
of continuing invariant subspaces from [7] to formulate the boundary conditions at
the equilibrium and the periodic orbit. They compute and continue in parameters the
codimension-one EtoP connection in the Lorenz system and a codimension-zero PtoP
connection in a coupled oscillator system; in both cases, a simple shooting method
is used to find an initial connecting orbit. Finally, Doedel et al. [13] present an
implementation for EtoP connections, where the adjoint variational equation along
the periodic orbit is used to formulate projection boundary conditions. As examples
they continue codimension-one EtoP connections in the Lorenz system, in a three-
dimensional model of an electronic circuit, and in a three-dimensional food-chain
model. Doedel et al. use a homotopy-type method to find an initial connecting orbit.
They start by continuing an orbit from near the equilibrium in the unstable eigenspace
to find an intersection point with the stable eigenspace of the periodic orbit. The
distance of this intersection point to the periodic orbit is then reduced in additional
continuation steps. This homotopy approach works well when the (un)stable manifold
of the equilibrium is of dimension one and the dimension n of the phase space is not
too large. However, it requires that one starts quite close to the EtoP connection, and
it is less systematic when two-dimensional manifolds are involved.

The main property of our method is that it uses two separate orbits segments
up to a suitably chosen section as a means of setting up a systematic way of finding
codimension-d EtoP connections for any d ≥ 1 and for arbitrary dimensions of the
stable and unstable manifolds of the equilibrium and periodic orbit involved. Namely,
one chooses the section Σ to divide the phase space into two regions, one of which
contains the equilibrium and the other the periodic orbit (for parameters chosen from
a region of interest). Then any EtoP connection will intersect Σ and, generically, this
intersection is transverse. Therefore, the boundary value problem for the two orbit
segments that define the Lin gaps can has a unique solution in a (generally large)
region of parameter space, and not just at the EtoP connection itself. The Lin gaps
are well-defined test functions in this entire region, and any common zero corresponds
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to an EtoP connection. In particular, if no common zero can be found then the sought-
after EtoP connection does not exist in the considered parameter region. Conversely,
it is possible that several common zeros are found, which then correspond to different
EtoP connections. Note that our approach is similar in spirit to the implementation of
Lin’s method in [31], where regular test functions are set up that allow one to switch
branches from a known homoclinic orbit (to an equilibrium) to nearby n-homoclinic
orbits that pass close to the equilibrium (n− 1) times before returning back to it.

The performance of our method, and its use as a stepping stone for the study
of complicated bifurcation diagrams with EtoP connections, is discussed in detail
with three examples in section 4. In section 4.1 we find the codimension-one EtoP
heteroclinic cycle of the origin in the Lorenz system, which consists of a codimension-
one EtoP connection and a codimension-zero EtoP connection from the periodic
orbit back to the origin. The entire EtoP heteroclinic cycle is then continued in
two parameters. We also demonstrate how the continuation of a codimension-zero
homoclinic orbit to the periodic orbit can be started from the data for the EtoP cycle.
Section 4.2 is a thorough investigation of EtoP connections and associated global
bifurcations in the three-dimensional model vector field from [22] for the dynamics
near a saddle-node Hopf bifurcation with a global reinjection mechanism. This reveals
the bifurcation phenomena behind the accumulation of a curve of homoclinic orbits (to
an equilibrium) on a curve of codimension-one EtoP connections. Successive maxima
and minima of this accumulation process appear close to curves of tangencies that
bound a region where the codimension-zero connection of the overall EtoP cycle exists.
This completes the study in [22] in agreement with the theoretical results in [33].
What is more, we detect and continue a second EtoP connection, which reveals a new
accumulation phenomenon: the EtoP connection itself accumulates on a segment of
a curve of the first EtoP connection. In the process, a codimension-zero homoclinic
orbit to the periodic orbit ‘splits off’. Our results suggests that the accumulation
of a connecting orbit onto a curve segment is quite a general mechanism. Finally,
section 4.3 is an example that shows that our method also works for EtoP connections
of a higher codimension. Namely, we find and continue a codimension-two EtoP
connection in a four-dimensional Duffing-type system, which involves closing two Lin
gaps in succession.

This paper is organized as follows. Section 2 gives the analytical background
information of Lin’s method as needed for finding EtoP connections. The
implementation of our method, with the list of all relevant boundary conditions,
can be found in section 3. How it can be used in practise is illustrated at length
in section 4. Section 5 discusses how our geometric approach can be generalized to
PtoP connections and we show how a codimension-zero PtoP connection in a four-
dimensional system can be found. Finally, in section 6 we summarize and discuss
directions of future research.

2. Lin’s method for an EtoP connection

To fix notation, we consider a vector field

ẋ = f(x, λ), (1)

where

f : Rn × Rm → Rn (2)
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is sufficiently smooth; for simplicity we assume throughout that f is at least twice
differentiable. Here Rn is the phase space of (1) and λ ∈ Rm is a multi-dimensional
parameter. We denote the flow of (1) by φt. Note that all objects involved
(equilibrium, periodic orbit, their invariant manifolds, etc) dependend on λ, but we
generally do not indicate this explicitely in the notation.

Our main object of study is an EtoP connection, that is, a heteroclinic connecting
orbit Q of (1) between a hyperbolic equilibrium p and a hyperbolic periodic orbit Γ
at a some parameter value λ∗. For definiteness we assume in the formulation below
that the flow along the connection is from p to Γ. (This can always be achieved by
a reversal of time in (1) if the flow is in the opposite direction.) More precisely, we
assume that the following conditions are satisfied.

(C1) The equilibrium point p is hyperbolic in a neighborhood Λ of λ∗ and its unstable
manifold

Wu(p) := {x ∈ Rn | lim
t→−∞

φt(x) = p } (3)

is of dimension k ≥ 1.
(C2) The periodic orbit Γ is hyperbolic in a neighborhood Λ of λ∗ and its stable

manifold

W s(Γ) := {x ∈ Rn | lim
t→∞

dist(φt(x), Γ) = 0} (4)

is of dimension l ≥ 2.
(C3) The dimensions of Wu(p) and W s(Γ) add up to at most the phase space dimension

n.
(C4) At λ = λ∗ the manifolds Wu(p) and W s(Γ) intersect in the isolated orbit

Q ⊂ Wu(p) ∩W s(Γ) ⊂ Rn and satisfy the genericity condition

dim (TqW
u(p) ∩ TqW

s(Γ)) = 1 (5)

for any point q ∈ Q.
(C5) The dependence of Wu(p) and W s(Γ) on λ is generic, meaning that the λ-

dependent families of these manifolds intersect transversely in the product Rn+m

of phase space and parameter space.

Note that we do not consider other sources of codimension, such as non-hyperbolicity
of p or Γ, or non-transverse interactions of Wu(p) and W s(Γ). We only consider the
contribution of the dimension of the intersection of Wu(p) and W s(Γ) as submanifolds
of the phase space Rn to the codimension of Q. Therefore, the codimension of the
EtoP connection Q is d := n+1−k− l ≥ 1, meaning that it is generically encountered
if the parameter space is of dimension m ≥ d.

Our goal is to find the EtoP connection Q for λ∗ in a systematic way by starting
nearby, that is, in the neighbourhood Λ of λ∗. To formulate our method we now
introduce a cross section Σ that intersects Q transversely, which we write as

Σ = pΣ + Y, (6)

where pΣ ∈ Rn and Y is an (n − 1)-dimensional subspace that is most conveniently
defined by specifying a normal vector nΣ. Note that, even when Q is yet unknown,
transversality of its intersection with Σ can be achieved by making sure that the flow
φt is transverse to the relevant part of Σ throughout Λ. While the choice of section Σ
is effectively arbitrary, it is in the spirit of the method to choose Σ far from p and far
from Γ.
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Due to transversality of Q and Σ, for all λ ∈ Λ we can find (λ-dependent) orbit
segments

Q− = {q−(t) | t ≤ 0} ⊂ Wu(p) (7)

from p to Σ, and

Q+ = {q+(t) | t ≥ 0} ⊂ W s(Γ) (8)

from Σ to Γ. In other words, q−(·) and q+(·) satisfy (1) and the boundary conditions

lim
t→−∞

q−(t) = p, (9a)

q−(0) ∈ Σ, (9b)

and

lim
t→∞

dist(q+(t),Γ) = 0, (10a)

q+(0) ∈ Σ, (10b)

respectively.
By construction the EtoP connection Q for λ = λ∗ is given as Q = Q− ∪ Q+,

which means that Q is characterized by

q−(0) = q+(0). (11)

Since dim(Wu(p) ∩ Σ) = k − 1 and dim(W s(Γ) ∩ Σ) = l − 1, equation (11) consists
formally of n − (k − 1) − (l − 1) = d + 1 conditions. However, the existence of the
EtoP connection Q is only of codimension d, so the task is now to find d well-defined
test functions that are zero exactly when (11) is satisfied.

The key idea due to Lin is that the orbit segments Q− and Q+ can be chosen
in such a way that the difference of q−(0) and q+(0) lies in a d-dimensional linear
subspace Z ⊂ Y . To define this subspace Z, which is also referred to as the Lin space,
we first define the two subspaces

W− := TQ∩ΣWu(p) ∩ Y,

W+ := TQ∩ΣW s(Γ) ∩ Y.

Then Z is defined implicitely by the condition

dim
(
W+ ⊕W− ⊕ Z

)
= n− 1. (12)

Due to the genericity conditions (C3) and (C4) the subspace Z is of dimension d, and
we choose basis vectors z1, · · · , zd of Z. Note that there is still an element of choice for
Z, which corresponds to the choice of scalar product for which (12) is satisfied. One
well-known possibility is that Z is expressed as a linear combination of initial values
for bounded (on R) solutions of the adjoint variational equation along Q [35, 21, 31].
We now have all the ingredients to formulate the theorem that is the basis of our
method for finding codimension-d EtoP connections. In the literature this is often
refered to as the first step of Lin’s method; cf. [21].

Theorem 2.1 Suppose that system (1) has an EtoP connection Q satisfying
conditions(C1)–(C5) and let Z be a d-dimensional Lin space satisfying (12). Then
there is a neighbourhood Λ of λ∗ such that for any λ ∈ Λ there are unique solutions
Q− and Q+ as defined by (7) and (8) that satisfy

ξ(λ) := q+(0)− q−(0) ∈ Z.
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Figure 1. Sketch of the statement of theorem 2.1 in R3, showing the two-
dimensional section Σ and the one-dimensional Lin space Z together with the
orbit segments Q− ⊂ W u(p) and Q+ ⊂ W s(Γ) . Panel (a) shows the situation for
λ near λ∗, and panel (b) that for λ = λ∗ where the EtoP connection Q = Q−∪Q+

exists.

The proof of theorem 2.1 can be found in [34] for the case n = 3 when dim Z = 1.
Since the connecting orbit Q is assumed to be generic in the sense of condition (C4),
for any n the dimension of Z is d as defined in (C3), that is minimal. Therefore, the
proof in [34] generalizes directly to the case n ≥ 3 considered here. We remark that
it is possible to set up Lin’s method even if condition (C4) is not satisfied. However,
statement and proof for this general case are beyond the scope of this paper and will
be reported elsewhere.

As a result of theorem 2.1, for a choice of basis vectors z1, · · · , zd of the Lin space
Z there are smooth functions ηi : Rm → R, i = 1, . . . , d, such that

ξ(λ) =
d∑

i=1

ηi(λ)zi

on the neighbourhood Λ and

ηi(λ∗) = 0 for all i = 1, . . . , d.
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Due to condition (C5) the matrix Dξ is non-singular. This means that the d smooth
functions ηi(λ) are well-defined test-functions, which we refer to as the Lin gaps.

In light of theorem 2.1, a generic codimension-d EtoP connection Q can be found
as follows. After choosing a suitable d-dimensional Lin space Z we can find for a
fixed λ near λ∗ the unique orbit segments Q− ⊂ Wu(p) and Q+ ⊂ W s(Γ), such that
their difference ξ(λ) = q+(0) − q−(0) ∈ Y lies exclusively in the Lin space Z ⊂ Y ;
recall that Σ = pΣ + Y and see figure 1(a) for a sketch of this situation for n = 3.
The main idea is now to continue the λ-dependent orbit segments Q− and Q+ in a
suitable combination of system and internal parameters in such a way that the Lin
gaps ηi(λ) become zero one by one. When this has been achieved, we have λ = λ∗

and the EtoP connection Q has been found; see figure 1(b). How this general scheme
can be implemented in practice is discussed next.

3. Implementation of the method

For the implementation we formulate the orbit segments Q− and Q+ in the form
of well-posed boundary value problems, which are then continued with the software
package Auto [15, 16] in suitable parameters to close the Lin gaps. In particular, Q−

and Q+ need to be truncated to finite time intervals. This can be achieved by using
projection boundary conditions [3, 5], where the end points near the equilibrium p
and the periodic orbit Γ, respectively, are forced to lie in the local linear eigenspaces.
During the continuation both p and Γ need to be continued as discretized objects
together with their relevant linearizations. The orbit segments Q− and Q+ themselves
are represented within the collocation setup of Auto by Gauss-Legendre polynomials
on a variable mesh. As is common, we consider the vector field (1) in the time-rescaled
form

u̇ = T f(u, λ), (13)

where any orbit segment is parameterized over the unit interval [0, 1] and the associated
integration time T appears as a separate parameter [11]. In practice, all objects that
need to be continued are condensed into one large boundary value problem. We
proceed by defining this large system piece by piece. Note that all involved objects
depend on the family parameter λ, but for convenience we do not represent this
explicitly in the notation.

3.1. Equilibrium and periodic orbit

The equilibrium p simply satisfies the equation

f(p, λ) = 0 (14)

and can be continued in λ as such. We also need to continue the unstable linear
eigenspace Eu(p) (which is assumed to be of fixed dimension throughout Λ). In the
case that Eu(p) is the span of a single unstable eigenvector, it is often possible to find
an explicit formula for it as a function of λ. This has been used in the examples in
section 4. More generally, the linearization at p can be continued in λ by extending the
system with the eigenvalue problem of the Jacobian (together with a normalization
equation for the eigenvector). The eigenspace Eu(p) can then be found for each value
of λ. This approach is quite standard and implemented, for example, in the HomCont
part of Auto; see [5] for more details.
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The periodic solution Γ = {γ(t) | 0 ≤ t ≤ Tγ} is represented as an orbit segment
uγ that satisfies (13) for the (minimal) period T = Tγ of Γ, subject to the boundary
conditions

uγ(0) = uγ(1), (15a)
∫ 1

0

〈 ˙̃uγ(τ), uγ(τ)
〉
dτ = 0. (15b)

Here (15b) is a standard integral phase condition with respect to a reference solution
ũγ (usually that of the previous continuation step) to ensure that the solution
uγ(·) is isolated, so that the boundary value problem for uγ is well posed [11]. In
practice, the numerical representation uγ of the saddle periodic orbit Γ can be found
by continuation, for example, from a known stable periodic orbit or from a Hopf
bifurcation of an equilibrium.

Our method requires knowledge of the stable eigendirections of the monodromy
matrix of Γ that are associated with the (l−1) stable Floquet multipliers µ1, . . . , µl−1

of Γ. Each eigendirection corresponds to a solution vi 6≡ 0 of the variational equation
along Γ that satisfies vi(Tγ) = µivi(0). Note that the vectors vi(t) form a linear
bundle along Γ, which is also known as a Floquet bundle.

A numerical representation ui of the ith stable eigendirection vi can be obtained
as the solution of the boundary value problem

u̇i(t) = TγDuf(uγ(t), λ)ui(t), (16a)
ui(1) = µui(0), (16b)
〈ui(0), ui(0)〉 = h, (16c)

where uγ represents the periodic orbit Γ of period Tγ as above; see [17, 8]. The idea
is to start from the trivial solution ui ≡ 0 for µ = 0 and h = 0. Continuation in µ
results in a branch point at each Floquet multiplier µ = µi. Now one can switch the
branch by continuing in the internal parameter h while fixing µ = µi. Note that (16c)
is a normalization that uniquely determines ui, and we stop the continuation when
h = 1 is reached. Each stable eigendirection ui (i = 1, . . . , l−1) can now be continued
in the system parameter λ as a solution of (16a)–(16c) for fixed µ = µi and h = 1.
We remark that exactly the same procedure can also be applied to get a numerical
representation of the unstable eigenfunctions vl, . . . , vn−1 and the associated unstable
Floquet multipliers µl, . . . , µn−1.

We remark that it may be advantageous to improve the numerical stabilty of
the computation by continuing ui as the solution of the equivalent boundary value
problem

u̇i(t) = TγDuf(uγ(t), λ)ui(t) + ln |µi|ui(t), (17a)
ui(1) = sign(µi)ui(0), (17b)
〈ui(0), ui(0)〉 = 1; (17c)

see [13] for details. Equations (17a)–(17c) were in fact used for the computations in
section 4.3.

3.2. Step 1: Finding orbit segments up to Σ

As was mentioned before, the (n−1)-dimensional section Σ should be chosen such that
it intersects the sought-after EtoP connection Q transversely. This can be achieved
by choosing Σ such that the equilibrium p is on one side and the periodic orbit Γ on
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the other side of Σ for all λ ∈ Λ. What is more, then any connecting orbit from p
to Γ (that may exists for one or more λ ∈ Λ) intersects Σ, and the intersection is
generically transverse. Indeed, the exact choice of Σ depends on the system under
consideration; see the examples in section 4.

The first step of the method is now to find discretizations u− and u+ of the
orbit segments Q− and Q+ from p to Σ and Γ to Σ, respectively. To this end, we
fix the parameter λ at some value near λ∗. From section 3.1 we know (numerical
representations of) the equilibrium p with its unstable eigendirections eu

i , i = 1, . . . , k,
as well as the periodic orbit uγ with the stable eigenfunctions ui, i = 1, . . . , l − 1.

For u− we consider the boundary value problem

u̇−(t) = T−f(u−(t), λ), (18a)〈
u−(1)− pΣ, nΣ

〉
= σ−, (18b)

u−(0) = p +
k∑

i=1

εie
u
i . (18c)

Here (18c) imposes a projection boundary condition on u(0) at the equilibrium p.
Namely, the parameters εi are the distances of u−(0) from p along the unstable
eigendirections. Furthermore, the parameter σ− measures the distance of the other
endpoint u−(1) from Σ. For a fixed choice of small εi and starting from the
trivial solution u− ≡ p +

∑k
i=1 εie

u
i we continue (18a)–(18c) in the integration time

T− > 0 and in σ−. The continuation is stopped when a zero of σ− is detected,
which means that we have found an initial orbit segment u− starting near p in the
unstable eigenspace and ending in Σ. We remark that it is convenient after the initial
continuation up to Σ to implement the projection boundary condition in the form of
a projection operation Lu(p, λ) (represented by an (n−k)×n matrix) in combination
with a phase condition; compare with [5, 11]. This means that we replace (18c) with

Lu(p, λ)u−(0) = 0, (19a)
∫ 1

0

〈 ˙̃u−(τ), u−(τ)− ũ−(τ)〉dτ = 0. (19b)

The orbit segment u+ is found similarly by considering the boundary value
problem

u̇+(t) = T+f(u+(t), λ), (20a)〈
u+(0)− pΣ, nΣ

〉
= σ+, (20b)

u+(1) = uγ(0) +
l−1∑

i=1

δiui(0). (20c)

Here (20c) imposes a projection boundary condition on u+(1) at the point uγ(0) on
the periodic orbit Γ. Namely, the parameters δi are the distances of u+(1) from uγ(0)
along the stable Floquet directions ui(0), while σ+ measures the distance of the other
endpoint u+(0) from Σ. We again start with a fixed choice of small δi and the trivial
solution u+ ≡ uγ(0) +

∑l−1
i=1 δiui(0) and continue (20a)–(20c) in the integration time

T+ > 0 and in σ+. When σ+ = 0 is detected we will have found an initial orbit
segment u− that starts in Σ and ends near Γ in the stable eigenspace. We remark
that after the initial continuation in T it would be possible also to replace (20c) by a
projection operator and an additional phase condition [3]. However, we find it more
convenient to stick with the formulation (20c) in terms of the internal parameters δi,
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which indeed implements a projection boundary condition at Γ since the δi are free
to vary during the continuation.

3.3. Step 2: Setting up the Lin space

The Lin space Z is a d-dimensional subspace of the space Y (from the definition
(6) of Σ) that satisfies (12). Once Z has been chosen we need to ensure that
u+(0) − u−(1) ∈ Z. Indeed there are many possibilities for choosing Z, and we
discuss here a few convenient choices as used in section 4.

We first consider the case that dim Z = 1 when we also talk of Z as the Lin
direction. Then a straightforward option is to define Z = span{u+(0)−u−(1)}, which
generically satisfies (12). (Note that here λ 6= λ∗.) Another option is to consider the
curves that are traced out by u−(1) and u+(0) (still for fixed λ) when one continues
the orbit segments u− and u+ in (a suitable combination of) (εi, T

−) and (δi, T
+),

respectively. The Lin direction Z can then be chosen as that through the two points
of these families that are closest to each other. In this way, the initial Lin gap along
Z is as small as possible; see section 4.1 and section 4.2.

More generally, one can choose Z as any d-dimensional subspace. A convenient
choice used in section 4.3 is that of a d-dimensional hyperplane parallel to some of the
coordinate axes. A continuation of (20a)–(20c) for fixed σ+ = 0 in T+ and (a suitable
combination of) δi can then be used to ensure that u+(0)− u−(1) ∈ Z.

Finally, we select an orthonormal basis zi, i = 1, . . . , d of Z. This allows us to
initialize the (signed) Lin gaps ηi, i = 1, . . . , d, such that

u+(0)− u−(1) =
d∑

i=1

ηizi , (21)

in accordance with theorem 2.1.

3.4. Step 3: Closing the Lin gaps

The orbit segments u− and u+ that we have obtained after steps 1 and 2 above, are
the discretizations of the unique orbit segments Q− and Q+ of theorem 2.1. Namely,
u− and u+ are isolated orbit segments that satisfy projection boundary conditions
near p and Γ and whose difference in Σ lies in the Lin space Z. They represent a
solution of a large λ-dependent boundary value problem, as formulated step-by-step
in the above sections, that also involves the equilibrium, the periodic orbit and their
linear eigendirections. It can be formulated as

f(p, λ) = 0, (22a)

u̇γ(t) = Tγf(uγ(t), λ), (22b)
uγ(0) = uγ(1), (22c)
∫ 1

0

〈 ˙̃uγ(τ), uγ(τ)
〉
dτ = 0, (22d)

u̇i(t) = TγDuf(uγ(t), λ)ui(t), (22e)
ui(1) = µiui(0), (22f)
〈ui(0), ui(0)〉 = 1, (i = 1, . . . , l − 1) (22g)

u̇−(t) = T−f(u−(t), λ), (22h)
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〈
u−(1)− pΣ, nΣ

〉
= 0, (22i)

Lu(p, λ)u−(0) = 0, (22j)
∫ 1

0

〈 ˙̃u−(τ), u−(τ)− ũ−(τ)〉dτ = 0, (22k)

u̇+(t) = T+f(u+(t), λ), (22l)

u+(1) = uγ(0) +
l−1∑

i=1

δiui(0), (22m)

(u+(0)− u−(1)) =
d∑

i=1

ηizi. (22n)

Equations (22b), (22e), (22h) and (22l) form a system of N = (3n+(l−1)n) equation.
(Note that equation (22a) for the equilibrium is well-posed in itself and, hence, is
not included in this count.) Similarly, we can combine the boundary conditions and
integral constraints (22c), (22d), (22f), (22g), (22i), (22j), (22k), (22m) and (22n) into
a system of B = (4n + (l − 1)n + l − k + 2) constraints. Thus for every value of
the system parameter λ ∈ Λ the B − N = n + l − k + 2 internal parameters Tγ ,
T+, T−, δ1, . . . , δl−1, µ1, . . . , µl−1, η1, . . . , ηd are uniquely determined, meaning that
system (22a)–(22n) is well posed [11].

The strategy is now to free the system parameter λ = (λ1, . . . , λm) in a systematic
way to close the Lin gaps η1, . . . , ηd one by one by performing well-defined continuation
runs; compare with [31]. Assuming that at the start ηi 6= 0 for all i = 1, . . . , d to
begin with, we continue (22a)–(22n) in the first run in λ1, Tγ , T+, T−, δ1, . . . , δl−1,
µ1, . . . , µl−1, η1, . . . , ηd until η1 is zero. We then fix η1 = 0 and replace the parameter
η1 by a second family parameter λ2. That is, in the second run we continue (22a)–
(22n) in λ1, λ2, Tγ , T+, T−, δ1, . . . , δl−1, µ1, . . . , µl−1, η2, . . . , ηd until, without loss
of generality, η2 = 0. Proceeding in this manner, in the j-th run the continuation
parameters are λ1, . . . , λj , Tγ , T+, T−, δ1, . . . , δl−1, µ1, . . . , µl−1, ηj , . . . , ηd, while
η1 = . . . = ηj−1 = 0.

After d consecutive continuation runs all Lin gaps ηi are zero and we have λ = λ∗.
The concatenation of the orbit segments u− and u+, which satisfy u−(1) = u+(0),
is the sought discretization of the connecting orbit Q of (1). It can be continued in
further system parameters λi for i > d while keeping η1 = . . . = ηd = 0.

We remark that it is possible that there exist several solutions where all Lin
gaps are closed. Each such solution corresponds to a different EtoP connection at an
isolated point in (λ1, . . . , λd)-space. On the other hand, if it is not possible to find a
solution where all Lin gaps are closed then the sought-after EtoP connection Q does
not exist in the parameter region Λ.

3.5. Computation of related objects

A codimension-d EtoP connection Q typically implies the existence of other orbits
involved in the bifurcation diagram that are related to Q. Therefore, the continuation
of Q provides a starting point for unravelling a bifurcation diagram. We now discuss
some related objects and how they can be found and continued.

First of all, with the codimension-d EtoP connection Q one often finds a second
connection R from Γ back to p. This second EtoP connection is generically of
codimension zero. It can be found by performing steps 1 and 2 above to find a
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(generic) intersection point of Wu(Γ) ∩ Σ and W s(p) ∩ Σ for some initial λ; in this
continuation dim Z = 0, so that restricting the difference of u−(1) and u+(0) to Z
means achieving u−(1)−u+(0) = 0 Note that in the setup in section 3.2 and section 3.3
time T is reversed in (13). The resulting connecting orbit can then be continued in λ.
However, in low-dimensional examples it is generally easier to obtain a codimension-
zero EtoP connection R by a so-called homotopy method; see [13, 17]. Namely one
starts in the linear unstable eigenspace near the periodic orbit Γ and continues in the
integration time T (effectively performing shooting) until the linear stable eigenspace
of p is reached. The distance to the equilibrium p can then be reduced in a further
continuation. The codimension-zero EtoP connection in sections 4.1 and 4.2 were
found in this way. Specifically, the connecting orbit R is represented by an orbit
segment ur and can then be continued, together with p, Γ and their linear eigenspaces,
as the solution of the boundary value problem

u̇r(t) = Tf(ur(t), λ), (23a)

ur(0) = uγ(0) +
n−1∑

i=l

δiui(0), (23b)

Ls(p, λ)ur(1) = 0, (23c)
∫ T

0

〈 ˙̃ur(τ), ur(τ)− ũr(τ)
〉
dτ = 0. (23d)

Here we use the unstable Floquet directions ui, i = l, . . . , n− 1 for the approximation
of Wu(Γ), while the projection boundary condition near p is given by the projection
Ls(p, λ) onto the linear stable eigenspace of p. The boundary value problem (23a)–
(23d) is well posed if Wu(Γ) and W s(p) intersect transversely along an isolated orbit,
which is R. Note that generically this is always the case when the original EtoP
connection Q is of codimension one. In this situation ur can be continued in the
parameter λ as a solution of (23a)–(23d). We only remark that if Wu(Γ) and W s(p)
intersect along a manifold of dimension larger than one, additional conditions are
needed to select a single connecting orbit R within the intersection.

Together the codimension-d EtoP connection Q and the codimension-zero EtoP
connection R form an EtoP heteroclinic cycle between p and Γ, which can be continued
in parameters. Theory predicts that other types of global orbits exists near such an
EtoP heteroclinic cycle; see [6, 22, 33]. Start data for these expected global objects can
be obtained by concatenating the orbit segments representing Q and R in appropriate
ways. For example, a codimension-d homoclinic orbit connecting p back to itself can be
constructed in good approximation as the concatenation of u−, u+ and ur, provided
ur(0) and u+(1) are sufficiently close together. After an initial Newton step, the
homoclinic orbit can readily be continued with the HomCont extension of Auto; see
section 4.2 where we investigate the interaction of this kind of homoclinic orbit with
the EtoP heteroclinic cycle. Another type of orbit that must be expected near the
EtoP heteroclinic cycle is a homoclinic orbit to Γ, which is generically of codimension
zero. Again, we can concatenate orbit segments as start data for the discretized
homoclinic orbit uh, which (for each λ) satisfies the boundary value problem

u̇h(t) = Thf(uh(t), λ), (24a)

uh(0) = uγ(0) +
n−1∑

i=l

δiui(0), (24b)
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uh(1) = uγ(0) +
l−1∑

i=1

δiui(0). (24c)

Note that (24a)–(24a) is well posed, as it consist of 2n boundary conditions that
determine uh and the n additional parameters Th, δ1, . . . , δn−1.

More generally, the boundary value problems in section 3 provide a ‘toolkit’ for
the continuation of connecting orbits that we are interested in. As is demonstrated
in the next section, the construction of the initial codimension-d EtoP connection
with Lin’s method serves as a stepping stone for the continuation of many associated
connecting orbits.

4. Demonstration of the method

We now demonstrate our method for finding and continuing EtoP connections and
related EtoP heteroclinic cycles with three examples. Namely, we consider the
well-known Lorenz system [29], a three-dimensional vector-field model of a saddle-
node Hopf bifurcation with global reinjection [22], and a four-dimensional coupled
Duffing system [27]. All computations are performed with the numerical continuation
package Auto2000/Auto07p [15, 16], which uses pseudo-arclength continuation and
orthogonal collocation to solve the boundary value problems that arise; see [11] for
more details. The size of the overall boundary value problems is given by the number
of objects that are continued simultaneously, which typically include the equilibrium
p, the periodic orbit Γ together with its stable and its unstable eigenfunctions, and
the two orbit segments Q− and Q+ up to the specified section Σ. Throughout we use
polynomials of degree NCOL = 4 in each collocation interval and, depending on the
complexity of the orbit, between NTST = 200 and NTST = 1000 collocation intervals.
(Note that this means that Γ, Q− and Q+ are all represented over the same mesh as
given by NCOL and NTST).

4.1. Codimension-one EtoP heteroclinic cycle in the Lorenz system

In the 1960’s Lorenz derived the much simplified model of atmospheric convection [29]
given by the three-dimensional vector field




ẋ = σ(y − x),
ẏ = %x− y − xz,
ż = xy − βz.

(25)

For the classical choice of parameters given by β = 8
3 , σ = 10.0 and % = 28 found

the now well-known butterfly or Lorenz attractor, which is one of the best known
examples of chaotic dynamics (i.e. sensitive dependence on the initial condition).

When the parameter % is allowed to vary, there is a transition from simple to
chaotic dynamics. It involves a homoclinic bifurcation at %hom ≈ 13.9265 where there
is a pair of homoclinic orbits to the origin 0 that are each other’s images under the
symmetry transformation

(x, y, z) 7→ (−x,−y, z)

of (25). For %het ≈ 24.0579 there exists a symmetric pair of EtoP connections between
0 and periodic orbits Γ+ and Γ−; see [14, 36] for more details. Here we find and follow
in parameters (one of) these EtoP connections and the associated EtoP heteroclinic
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Figure 2. Orbit segments during the computation of W s(Γ) up to the section Σ
in the Lorenz system (25) for σ = 10.0, % = 28.0, and % = 24.5. Panel (a) shows
the end points of different orbit segments along the stable Floquet direction v; the
orbit A bounds a fundamental domain. The length of the fundamental domain is
1.55752× 10−5. Panel (b) shows how the other end points trace out W s(Γ) ∩Σ.

cycle. The origin 0 is a saddle-point for % > 1 with a one-dimensional unstable
manifold and a two-dimensional stable manifold, as determined by the eigenvalues

−β and − 1
2
(σ + 1)± 1

2

√
(σ + 1)2 + 4σ(%− 1).

The periodic orbit Γ can been found by continuation from a Hopf bifurcation at
%H ≈ 24.7368 of the non-zero equilibria secondary equilibria

p± = (±
√

β(%− 1),±
√

β(%− 1), %− 1).

Indeed Γ is of saddle type and its stable eigenspace can be computed as described
in section 3. Due to the symmetry it is sufficient to consider only the connection
from 0 to Γ = Γ− which lies in the one-dimensional unstable manifold of 0 and the
two-dimensional stable manifold of Γ.

4.1.1. Finding the codimension-one EtoP connection We define the section Σ by
specifying the point pΣ ∈ Wu(0) (for % = 24.0579 ≈ %het and β, σ at their classical
values) that satisfies

dist(pΣ,0) ≈ dist(pΣ, Γ).

which gives

pΣ =




17.2877
21.4376
31.7958


 .

Further, the normal vector nΣ of Σ is defined as the direction of the flow at pΣ.
To start, we choose % = 24.5 as an initial parameter value reasonably close to

%het. The first step (cf. section 3.2) consists of a computation of the one-dimensional
manifold Wu(0) by continuation in the direction of positive time T− from 0, subject
to boundary condition (18c), until the section Σ is reached. Similarly, we choose a
point g ∈ Γ, g = (−10.0437,−9.95751, 25.7945), and consider the corresponding fixed
stable Floquet vector v for the formulation of boundary condition (20c). We then
continue in the direction of time T+ until Σ is reached. A further continuation in the
distance δ along v yields the one-dimensional intersection curve W s(Γ) ∩ Σ.
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Figure 3. The manifolds W u(0) and W s(Γ) of (25) computed up to the section
Σ for % = 24.5 with a Lin gap along Z of η = 1.39437 (a); panel (b) only shows
the two orbit segments up to Z. For % = 24.0579 where η = 0 was detected the
two orbit segments connect in Σ (c). Throughout, β = 8/3 and σ = 10.0.

Figure 2 (a) shows the end points u+(1) of orbit segments on v near the chosen
fixed base point g ∈ Γ. The orbit denoted by A intersects the Floquet vector v twice
and thus bounds a fundamental domain. While u+(1) on v cover the fundamental
domain on v, the other end point u+(0) traces out the intersection curve W s(Γ) ∩ Σ.
As figure 2(b) shows, this curve is a smooth closed curve in Σ. Figure 3(a) shows
the computed parts of Wu(0) and W s(Γ) in (x, y, z)-space, where the section Σ is the
gray plane. Notice that W s(Γ) is a topological cylinder that is represented well by
the family of orbit segments parametrized by δ.

Next we need to make a suitable choice for the one-dimensional Lin direction Z;
cf. section 3.3. As was mentioned before, a good choice is to define Z as the derection
given by Wu(0)∩Σ and the point on W s(Γ)∩Σ that lies closest to it. Then the initial
Lin gap along Z is as small as possible. The respective orbit segments of Wu(0) and
W s(Γ) are shown in figure 3(b); the initial gap size is η = 1.39437.

To close the Lin gap η and find the codimension-one EtoP connection we continue
in the parameters T−, T+, η and %; cf. section 3.4 and (22a)–(22n). For % = 24.0579
a zero of η is detected; figure 3(c) depicts the EtoP connection from 0 to Γ. Note that
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Figure 4. Panel (a) shows the curve het of EtoP connections from 0 to Γ,
the curve hom of the homoclinic connection to 0 and the curve H of Hopf
bifurcation in the (%, β)-plane of (25). Panels (b) and (c) show the computed EtoP
heteroclinic cycle for the two selected parameter values (%, β) = (24.0579, 2.66667)
and (%, β) = (68.6494, 6.97370), respectively. Specifically, panels (b1) and (c1)
show the projection onto the (x, z)-plane; panels (b2) and (c2) show the norm of
the codimension-one connection from 0 to Γ; and panels (b3) and (c3) show the
norm of the codimension-zero connection from Γ back to 0.

this value agrees within the computational accuracy of %het found in [14].
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Figure 5. The codimension-zero homoclinic orbit to Γ of (25) for β = 8/3 and
σ = 10.0 in dependence on %. Shown are the projection onto the (x, z)-plane
(left column) and the norm of the approximating orbit segment (right column)
for % = 23.9666 (a), % = 23.5575 (b), % = 18.6310 (c), and % = 13.9828 (d).

These computations show that our method is indeed able to find a first solution
for the continuation of the codimension-one EtoP connection. Namely, the two orbit
segments can now be continued in system parameters while keeping η = 0 fixed. As
was explained in section 3.5, we find the codimension-zero connection from Γ back to
p as the solution of the boundary value problem defined by (23a)–(23d) by starting
from a suitable initial orbit segment.
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4.1.2. Continuation of the EtoP cycle The entire codimension-one EtoP heteroclinc
cycle can be continued in two system parameters. Figure 4(a) shows the resulting
codimension-one bifuraction curve het and the bifurcation curve hom of the homoclinic
explosion in the (%, β)-plane; also shown is the Hopf bifurcation curve H. Panels (b1)
and (c1) show two examples of the corresponding EtoP heteroclinic cycle in projection
onto the (x, z)-plane, which consists of the codimension-one connection from 0 to Γ
(black curve) and the codimension-zero connection from Γ back to 0 (gray curve). The
two respective time traces of the norm ‖·‖ of the approximating orbit segments (subject
to projection boundary conditions) are shown in figure 4 (b2)/(c2) and (b3)/(c3),
respectively.

When computing the codimension-one connection for decreasing % towards the
homoclinic bifurcation hom we encountered some difficulties with the calculation of the
two Floquet multipliers of Γ, which could only be determined reliably for % > 13.1703.
This problem might be solved by employing a more accurate method for determining
Floquet multipliers, such as that in [30], but this is beyond the scope of this paper. The
codimension-zero connection from Γ back to 0, on the other hand, could be computed
throughout, that is, the intersection of Wu(Γ) and W s(0) remains transverse; an
example where this intersection becomes tangential is presented in section 4.2.

To demonstrate that the EtoP heteroclinic cycle can be used as a starting solution
for the numerical continuation of other types of orbits, we compute the codimension-
zero homoclinic orbit to Γ; for β = 8/3 and σ = 10.0 it exists for % ∈ (%hom, %het) ≈
(13.9265, 24.0579). To obtain a first homoclinic orbit we concatenate the two separate
heteroclinic conncetions near the fixed point p as a seed for a Newton solve of the
boundary value problem defined by (24a)–(24c). The resulting approximation (subject
to projection boundary conditions (24b),(24c) at both ends) of the homoclinic orbit
to Γ can then be continued (together with Γ and its Floquet bundles) in a system
parameter. Figure 5 shows the homoclinic orbits to Γ for different values of %. Panel
(a) is for % close to %het and the homoclinic orbit passes very close to the origin 0 after
a single excursion to the right, that is, into the region of positive x. As % is decreased,
the orbit deforms but maintains its overall structure with a single excursion to the
right; see figure 5(b) and (c). At the same time the periodic orbit Γ = Γ− (and its
counterpart Γ+) move toward 0 and the homoclinic orbit to Γ approaches the union of
the two symmetrically related homoclinic orbits to 0 as the homoclinic explosion point
at %hom ≈ 13.9265 is approached; see figure 5(d). This shows that the homoclinic orbit
to Γ considered here is one of the infinitely many connecting orbits that are born in
the homoclinic explosion; see also [14].

4.2. Global reinjection orbits near a saddle-node Hopf bifurcation

In this section we compute connecting orbits in a three-dimensional model vector
field that was introduced in [22] to describe the dynamics near a saddle-node Hopf
bifurcation in the presence of a global reinjection mechanism. This type of dynamics
with reinjection can be found, for example, in laser systems [24, 39, 42], in dynamo
theory [2] and, more generally, near weak resonances [38, chapter 4.3.2]. The vector-
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field model can be written in the form



ẋ = ν1x− ωy − (αx− βy) sin ϕ− (x2 + y2)x
+d(2 cos ϕ + ν2)2,

ẏ = ν1y + ωx− (αy + βx) sin ϕ− (x2 + y2)y
+f(2 cos ϕ + ν2)2,

ϕ̇ = ν2 + s(x2 + y2) + 2 cos ϕ + c(x2 + y2)2,

(26)

where ν1 and ν2 are the unfolding parameters of the saddle-node Hopf bifurcation.
The parameters ω, α, β, s, c, d and f determine the type of unfolding and we keep
them fixed throughout at

ω = 1.0, α = −1.0, β = 0, s = −1.0, c = 0, d = 0.01, f = πd.

This choice corresponds to the unfolding of type A that was studied in [22], where
more details can be found. The variable ϕ is 2π-periodic and global reinjection is
realized by trajectories that connect a neighbourhood of a saddle-node Hopf point
with one of its symmetric copies. When representing trajectories it is convenient to
show them in (u, v, w)-space as given by the transformation




u = (R + x) cos ϕ,
v = (R + x) sin ϕ,
w = y,

(27)

where a global reinjection corresponds to a large excursion near the circle S1 = {x =
y = 0}. Note that this circle is not invariant because d 6= 0 and f 6= 0 (where rational
ratios are avoided). We fix the radius R = 2, which is large enough in light of the
x-amplitudes of observed solutions.

As was shown in [22], system (26) features a complicated structure of homoclinic
orbits of equilibria that involve one or more global reinjections. Furthermore, some of
the corresponding homoclinic bifurcation curves accumulate on curve segments, while
the homoclinic orbit itself accumulates on a periodic orbit of saddle type. This global
bifurcation phenomenon was studied theoretically in [33] and (26) provides the first
concrete example. Here we demonstrate how the bifurcation diagrams from [22] can
be completed with our method.

4.2.1. Codimension-one EtoP heteroclinic cycle Our starting point is the two-
parameter bifurcation diagram of system (26) given in figure 6, which only shows the
bifurcation curves that were presented in [22]. Two saddle-node Hopf points SNH± on
two lines S0 of saddle-node bifurcations are connected by a Hopf bifurcation curve H.
the curve Sl of saddle-node bifurcations of periodic orbits emerges from a degenerate
Hopf point DH . The most interesting object is the curve h1

b of homoclinic orbits that
connect the saddle-focus b = (0, 0, arccos(ν2/2)) back to itself after a single global
reinjection. As can be seen in the enlargement panels (b) and (c), h1

b emerges from
a non-central saddle-node homoclinic point NS , crosses Sl and then accumulates on
a curve segment in the (ν1, ν2)-plane. As was mentioned, this accumulation process
implies the existence of a EtoP heteroclinic cycle connecting the saddle point b with a
periodic orbit Γ of saddle type. Note that we have dimWu(Γ) = 2 and dim W s(b) = 1,
thus we reverse time in the formulation of the boundary value problems in section 3.

To find the EtoP heteroclinic connection between the equilibrium b and the
periodic orbit Γ, we choose the section Σ = {v = 0} and start from a point in
parameter space close to the segment of accumulation of hb

1; compare with figure 6(c).
Specifically, we fix ν2 = −1.46 and start the computation from ν1 = 0.706987. First
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Figure 6. Bifurcation diagram in the (ν1, ν2)-plane of (26) consisting of two
saddle-node bifurcation curves S0 and a Hopf bifurcation curve H that meet
at two saddle-node Hopf points SNH±, a curve Sl of saddle-node bifurcations
of periodic orbits, and a homoclinic bifurcation curve h1

b . Panel (a) shows an
overview, and panels (b) and (c) are successive enlargements of the curve h1

b .

we compute W s(b) by continuation in T+ until the section Σ is reached; cf. section 3.2
and (18a)–(18c). We then fix a vector v(g) of the unstable bundle of Γ at a chosen
point g = (0.226499,−0.226726, 5.69218), to specify the boundary condition (20c) and
continue in the direction of time T− until Σ is reached. Continuation in the distance
δ along v over a fundamental domain is then used to compute the curve Wu(Γ) ∩ Σ;
figure 7 shows that it is again a smooth closed curve in Σ. Figure 8(a) shows W s(b)
and Wu(Γ) in (u, v, w)-space as computed up to the section Σ (gray plane). Wu(Γ)
is a topological cylinder and well represented by a suitable selection of orbit segments
as parametrised by δ.

As in section 4.1, we choose the Lin direction Z as the line through Wu(b) ∩ Σ
and the point on W s(Γ)∩Σ closest to it; cf. section 3.3. The respective orbit segments
of Wu(b) and W s(Γ) that end in Z are shown in figure 8(b), where the gap size is
η = 0.1. By continuation in T−, T+, η and ν1 the Lin gap is closed; cf. section 3.4
and (22a)–(22n). Namely, a zero of η is detected at ν1 = 0.741189; the corresponding
connecting orbit is shown in figure 8(c).

The codimension-one connecting orbit from Γ to b can now be continued in the
parameters ν1 and ν2 while keeping the gap closed. This yields the curve cb that
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Figure 7. Orbit segments during the computation of W u(Γ) of (26) up to the
section Σ. Panel (a) shows the end points of different orbit segments along the
stable Floquet direction v; the orbit A bounds a fundamental domain; the length
of the fundamental domain is 1.42163 · 10−8. Panel (b) shows how the other end
points trace out W u(Γ) ∩ Σ.

is shown as part of the bifurcation diagram in figure 9. One end point of cb is the
point SC 1 on the curve Sl of saddle-node bifurcations of the periodic orbit, where
Γ disappears. The other end point of cb is the point HSH 1 on the curve H of Hopf
bifurcation where Γ shrinks down to the equilibrium a. At HSH 1 a codimension-
two connection between b and a exists, that is, the branches of the one-dimensional
manifolds Wu(a) and W s(b) coincide. This codimension-two point is one of the
possible ‘heteroclinic equivalents’ of a Shilnikov-Hopf bifurcation; see [20]. A segment
of the curve cb indeed appears to be the limit of the oscillating curve hb

1; see figure 9(c).
In system (26) the codimension-zero EtoP connection from b back to Γ exists only

in a certain region of the (ν1, ν2)-plane, namely near the accumulation of the curve hb
1

on cb. This structurally stable intersection of the two-dimensional manifolds Wu(b)
and W s(Γ) can be computed as was explained in section 3.5 using the boundary value
problem (23a)–(23d). The boundary of its region of existence is formed by curves tb
where Wu(b) and W s(Γ) become tangent. The curves tb can be continued as folds
of the respective codimension-zero EtoP connection; they are shown in figure 9(b)
and (c) as part of the bifurcation diagram in the (ν1, ν2)-plane. For increasing ν1

the curves tb can be continued up a point (not shown) on Sl, where the periodic
orbit Γ disappears in a saddle-node bifurcation. When ν1 is decreased, the curves tb
cross the Hopf curve H where Γ disappears in the equilibrium a. As a consequence,
the codimension-zero EtoP connection changes its nature along the curve segment
HSH 2 on H; see figure 9(b). Namely, beyond HSH 2 (for smaller ν1) there is now
a codimension-zero heteroclinic connection between the two-dimensional manifolds
Wu(b) and W s(a). Hence, beyond H the curves tb correspond to tangencies of Wu(b)
and W s(a). Such tangencies, that is, the curves tb, can be continued to the point
SNH−; see figure 9(a). We remark that the heteroclinic bifurcation at HSH 2 can be
described as another type of ‘heteroclinic equivalent’ of a Shilnikov-Hopf bifurcation;
see [20].

We observe in figure 9(b) and (c) that the curves tb appear to bound the
accumulation process of the curve hb

1 on cb. After it enters the region in the (ν1, ν2)-
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Figure 8. The manifolds W s(b) and W u(Γ) of (26) computed up to the section
Σ for ν1 = 0.706987 with a Lin gap along Z of η = 0.1 (a); panel (b) only shows
the two orbit segments up to Z. For ν1 = 0.741189 where η = 0 was detected the
two orbit segments connect in Σ (c). Throughout, ν2 = −1.46.

plane that is bounded by tb, the curve hb
1 oscillates between these bounds; see

figure 9(c). Figure 10 shows homoclinic orbits in parameter space and as w-time
plots for the maxima (w.r.t. ν1) that are indicated in figure 9(c). From maximum to
maximum of hb

1 the corresponding homoclinic orbit from b back to itself makes one
more turn around the periodic orbit Γ; this is best seen in the time traces in the right
column of figure 10. In the limit one obtains the EtoP heteroclinic cycle shown in
figure 11 at the intersection point (ν1, ν2) = (0.742526,−1.45729) of cb and the upper
curve tb. Figure 11(a) shows the complete EtoP cycle from Γ to b (black) and back
to Γ (grey) in (u, v, w)-space. The computed codimension-one and codimension-zero
connections and their time traces are shown in rows (b) and (c), respectively.

Our calculations of the curves cb and tb allow us to bring out the missing
ingredients of the two-dimensional nature of the accumulation process in the (ν1, ν2)-
plane, which was already suggested by the oscillating nature of the curve hb

1 in [22].
Indeed, our numerical observations strongly suggest a close link between the details
of the accumulation process of the homoclinic orbit and the tangency bifurcations.
Note that existing analytical results only deal with the accumulation of points of a
homoclinic connection on an EtoP heteroclinic cycle along a one-dimensional curve in
parameter space [33].
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Figure 9. The bifurcation diagram of (26) from figure 6 completed by the
curve cb of codimension-one EtoP connection from b to Γ, and the curves tb
of tangency bifurcation of the codimension-zero connection from Γ back to b.
Panel (a) is an overview, and panels (b) and (c) show successive enlargements
near the accumulation of h1

b onto cb. Phase portraits and time plots of the orbits
at labels (a)-(d) in panel (c) are shown in figure 10, panels (a)-(d). The orbit at
the indicated intersection point between cb and tb is shown in figure 11.

4.2.2. Accumulation of an EtoP connection By starting from (ν1, ν2) =
(0.66,−1.558) and following the steps shown in section 3 it is possible to find a
different EtoP connection between Γ and b than that discussed in section 4.2.1. The
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Figure 10. The homoclinic orbit to b of (26) for selected points along the
curve hb

1 as indicated in figure 9(c). Shown are the orbits in (u, v, w)-space
(left column) and the w-value of the approximating orbit segment (right column)
for (ν1, ν2) = (0.735540,−1.46337) (a), (ν1, ν2) = (0.739280,−1.46007) (b),
(ν1, ν2) = (0.740976,−1.45861) (c), and (ν1, ν2) = (0.741773,−1.45793) (d).

continuation of this connection yields the codimension-one curve c∗b in the bifurcation
diagram in figure 12. For decreasing ν2 the curve c∗b can be continued past a fold
point until it ends at the point SC 2 on Sl. For increasing ν2 the curve c∗b appears to
accumulate on a segment of cb; see figure 12(c). It turns out that this accumulation
process is associated with a codimension-zero homoclinic orbit to Γ, that is, an
intersection of the two-dimensional manifolds Wu(Γ) and W s(Γ). The homoclinic
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Figure 11. The EtoP heteroclinic cycle of (26) on cb for (ν1, ν2) =
(0.742526,−1.45729) (a). Panels (b1) and (b2) show the codimension-one EtoP
connection and its w-time plot, and panels (c1) and (c2) the codimension-zero
EtoP connection and its w-time plot.

orbit to Γ can be found numerically, using the numerical data of the homoclinic orbit
to the equilibrium a and continuation through the Hopf bifurcation of a. It exists in a
parameter region that is bounded by curves tΓ where W s(Γ) and Wu(Γ) are tangent.
The curves tΓ can also be calculated (using the boundary value problem (24a)–(24c))
and are shown in figure 12 (grey curves) as part of the bifurcation diagram in the
(ν1, ν2)-plane. For decreasing ν1 the tangency curves tΓ end at a Shilnikov-Hopf
bifurcation point of equilibrium a; see [20]. For increasing ν1 the curves tΓ can be
continued until they connect with Sl (not shown).

As figure 12 shows, we have found an accumulation phenomenon of a curve of
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Figure 12. The bifurcation diagram of (26) from figure 9 completed by the
curves c∗b of codimension-one EtoP connections from b to Γ, and the curves tΓ of
tangency bifurcations of the codimension-zero homoclinic connection to Γ. Panel
(a) is an overview, panel (b) is an enlargement of the area around the point SH
where the homoclinic connection to Γ is born, and panel (c) shows an enlargement
near the accumulation of c∗b onto cb. The computation stops at the endpoint of c∗b
closest to cb. The orbits at the labels (a)-(d) in panel (c) are shown in figure 13.
The orbits at the indicated intersection point of cb and tΓ are shown in figure 14.

connecting orbits, but this time of a curve of EtoP connection. Note that the curve
c∗b also enters the region between the tangency curves tΓ and then appears to oscillate
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Figure 13. The EtoP connection from Γ to b of (26) for selected points along
the curve c∗b as indicated in figure 12(c). Shown are the orbits in (u, v, w)-
space (left column) and the time plot of the approximating orbit segment (right
column) for (ν1, ν2) = (0.720036,−1.49320) (a), (ν1, ν2) = (0.723578,−1.49042)
(b), (ν1, ν2) = (0.725231,−1.48914) (c), and (ν1, ν2) = (0.726028,−1.48852) (d).
The orbits stay near Γ (note that the number of turns here is only due to the
setup of the projection boundary conditions and not related to the accumulation
process) before taking one excursion along the homoclinic orbit to Γ, then stay
near Γ again, where the number of turns increases by one for each consecutive
oscillation of c∗b , before finally connecting to b.

in between these two curves. Figure 13 shows the respective EtoP connections of
successive maxima (w.r.t. ν1) along the curve c∗b as indicated in figure 12(c). The
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Figure 14. The EtoP connection and the homoclinic orbit to Γ (grey line) of
(26) on cb for (ν1, ν2) = (0.726851,−1.48784) (a). The EtoP heteroclinic cycle of
(26) on cb for (ν1, ν2) = (0.742526,−1.45729) (a). Panels (b1) and (b2) show the
codimension-one EtoP connection and its w-time plot, and panels (c1) and (c2)
the codimension-zero homoclinic connection to Γ and its w-time plot.

EtoP connection departs from Γ, makes one excursion along the homoclinic orbit to
Γ, stays near Γ again before finally connecting to b. From maximum to maximum of
c∗b the corresponding EtoP connection from the periodic orbit Γ to b makes one more
turn around Γ after the excursion along the homoclinic orbit; this is best seen in the
time traces in the right column of figure 13. (Note that the number of turns near Γ
before the excursions is due to the projection boundary condition; it is not related
to the accumulation process.) The EtoP connection accumulates in the limit on the
concatenation of the (different) EtoP connection along cb and a homoclinic orbit of
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Γ. This limiting global object is shown in figure 14; it corresponds to the intersection
point (ν1, ν2) = (0.726851,−1.48784) of cb and the upper curve tΓ. Figure 14(a) shows
the complete object in (u, v, w)-space, which consists of the homoclinic part from Γ
back to Γ (grey curve) and the EtoP connection from Γ to b (black curve) in (u, v, w)-
space. The computed codimension-one and codimension-zero connections and their
time traces are shown in rows (b) and (c), respectively.

Overall, figure 12 to figure 14 show a new example of the accumulation of a curve
of global bifurcations in parameter space. We emphasize that no analytical results
exist for this case. The main ingredient is again the fact that the connecting orbit
increasingly ‘loops around’ a periodic orbit of saddle-type, which gives rise in the
limit to a concatenation of a codimension-one connection with a codimension-zero
connection. We conjecture that this general mechanism underlies the accumulation
phenomenon of connecting orbits for vector fields in R3.

4.3. Codimension-two EtoP connection in a coupled Duffing system

Our method also works in the quite challenging situation that one wants to detect
and subsequently continue an EtoP connection of higher codimension. This means
that the Lin space is more than one dimensional. As an example we consider here a
codimension-two EtoP connection in a four-dimensional coupled Duffing system. This
system was derived in [27] as a system with Shilnikov-type homoclinic orbits; it is
given as the vector field





ẋ1 = x2,
ẋ2 = (a + y2)x1 − x3

1 + ε(α + βy1)x2,

ẏ1 = y2 − x2
1
2 ,

ẏ2 = ε(−y1 + γy2 + λy2
1y2).

(28)

In [27] it was shown that (28) has Shilnikov-type homoclinic orbits to the origin 0 for
λ = −4γ and 2aα + (2aβ + 3)(1 − √a) = 0, 0 < a < 1, γ > 0. Therefore we also
expect to find EtoP connections in this system. We fix a = 0.0461071, γ = 2.63680
and λ = −27.6186 and consider ε, α and β as continuation parameters. Specifically,
we start the first step of our method from

ε = 0.0881558, β = 15.0, α = −5.17613.

The eigenvalues of the Jabobian at 0 are given by

1
2
αε±

√
1
4
α2ε2 + a and

1
2
εγ ±

√
1
4
ε2γ2 − ε.

Throughout the parameter region we are considering 0 has one negative eigenvalue and
three eigenvalues with positive real part. Hence, W s(0) is of dimension one. Moreover,
there is a saddle-type periodic orbit Γ, which can be found by continuatiuon from a
Hopf bifurcation of one of the secondary equilibria of (28). In the parameter region
of interest Γ has two stable Floquet multipliers and one unstable Floquet multiplier.
Hence, Wu(Γ) is of dimension two.

We are seeking here the codimension-two EtoP connection from Γ to 0 that exists
when W s(0) ⊂ Wu(Γ). Since the connection is from Γ to b, time needs to be reversed
when formulating the respective boundary value problems from section 3. We remark
that the unstable Floquet multiplier of Γ is actually negative, which means that Wu(Γ)
is non-orientable.
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Figure 15. The orbit segments from Γ to Σ and from Σ to 0 of (28) for
ε = 0.0881558, β = 15.0 and α = −5.17613, shown in projection onto (x1, x2, y1)-
space (a) and onto the (x1, x2)-plane (b). The end points of both orbit segments
in Σ actually lie in the two-dimensional Lin plane Z, as is shown in projection
onto (x1, x2, y2)-space (c) and onto the (x2, x1)-plane (d).

One end point of the orbit segment u+ starting from near 0 lies in Es(0). We
choose a mesh point g ∈ Γ, namely the point

g =




x1

x2

y1

y2


 =




0.0969620
−0.00183236
−0.228516

0.0000130318


 .

One end point of the orbit segment u− starting near Γ is then chosen to lie at distance
δ from g on the corresponding Floquet vector v at g. Integration by continuation as
described in section 3.2 can be used to extend the orbit segments u+ and u− so that
their other end points lie in the fixed section

Σ := {x1 = 0.1}.
Figure 15 shows different projections of the orbit segments u+ from Σ to 0 and u−

from Γ to Σ. Note that Σ is three dimensional but, due to the chosen projections, it
appears as a plane and as a line in figure 15(a) and (b), respectively. For computational
convenience and for the sake of clear illustrations we chose the two-dimensional Lin
space Z parallel to the (y1, y2)-plane. Figure 15(c) and (d) are two different projections
that show Z as a plane and as a line, respectively. Note that the distance δ along the
Floquet vector v has been chosen such that the difference u+(0)− u−(1) already lies
in the Lin space Z; cf. section 3.3.
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Figure 16. The curves Li and Ki are traced out in the Lin plane Z by the
end points of orbit segements during continuation in the gap sizes η1, η2 and the
system parameter ε. Namely the Li are traced out by the orbit segment u− from
Γ to Σ, and the Ki by the orbit segment u+ from Σ to 0; here L1 and K1 are for
α = α1 = −5.17613, L2 and K2 are for α = α2 = −4.86955, and L3 and K3 are
for α = α3 = −4.5. The enlargement in panel (b) indicates that the Ki change
only very little with the system parameters. To close the gap we start from e1 and
follow L1 until η1 = 0 at e2. Then we continue in η2 and the system parameters
ε and α until η2 = 0, which happens at the point L3 ∩K3 = e3.

Given the choice of Z it is natural to measure the Lin gaps η1 and η2 along the y1

and y2 coordinate directions, respectively. The initial gap sizes are η1 = −0.0405882
and η2 = 0.00803835. In order to close the two gaps, we first continue in η1, η2 and the
system parameter ε; cf. section 3.4, (22a)–(22n). The end points inside Z of the orbit
segments that are computed during the continuation are depicted in figure 16. Namely,
the end points of the orbit segments u− from Γ to Σ trace out the curve L1 shown in
figure 16(a). At the same time, the end points of the orbit segment u+ from Σ to 0
trace out a curve K1. In fact, the point u+ hardly changes and the curve K1 is visible
only in the enlarged figure 16(b). The curves L1 and K1 (which are parametrized by
the system parameter ε) are for α = α1 = −5.17613. Also shown in figure 16 are the
curves L2, L3, K2 and K3 for α = α2 = −4.86955 and for α = α3 = −4.5, respectively.
The curves Li and Ki, i = 1, 2, 3, show that the Lin plane Z is locally given by two
one-parameter families of unique one-dimensional curves that intersect transversely.
In other words, the gap can be closed in a systematic way. Namely, we first continue
in η1, η2 and ε starting at the point e1 along L1 until a η2 = 0 is detected; see the
point e2 in figure 16(a). We then fix η2 = 0 and change to a continuation in η1, ε and
α. The continuation traces out the (almost) horizontal dashed line in figure 16(a) and
stops when a zero of η1 is detected, which happens for ε = 0.1 and α = −4.5. In the
enlargement figure 16(b) this occurs at the intersection of L3 and K3, denoted by e3.

Once both Lin gaps have been closed, that is, η1 = η2 = 0, we have found a
codimension-two EtoP connection from Γ to 0. The connecting orbits can now be
continued in the three system parameters ε, β and α. Figure 17(a) and (b) shows
the resulting curve h of connecting orbits in (ε, α, β)-space and in projection onto
the (ε, β)-plane, respectively. We remark that the curve h does not self-intersect, even
though one may get this impression due to projection. Five points along h are labelled
and the respective connecting orbits are shown in figure 17(c)–(g) in (x1, x2, y1)-space
and as a times series of the norm. Notice how the connecting orbits changes along the
curve h. In figure 17(c) the connection follows Γ closely and then quickly connects
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Figure 17. The curve h of codimension-two EtoP connections of (28)
shown in (ε, α, β)-space (a) and in projection onto the (ε, β)-plane (b). Rows
(c)–(g) show selected connecting orbits, as indicated along h, in (x1, x2, y1)-
space and as time series of the norm; namely, from (c) to (g) (ε, α, β) has
the values (0.0584877,−3.51797, 8.40132), (0.0967731,−4.25440, 14.3715),
(0.128392,−4.59897, 13.7927), (0.0918179,−3.71152, 12.2683), and
(0.0689425,−3.46446, 9.36032).
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to 0. This gradually changes and the connecting orbit makes a closer and closer pass
near 0 and then makes another large excursion before it connects to 0; see figure 17(f)
and (g). We remark that the curve h could not be computed beyond what is shown
in figure 17(a) and (b). It appears that this is due to the connecting orbit passing
very close to 0 at an intermediate point. In the limit, it seems that the connection
becomes a concatenation of a new codimension-two connection from Γ to 0 and a
codimension-one homoclinic orbit from 0 back to itself. A more detailed study of
the global bifurcations of (28) is beyond the scope of this paper, but we remark that
a similar phenomenon has been found for codimension-zero EtoP connections in the
Lorenz system [14].

5. Finding PtoP connections

It is quite straightforward to generalize our approach for finding EtoP connections
to the case of codimension-d PtoP connections from one periodic orbit Γ1 to another
periodic orbit Γ2. Suppose that dim(Wu(Γ1)) = k ≥ 2, dim(W s(Γ2)) = l ≥ 2, and
that these manifolds intersect in an isolated orbit that is generic (in the sense of (C4)
from section 2). We consider two orbit segments u− from Γ1 to a suitable section Σ,
and u− from Σ to Γ2 subject to the boundary conditions

u−(0) = u1
γ(0) +

k−1∑

i=1

εiu
1
i (0), (29a)

u+(1) = u2
γ(0) +

l−1∑

i=1

δiu
2
i (0), (29b)

〈
u−(1)− pΣ, nΣ

〉
= 0, (29c)

(u+(0)− u−(1)) =
d∑

i=1

ηi(λ)zi, (29d)

where the vectors zi are again a basis of a suitably chosen d-dimensional Lin space;
the numerical representations of Γ1 and Γ2 are denoted by u1

γ and u2
γ , respectively,

the representations of the associated unstable and stable eigenfunctions are denoted
by u1

i and u2
i .

The geometry of a PtoP connection is very similar to that of a EtoP connection,
and we strongly believe that the equivalent statement of theorem 2.1 can be proved for
PtoP connections. While technical details need to be checked to prove this conjecture,
it appears quite clear that the two orbit segments are uniquely determined by choosing
a d-dimensional Lin space. In other words, the general setup given by (29a)–(29d),
in combination with the continuation of u1

γ with its unstable eigenspace u1
i and of u2

γ

with its stable eigenspace u2
i , constitutes a well-defined boundary value problem. In

particular, closing the test functions ηi(λ) one by one provides a systematic way of
finding a codimension-d PtoP connection.

We remark that it is not at all straighforward to find a numerical example of
a codimension-d PtoP connections for d ≥ 1. Even identifying a candidate vector
field among models from applications is quite a task, as it requires finding two saddle
periodic orbits with the correct dimensions of their stable and unstable manifolds.
Therefore, we now discuss the problem of continuing a robust PtoP connection of
codimension zero. In section 4.1 and in section 4.2 we have actually already seen
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two examples, namely for the case that the connection is a homoclinic orbit from a
periodic orbit Γ back to itself. As was explained in section 3.5, an initial homoclinic
PtoP connection can be found from the concatenated data of a EtoP heteroclinic
cycle consisting of a codimension-one and a codimension-zero EtoP connection. The
homoclinic PtoP can then be continued imposing projection boundary condition (24b)
and (24c) at Γ at both ends of the connecting orbit segment u.

Consider now a codimension-zero PtoP connection between two different saddle
periodic orbits Γ1 and Γ2 of periods T1 and T2, respectively. Indeed it is possible
to approximate this PtoP connection also with a single orbit segment u subject to
projection boundary condition at both Γ1 and Γ2, which is the approach taken in [9].
The problem is that for PtoP connections there is no simple way to construct an initial
approximate connecting orbit segment. As an alternative we propose the following
geometric approach. We assume that the codimension-zero PtoP connection is generic,
which means that l + k = n + 1, the Lin space is trivial, and d = 0 in (29d). We fix
the system parameter λ and, as for the general method above, perform step 1 of
constructing the orbits segments u− and u+ by continuation in the integration time
T , so that u−(1) ∈ Σ and u+(0) ∈ Σ. This means that u− and u+ satisfy (29a)–(29c),
but not (29d) since u+(0) − u−(1) 6= 0. Recall that the Lin space is trivial, so that
the difference u+(0) − u−(1) can be chosen to be zero without changing the system
parameter λ. To achieve this, we set z0 := (u+(0) − u−(1))/ ‖u+(0)− u−(1)‖ and
define the one-dimensional subspace Z0 := span{z0}. Replacing condition (29d) by

(u+(0)− u−(1)) = η z0 (30)

ensures that the difference u+(0) − u−(1) remains restricted to Z0. As a result, the
overall boundary problem given by (29a)–(29c), (30), together with the respective
formulations for Γ1 with its unstable eigenspace and of Γ2 with its stable eigenspace,
is well posed, meaning that T1, T2, εi, δj , and η are uniquely defined. Hence,
η = η(T1, T2, εi, δj) is a well-defined test function, so that a continuation run in the
direction of decreasing η allows us to find the codimension-zero PtoP connection as a
zero of η.

5.1. Codimension-zero PtoP connection in a four-dimensional vector field

As an example of a system with a codimension-zero PtoP connection we consider the
four-dimensional system considered in [9]. It is given by





ẋ = (1− w)y + wx
(
1− x2

)
,

ẏ = (1− w)
(−x + λ(1− x2)y

)
+ w (z − 3− λ) ,

ż = (1− w)z
(
z2 − (4 + λ)2

)
+w

(−y + 3 + λ + λ
(
1− (y − 3− λ)2

)
(z − 3− λ)

)
,

ẇ = w(1− w),

(31)

where the parameter λ is set to λ = 0.5. System (31) can be interpreted as a homotopy
from w = 0 to w = 1 between two planar systems in the (x, y)-plane and in the
(y, z)-plane, respectively. In each of the two planes the system resembles a Van der
Pol oscillator with an attracting periodic orbit. We denote the periodic orbit in the
(x, y)-plane by Γ1 and the one in the (y, z)-plane by Γ2. Since dim Wu(Γ1) = 2 and
dim W s(Γ2) = 3 one expects a codimension-zero PtoP connection from Γ1 to Γ2. In [9]
this PtoP connection was found with difficulties by using a shooting technique and
then continued in λ.
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Figure 18. Orbit segments u− ⊂ W u(Γ1) and u+ ⊂ W s(Γ2) up to the section
Σ = w = 0.5} of (31) for λ = 0.5. Their end points u−(1), u+(0) ∈ Σ are
restricted to lie in the direction Z0. The gap η is initially nonzero (a), and is
then closed by a continuation run to reveal a codimension-zero PtoP connection
(b). Note that only Z0 of the section Σ appears in the panels due to the chosen
projection.

We choose the cross-section to be Σ = {w = 0.5} which clearly separates the two
periodic orbits. As base points on Γ1 and Γ2 we use

g1 =




0.0
5.28342
4.60521
1.0


 , g2 =




−0.0131541
2.03745
0.0
0.0


 .

Furthermore, we compute the (fixed) Floquet vectors at these points for the definition
of the projection boundary conditions (29a) and (29b). After computing the orbit
segments u− and u+ up to Σ, we construct the one-dimensional space Z0 from
u+(0) − u−(1) and find that the distance η in (30) is η = 3.76668; see figure 18(a).
Continuation of the overall boundary value problen in T1, T2, ε1, δ1, δ2 and η then
detects the codimension-zero PtoP connection shown in figure 18(b) as a zero of η.

6. Conclusions and outlook

We presented a method based on Lin’s method that allows one to find a generic
codimension-d EtoP connection from a saddle equilibrium to a saddle periodic orbit.
The key idea is to set up an overall boundary value problem that defines two separate
orbit segments up to a specified cross section, whose end points lie in a well-defined
d-dimensional space. The two orbit segments exist in an entire region of parameter
space (and not just at the heteroclinic connection), so that they give rise to d smooth
test function, known as the Lin gaps. Closing the Lin gap in consecutive continuation
runs allows one to find codimension-d EtoP connections in a systematic way. The EtoP
connection and related global objects, such as homoclinic orbits of the periodic orbit,
can then be continued in system parameters. We demonstrated with three example
vector fields how our method for finding EtoP connections can be used to investigate
quite complicated bifurcation phenomena.
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The study of EtoP connections in other vector field models from applications is
an obvious direction for future research; interesting candidates are laser models [40],
models from cell dynamics [6], or models for voltage collapse in power systems [1].

We also presented a general setup for finding codimension-d PtoP connections.
While the underlying statement of Lin’s method has not been proved, geometrical
arguments strongly suggest that the respective Lin gaps are regular test functions.
Furthermore, we showed with the example of a vector field in R4 how a generic
codimension-zero PtoP connection can be found in practice. The demonstration of
the method for codimension-d PtoP connections for d > 0 remains a challenge for
the future, not in the least due to the difficulty of finding vector fields with PtoP
connections. On the theoretical side, an extension to Lin’s method to PtoP connections
is desirable as a foundation of the presented general setup.
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