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THE GEOMETRY OF SLOW MANIFOLDS NEAR A FOLDED NODE

M. DESROCHES B. KRAUSKOPF H.M. OSINGA*

Abstract.

This paper is concerned with the geometry of slow manifolds of a dynamical system with two slow and one fast
variable. Specifically, we study the dynamics near a folded node singularity, which is known to give rise to so-called
canard solutions. Geometrically, canards are intersection curves of two-dimensional attracting and repelling slow
manifolds, and they are a key element of slow-fast dynamics. For example, canard solutions are associated with
mixed-mode oscillations, where they organize regions with different numbers of small oscillations.

We perform a numerical study of the geometry of two-dimensional slow manifolds in the normal form of a
folded node inR3. Namely, we view the part of a slow manifold that is of interest as a one-parameter family of
orbit segments up to a suitable cross-section. Hence, it is the solution of a two-point boundary value problem,
which we solve by numerical continuation with the packédgero. The computed family of orbit segments is used
to obtain a mesh representation of the manifold as a surface. With this approach we show how the attracting and
repelling slow manifolds change in dependence on the eigenvalugurafithe reduced flow. At = 1 two primary
canards bifurcate and secondary canards are created at odd integer valu¥¥e€ompute 24 secondary canards
to investigate how they spiral more and more around one of the primary canards. The first twelve secondary canards
are continued inu to obtain a numerical bifurcation diagram.

Key words. singular perturbations, canard solution, boundary value problem, slow-fast systems, invariant man-
ifolds

AMS subject classifications.34E15, 34C30, 37C10, 65L10

1. Introduction. Multiple time scale systems are characterized by the property that
certain variables evolve on vastly different time scales, which means that the systems may
display dynamics that is composed of slow and fast elements. The occurence of differ-
ent time scales is quite natural in many applications, including chemical reaction dynamics
[9, 32, 34, 36, 38], cell modelling [14, 42, 43], electronic circuits [12, 46, 47], and laser
dynamics [15, 20]. The first example of slow-fast dynamics was discovered by Van der Pol
[46, 47] in the 1920s. He considered an electrical circuit with a triode valve where the cur-
rent is a cubic function of the voltage. The mathematical model of this circuit — known
today as the Van der Pol equations — has the form of a planar vector field model of an os-
cillator with a cubic nonlinear damping term. The Van der Pol equations show sustained
oscillations, which are harmonic for small damping parameter but very non-harmonic when
the damping parameter is large. In the latter case the periodic solution is composed of slow
motion that closely follows attracting segments of the underlying cubic curve (which forms
one of the nullclines), followed by fast jumps as the trajectory reaches either of the two folds
of this curve. At the jumps one of the variables barely changes until the trajectory reaches
another attracting segment of cubic curve. Van der Pol called these periodic sohetions
laxation oscillations Models showing relaxation oscillations quite similar to that of the Van
der Pol equations have been found in other application areas. A well known example is the
FitzHugh-Nagumo system, which also has two time scales and a cubic nonlinearity. It was
derived independentely by FitzHugh [23] and Nagumo [37] as a simplified planar version of
the famous Hodgkin-Huxley equations for the action potential of the giant axon of a squid in
terms of transmembrane currents [30].

At the end of the 1970s, Befteet al. [5] found and analyzed even more unusual periodic
solutions in the Van der Pol system, which they caltadards A canard orbit has the spe-
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cial property that it follows at least one unstable segment of the underlying cubic nulicline.
In other words, the trajectory does not jump at the respective fold. Canard orbits account
for a sudden increase in the amplitude of the attracting periodic orbit in the transition from
harmonic oscillations to relaxation oscillations. This change is knowrcasard explosion
and it occurs in an exponentially small interval of the damping parameter. For this reason, the
associated canards are extremely difficult to observe in two-dimensional slow-fast systems.
The situation is very different in three-dimensional slow-fast systems, where canards
may occur in much larger regions of system parameters. They have been found in numerous
slow-fast systems. For example, canards explain sudden changes in amplitude and period of
oscillatory behavior in chemical reactions [9, 32, 34, 36, 38]; they organize the dynamics in
models of coupled neurons and also play an important role in intracellular activities [14, 42,
43]; canards have been studied for their role in diffusion-induced instabilities [9, 40]; and
Guckenheimeet al. [6, 28] recently performed an extensive study of a reduced hybrid model
of the forced Van der Pol system, which revealed relaxation oscillations and canard orbits
of different types. A related phenomenon in slow-fast systemsnaed-mode oscillations
which consists of large-amplitude excursions followed by small-amplitude motions that are
typically of (relatively) high frequency. This type of oscillations have been found in chemical
and biological systems, and the connection between mixed-mode oscillations and canards has
been clarified recently [8, 34, 43, 48]; see also the special issue [7].
For the theoretical study of canards in three-dimensional phase space one considers a
dynamical system with two slow and one fast variable of the form

1./'1 - 91(”17U2a1}»5)a
iy = ga(ui,uz,v,¢), (1.1)
et = f(ui,us,v,e).

Here g1, g2, and f are sufficiently smooth functions, ard> 0 is a small parameter that
separates the different time scales. Sintgesmall, the variables,; andus move on a slower

time scale than the fast variable The equivalent of the cubic nulicline of the Van der Pol
equations is now the surface — called tivéical manifold— that is given as the-nullicline

of (1.1). The critical manifold has repelling parts and attracting parts, which meet along one-
dimensional fold curves. As for the Van der Pol equations, the slow dynamics takes place
close to the critical manifold. When a fold is reached two things can happen. The trajectory
may jump at the fold curve towards another attracting sheet of the critical manifold. If a global
return mechanism is present, e.g., the critical manifold is S-shaped with two fold curves, such
jumps give rise to classical relaxation oscillations [35, 45]. The other possibility is that the
trajectory is a canard solution that does not jump at the fold curve, but instead stays near the
repelling part of the critical manifold for a certain amount of time.

Since the beginning of the 1980s, when canard solutions were first discovered, different
analytical techniques have been applied to their study. Initially, non-standard analysis [3, 4, 5]
and matched asymptotic expansions [35, 18] were used, but more recently canards have been
studied with tools from geometric simgular perturbation theory [22, 31]. Underlying this
geometric approach is the realization that the study of canard solutions comes down to under-
standing the dynamics of the system near folds of the critical manifold. Of specific interest
here are (isolated) points on fold curves where the direction of flow changes from pointing
towards the fold to pointing away from the fold. These points, cdliédkbd singularitiesare
key to the understanding of canard solutions.

We are concerned here with the case dblded node which is a type of folded sin-
gularity that has been identified as an organizing center for the creation of canard solutions.
Figure 1 shows the dynamics fer= 0 near a folded node on a regular fold cuealong
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FiG. 1. Sketch of a folded critical manifold consisting of an attracting sheét® and a repelling shees”
that meet at a fold curvé’. The sketched flow aofi is the generic slow flow near a folded node (black dot); shown
are two singular canard§s and~,, and some other trajectories of the slow flow. The action of the fast flow is shown
along one fast fiber.
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which the attracting sheét* and the repelling sheét” of the critical manifold join. At the
folded node (black dot), the direction of the flow on the critical manifold changes. This allows
for the existence of canard solutions on the critical manifold that droasthe folded singu-
larity with nonzero speed and then follow the repelling st€et These canards far = 0,
which are referred to asingular canardsoccur in an entire region that is bounded by the
repelling part of the fold curvé’ and the special canard solutigpin Fig. 1. The main ques-
tion is now what can be said about the dynamics near a folded nodeamaeh According
to a well-known result by Fenichel [21, 22], away from the fold cufv¢he attracting and
repelling sheets give rise faer # 0 to anattracting slow manifoldS¢ and arepelling slow
manifoldS?, respectively. Importantly, the two surfacg$ and.S? do not connect along the
fold curve fore # 0, but rather intersect, generically transversely, in one-dimensional solu-
tion curves. Hence, these curves are referred tnasmal canardsas they stay close to the
repelling part of the critical manifold for a certain amount of time. In other words, finding the
structure of canard solutions near the folded node is equivalent to understanding the geometry
of the two-dimensional surfacet' and.S?.

Canards near a folded node are best analyzed in a normal form setting. Normal forms for
all types of folded singularities, including the folded node, were derived’gghenko [2,
part |, chapter 4]. Berio[4] completely analyzed the case of a folded saddle and also con-
sidered the case of a folded node. He proved the existence of two maximal canards under a
non-resonance condition with tools of nonstandard analyis and found secondary canards with
spiralling behavior by numerical integration. Szmolyan and Wechselberger [44] consider
all cases of folded singularities. For the folded node they proved the existence of primary
canards by using geometric singular perturbation theory in combination with blow-up trans-
formations. Guckenheimer and Haiduc [27] proved that there are infinite many secondary
canards near a folded node. Wechselberger [48] studied how secondary canards bifurcate
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from the weak primary canard and he sketched the underlying bifurcation structure. Both
Guckenheimer and Haiduc [27] and Wechselberger [48] find canards numerically by comput-
ing the one-dimensional intersection curves of the attracting and repelling slow manifolds in
a two-dimensional cross section with a shooting approach (integration from a line of initial

conditions far from the fold curve); the canards are then identified as crossings of the two
curves.

Our goal is to compute and visualize the slow manifolds as surfaces and the canards
as trajectories ifR? to obtain additional geometric insight into the dynamics near a folded
node. To this end, we consider the normal form as used in [48], which is given as the three-
dimensional vector field

@ = suy—(u+1)z,
y = 1, (1.2)
2 = x4+

In (1.2) the folded node is at the origin and the parametisrthe ratio of the eigenvalues of
the Jacobian matrix of the so-called desingularized reduced flow evaluated at the folded node.
Note that, as a result of a parameter dependent blow-up procedure, (1.2) does not depend on
e. Nevertheless, this normal form describes how the attracting and repelling slow manifolds
intersect near a folded node. Specifically, for anfl.2) has an attracting slow manifald~
and a repelling slow manifold@™* that intersect in the maximal canards one wants to study;
see Sec. 2 for more information on the derivation and meaning of the normal form.

Specifically, we compute in this paper the slow manifdtsandC* of (1.2) as surfaces
in R3. This is achieved by representing a piece of interest of a slow manifold as a one-
parameter family of orbit segments that satisfy suitably chosen boundary conditions. The
resulting boundary value problem is solved with the continuation and collocation routines of
the packaguTo [13]. This setup is very flexible and accurate, because it is based on the
continuation of two-point boundary value problems [33]. It allows us to adjust the boundary
conditions to emphasize certain local features of the underlying dynamics in the vicinity of
the folded node. In particular, we are able to compute the slow manifolds past the folded
node and show their exponential growth on the other side of it. Our method allows for a very
precise visualization of the behavior of the slow manifolds in the vicinity of the folded node.
In particular, we are able to capture in detail the complexity of their intersections, that is, the
canards. For increasing the two surfaces rotate more and more around the weak primary
canard (the perturbation &f, in Fig. 1), which leads to the creation of secondary canards
at odd integer values gf. Our method allows us to detect canards and to continue them as
solutions of a boundary value problem in the paramgtewe compute up to 24 secondary
canards and show how they spiral around the weak primary canard. Furthermore, we continue
12 secondary canards jinto obtain a numerical bifurcation diagram.

Note that very few attempts have been made so far to produce accurate computations of
slow manifolds as surfaces. Mili&t al. [34] visualize slow manifolds in the normal form
of a folded saddle-node; in this special case (of codimension one) the system decouples
into a one-parameter family of two-dimensional systems, so that the slow manifolds can
be built up from individual one-dimensional stable and unstable manifolds (which can be
found by integration). Ginoux and Rossetto [24, 25] derive an implicit equation of a two-
dimensional slow manifold as the locus where the torsion vanishes. The implicit equation
is then solved numerically to obtain a grid approximation of a part of the manifold under
consideration; their examples include folded slow manifolds in Chua’s circuit model [24] and
in the Hindmarsh-Rose model of a bursting neuron [24]. Both methods are quite different
from our approach. Our boundary value problem formulation not only allows to compute
slow manifolds as global objects in a specified region of interest, but also to detect canards
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and follow them in system parameters. More generally, computing invariant manifolds by
continuation and collocation as solution families subject to suitable boundary conditions is a
very flexible method [33], which is particularly well suited for slow-fast systems [19]. Our
method is not restricted to the normal form setting but can be used more widely, for example,
for the study of canards in the self-coupled FitzHugh-Nagumo system [10].

The outline of this paper is as follows. In the next section we present some technical
background material. We briefly review slow-fast systems in Sec. 2.1, explain the blow-up
method in Sec. 2.2, and then discuss some known properties of the normal form (1.2) in
Sec. 2.3. Section 3 explains in detail how to compute slow manifolds as collections of orbit
segments. In Sec. 4 we show how the slow manifolds changeavéhd Sec. 5 is devoted to
the detection and continuation of the secondary canards. In Sec. 6 we show that the geometry
of the slow manifolds does not change topologically when the normal form is perturbed. We
conclude with a summary and outlook in Sec. 7.

2. Background on the folded node.In this section we recall some basic facts about
singularly perturbed dynamical systems, folded singularities and the blow-up method to ana-
lyze them. We consider the three-dimensional normal form (1.2), as studied, for example, by
Bendt [3, 4], Guckenheimer and Haiduc [27], and Wechselberger [48]. Following [48] we
show how the normal form is derived from a generic three-dimensional system with a folded
node at the origin and present some useful properties of (1.2).

2.1. Slow-fast dynamical systemsThe slow-time systenfil.1) defines a vector field
using the slow time. An alternative way of writing (1.1) is to introduce the fast time- g
which gives thdast-time system

up = egqi(ur,uz,v,¢e),
uy = ega(u1,uz,v,¢), (2.1)
’U/ = f(u1>u27vv‘€)v

where the prime indicates the derivative with respect to the fast im€his rescaling of
time is valid only fore # 0 and does not modify the geometry of the trajectories. The main
question is whether it is possible to understand the dynamics for small by considering
the two limits of (1.1) and (2.1) given hy= 0.

The limit of the slow-time system (1.1) fer= 0 is known as theeduced systemor slow
subsystem

’l:L1 - gl(u17u25U10)7
uy = ga(u1,uz,v,0), (2.2)
0 = f(u17u27v70)'

System (2.2) is a set of differential algebraic equations (DAE) on the slow time scale, namely,
two differential equations constrained by the algebraic equdtier). This condition defines
thecritical manifold

Si= {(uhu%v) eR? ‘ f(ul»UQ;U,O) = O}, (2.3)

on which the dynamics of the reduced system (2.2) takes place. We obtain differential equa-
tions that describe the flow of the reduced system (2.2¥ as follows. Differentiating the
algebraic equatioyf = 0 with respect to time yields

’U;1 gl(u17u27v70)7
UZ? = 92(u17u27’u70)a (24)
_qu'] fulul +fu27.112-
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We then rescale (2.4) by f, to obtain the vector field

W = —fug1(ur,uz,v,0),
Uy = —fug2(ur,us,v,0), (2.5)
v = fulgl+fu2927

that generates slow flowon S.
The limit of the fast-time system (2.1) far = 0 is known as thdayer systenor fast
subsystem

up = 0,
uhy = 0, (2.6)
vl = f(u17u27v70)'

The variables:;; andu, are constants in system (2.6) and enter the equatiandeparamet-

ers. Hence, the layer system is a two-parameter family of differential equations on the fast
time scale. The critical manifold plays a key role in the layer system as well, namely, as a
manifold of equilibria.

The idea of geometric singular perturbation theory [22, 31] is to understand the dynamics
of system (1.1) withe > 0 sufficiently small by splitting the motion into its fast and slow
components. The fast dynamics of (1.1) is described by the layer system (2.6), meaning
that trajectories behave like solutions of (2.6) until they get clos€.t@®n the slow time
scale, solutions are well approximated by the reduced system (2.2); in particular, trajectories
remain confined to an-neighborhood of. The overall dynamics can indeed be understood
in this way if the critical manifoldS is normally hyperbolic This means that the dynamics
in the normal direction to the manifold dominates the dynamics in the tangent direction [29].
Due to results by Fenichel [21, 22], a normally hyperbolic critical manifoloersists under
small perturbations as a nearby normally hyperbolic invariant manfolidr the singularly
perturbed system (1.1).

In the vicinity of points where normal hyperbolicity fails, the singularly perturbed prob-
lem can give rise to very complex dynamics. In order to study what happens $visenot
normally hyperbolic, we consider the projection $fonto the(u,, us)-plane of slow vari-
ables. The critical manifol& consists of regular points whelfe # 0 and critical points of
the projection whergf, = 0. According to singularity theory [1], regular points are generic
and they correspond to points whefds normally hyperbolic. Moreover, a generic critical
point is a fold point, and together the fold points form a codimension-one submadifofd
S. Along F two sheets of meet. InNR? there may be cusp points (degenerate folds), but they
are generically isolated. We focus here on fold points and their influence on the dynamics of
system (1.1).

Specifically, we consider a critical manifoklwith (locally) a nonempty fold curve that
does not contain cusp points. Therefdsezan be written as' = S U F U S™, whereS* and
S” refer to the attracting and repelling sheetsSofespectively, that meet &; formally

S = {(u1,u2,v) €S| fo(ur,us,v) <0},
o= {(Ul,UQ,U) €S | fv(ulau27v) = O}, (2.7)
ST = {(u1,uz,v) €S| fo(u1,us,v) > 0}.

System (2.4) is singular along while the desingularized system (2.5) governs the dynamics
in the vicinity of the critical manifoldS. Note that the rescaling by f, that achieves this
desingularization changes the direction of time whgre> 0, that is, on the repelling sheet
S™ of the critical manifoldS.



Roughly speaking, the original system (1.1) is governed by system (2.5) when it evolves
almost on the attracting shegt. The situation changes when a trajectory reaches the fold
curve F', that is, whenf,, becomes zero. In the generic situation, that ig, # 0 the prom-
inent dynamics switches to the fast dynamics (2.6) and the trajectory escapes &long a
fast fiber parallel to the-axis. The condition) = f,, g1 + fu,v2 # 0 is called thenormal
switching conditior[35] and means geometrically that the reduced flow projected onto the
(u1,uz)-plane is not tangent to the fold cur¥@ The point on the fold curvé” where the
change of dynamics occurs is calleguanp point If S is S-shaped, that is, there are two
separate attracting sheets and two fold curves connected to a repelling sheet, then the pres-
ence of jump points typically leads to the existenceadéixation oscillationd35, 45], that
is, periodic solutions that involve both fast and slow segments; a detailed discussion of this
phenomenon is given in [28] for the forced Van der Pol system.

If fu,91 + fu,v2 = 0 then (2.5) has an equilibrium on the fold curkeand there is no
jump. Such an equilibrium is calledfalded singularity According to the topological type
of the singularity as an equilibrium of system (2.6), one has generiftdtigd nodesfolded
saddles andfolded foci Locally, the dynamics near a folded singularity can be described
by normal forms. Normal forms for planar or three-dimensional slow-fast systems were first
derived by llyashenko [2]. These normal forms were subsequently used byitHéhdSz-
molyan and Wechselberger [44], and Guckenheimer and Haiduc [27], among others, to obtain
analytical results concerning the possible bifurcations near such folded singularities.

The case of a folded-node singularity is sketched in Fig. 1 and several trajectories of the
slow flow associated with the normal form (1.2) are shown. Notice the change of direction of
the slow flow across the fold cun/é. As a result, some initial conditions &f are attracted
to regular points ori”, which leads to a jump. However, an entire wedge exists, bounded by
the singular canar§; and a half-line onF’ that ends at the folded node, where trajectories
converge to the folded node and pass through to follow the repelling She&his wedge is
called thefunnel regior{48] and it is responsible for the generic existence of canard solutions
in systems witle £ 0. Note that Fenichel theory cannot be invoked to describe the geometry
of the slow manifolds in this region of the phase space simply by using the unperturbed
limiting problems (2.2) and (2.6). Instead, blow-up methods are used to obtain the dynamics
through the funnel region.

2.2. Blow-up of the folded node.One can apply the method of blow-up in the setting
of geometric singular perturbation theory [16, 41]. The general idea is to rescale the variables
of the original problem together with the singular parametén this way, one can transform
a singularly perturbed system into a regularly perturbed system that is defined on a higher-
dimensional phase space.

The slow manifoldsS¢ and ST correspond ta-leaves of three-dimensional attracting
and repelling center manifold®/, and M,. of the extended system

ull = 591(“17“27”76)7

/
u2 = 592(U1,U27’U76)7 2 8
’U/ = f(’LLhUQ,’U,E), ( ' )
g = 0.

The linearization of the extended system (2.8) has all eigenvalues equal to zero at the folded
node. Hence, one cannot apply center manifold theory at points@md describe the beha-

vior of the slow manifolds in a neighborhood Bf A good way of overcoming this difficulty

is to apply a blow-up transformation at the folded node, which is a degenerate singularity of
system (2.8). Roughly speaking, the blow-up method is a well-chosen coordinate transform-
ation that desingularizes such a degenerate singularity. It was originally developed for planar

7



vector fields [17], but has been adapted to the case of three-dimensional singularly perturbed
systems [44, 48]. The change of coordinates transforms the degenerate singularity at the ori-
gin into a spher&? that contains points with (at least) one non-zero eigenvalue. Then the
general methods of dynamical systems are applicable, in particular, center manifold theory;
see [44] for a detailed exposition of the blow-up in this specific context.

In the case of a three-dimensional singularly perturbed system with a folded node at the
origin, the desingularizing transformation is defined by

2 2=
up = p7T, up = py, v = pz, € = pE,

where(z,y,2,2) € S* andp € [0, po] is a new radial parameter. As is explained in [48],
two chartss; andk, of the spher&? suffice to understand the entire extended phase space.
These charts yield so-calletirectional rescalingsobtained by setting one coordinateSh
equal to+1 and desingularizing the vector field in both charts, where ohar$ defined by

x = —1and chark, byé = 1.

To investigate the possible intersections between the slow manifolds, thatis, the existence
of maximal canards, one only needs to look at clartwhich describes the situation on the
blown-up locus. As a main result, the blow-up extends the normal hyperbolicity of the slow
manifolds.S¢ and S? to the blown-up sphere. After desingularization, the systemyiis
given by

& = gpy—(u+1)2+0(p),
2 = z+22+0(p).

By definition of the directional rescaling in chart we havep = /. The key idea is now to
study system (2.9) fgs = 0, which is the normal form (1.2).

We now explain briefly why it is sufficient to consider system (1.2) to obtain all the
information concerning the original singularly perturbed system (1.1). To avoid technical
details about the blow-up, which can be found in [44, 48], we follow here the intuitive point
of view (and the underlying notations) developed in [8]. By Fenichel’'s theorems, for any
fixede > 0 sufficiently small, the slow manifoldS? andS? exist outside a neighborhood of
the fold curveF’, that is, foru; < —o (whered > 0 depends on). It is possible to extend
S¢ and ST up to sectiony’ := {u; = —d’e} (6’ > 0 such that-§ < —¢’¢) by considering
orbit segments starting in section:= {u; = —J} and ending in section’. Note that these
cross-sections are well defined as long as the flow is not tangent to,thgis, which is
satisfied in the vicinity of a folded node. Heneeands’ are defined on intervals,, and
I, of uy, respectively. Then we define, still following [8], the sélsand.S) as collections
of orbit segments starting ifi,, and ending in/;,. One can prove [48] that; andS) are
smooth perturbations of the critical manifaftloutside a neighborhood of the fold curge
of size(O(e), O(p),O(e)) in (u1, uz,v). The great benefit of the blow-up transformation in
chartk, is that forp — 0 the slow manifoldssg andS; tend to invariant set€— andC+ of
(1.2), respectively. This is possible becausé&iiny, z), the sectiory is given byz = —§/e,
hence byr = —§/p?, ando’ by z = —§'. Therefore S} andSj; can be seen as smoaf{p)
perturbations o™ andC—, respectively.

In other words, we can study and understand the dynami€s-aiip to the folded node;
in particular, we can investigate their transverse intersections and deduce information about
the singularly perturbed system. Indeed, by the Implicit Function Theorem, transverse inter-
sections ofC'~ andC* persist under small perturbatiops> 0, as system (2.9) is a regularly
perturbed system with respectgoConsequently, the geometry of the manifofef§, which
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we refer to as the repelling and attracting slow manifolds from now on, contains all the rel-
evant information regarding the corresponding “true” slow manifdfiand S¢ of system
(1.1), respectively. Indeed, the study of the geometrg'dfis the main topic of this paper.

2.3. Properties of the normal form. The normal form (1.2) was already studied, in an
equivalent form, by Beribin [4] and Guckenheimer and Haiduc in [27]. By looking at the
equation forz in (1.2), it is clear that the critical manifold associated with this normal form
is the parabolic cylinder

S:={(z,y,2) R’ | & + 2> =0}, (2.10)
that is folded along thg-axis, that is,
F:={(0,y4,0) € R?}. (2.11)

This is exactly the picture in Fig. 1. An important property of the normal form (1.2) is its
invariance under the time-reversing symmetryy, z,t) — (z,—y, —z, —t). Therefore, it
suffices to concentrate on the attracting slow manitsid the repelling slow manifold>*

is given by the symmetry. A main advantage of (1.2) is that it possesses two explicit canard
solutions of algebraic growth,, and~,,, given as

2
P2, pn, p
Vs(t) = (4t2 + 57 ta Qt)a

( eyl 1t>
4 27 7 27

We refer toy, as thestrong canardand tov,, as theweak canargdbecause they correspond to
the strong and the weak eigendirection of the linearization of system (1.2) at the folded node,
respectively. Note that the geometry of the critical manifoldsifor 1 and forl/u € [0,1] is
topologically the same (where the rolesygfand~,, are interchanged); recall thatdenotes
the ratio of the eigenvalues of system (2.5) projected ontdghe)-plane and linearized at
the origin. Therefore, we consider here the changes of the slow manifsidss a function
of p only for u > 1.

It has been proved that* intersect transversely along, and~,, when y is not an
integer [4, 44]. For integer values pfthe manifoldsC+ andC~ intersect transversely along
~s and tangentially along,,. A new canard is created from the weak canagdat every
odd integer value of the paramete(for u > 3) [48]. The bifurcating canards; are called
secondary canardslt was analytically proved in [44] that the slow manifol@s andC+
spiral | ] times around the weak canasd, (here|q] denote the integer part of the real
numberg). Due to the time-reversing symmetry of the normal form, this impliesdhaand
ct makeL’%lJ full rotations around each other. Each one of these full rotations ends in a
transverse intersection along a secondary canard. Hence, thQ#géﬂesecondary canards
that successively make one additional complete revolution argyndMore precisely;
makesi + % rotations aroundy,,; see already Sec. 5. Geometrically, we can think of the
strong canardy, as the secondary canang, becausey, makes a half rotation aroung,.
Due to the symmetry of (1.1), the intersection points of the canard solutions with the section
Yo = {y = 0} lie on thez-axis, and their order is such tha, is always located between
Mgty @NAY Ly

(2.12)

Yw (t)

3. Computing slow manifolds. To get an insight into the geometry of the attracting
and repelling slow manifold§'* we developed a computational technique for their numer-
ical approximation and visualization. The main underlying idea of our approach is that one
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can compute (a finite part of) a two-dimensional invariant manifold of a system of ordinary
differential equations as a collection of orbit segments by numerical continuation of a one-
parameter family of two-point boundary value problems. This idea can be applied in a wide
variety of contexts [33]. Below we explain how we use this general idea to coniputer

the normal form; see [10] for details on how to compgté for systems not in normal form.

3.1. Slow manifolds as collections of orbit segmentsAs is common in numerical
continuation, we consider a vector field of the form

whereg : R™ x RP — R"™ is sufficiently smooth and@” € R and\ € RP are parameters.
The parameteT is the total integration time. It appears explicitly as a free parameter on the
right-hand side of (3.1), so that an orbit segme(t) is always represented over the interval
[0,1]. By imposing suitable boundary conditions on solutions of (3.1) we can characterize
any k-dimensional invariant submanifold IR” x RP. To be more precise, we consider the

boundary conditions
{ u(0) € L, (3.2)

u(l) € &,

where L is a one-dimensional submanifold abida codimension-one submanifold &f*.

One needgn — 1) boundary conditions to restriet(0) to the curveL and one boundary
condition to restrica(1) to the(n — 1)-dimensional manifold&. Hence, the total number of
boundary conditions in (3.2) is. That is, withT" as a free parameter Egs. (3.1)—(3.2) define

a one-parameter family of well-posed two-point boundary value problems that represent orbit
segments starting dt and ending in the sectioR; see, for example, [11]. The family is
parametrized by the position @f(0) on L, andT is the integration time to reachi from

L. Depending on the choice @f andY:, this general setup can be used to compute different
types of dynamical objects, including two-dimensional invariant manifolds [33] and their
one-dimensional intersection curves with the seciidi9].

In the present setting the phase space is three dimensional and our goal is to find appro-
priate definitions fod, and¥. so that (3.1)—(3.2) defin€* as surfaces in a region of interest.
SinceC* can be found fron€'~ by symmetry in (1.2), we only explain here the computation
of C~. The family of orbit segments obtained by continuation of (3.1)—(3.2) defines (part
of) the two-dimensional manifol@—, provided the one-dimensional submanifélgatisfies
L Cc C™ [22, 48]. Since we do not kno@—, we choosd. on the attracting sheét* of the
critical manifold S sufficiently far away from the fold curvé’, that is in a region wher§“
is a good approximation @f'—. Then the boundary value problem defines an approximation
of C~. From (1.2) and (2.10) we know that

S ={(z,y,2) €R® |z + 2> =0, 2 < 0}.
Since the fold curvé” is they-axis, we define
L=1ILg :={(=¢s—V¢)|seR}, 3.3)

which is the line onS* with © = —¢ parallel toF" at ‘distance’¢ > 0 from F. The inter-
esting dynamics takes place near the folded nod€'0so a suitable choice fdt is a plane
transverse td" near the origin. We define

Y =%, :={y=a}, (3.4)

wherea > 0. The two-point boundary value problem (3.1)—(3.2) for the choices (3.3) and
(3.4) defines a one-parameter family of orbit segments that li& om good approximation,
provided¢ is large enough.
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3.2. Finding a first orbit segment on the slow manifold. To start the continuation we
must provide a first orbit segment that solves (3.1) subject to the boundary conditions (3.2).
For the normal form (1.2) two explicit canard solutions are known, which we can use as seed
solutions. Note that neither one of the two explicit solutions has a point in common with the
attracting sheef® of the critical manifold, which means that it is not possible to chaose
such that the two explicit canard solutions contain segments that stdrf and solve the
boundary value problem (3.1)—(3.2). However, we only use the explicit solutions as a seed
for the Newton iteration, that is, we must find a suitable solution segment such that Newton’s
method converges to a solution of (3.1)—(3.2).

To be concrete, we start from the strong canardiven in (2.12) and consider the initial
orbit segment

u(t) = (T +t), 0<t<1, (3.5)

for some start time, and total integration tim&'. We chooset;, < 0 such that thec-
coordinate ofys (o) is equal to—¢, that is,

2
™o H
SR SR —
FRCRE) ¢

In order to satisfy the second boundary conditigit) € X,,, we need
’yS<T+t0) eEXoeT+1ty=a.

Note that the start timé&;, must be negative, because the&oordinate acts as time in the
normal form (1.2) and we wish to preserve the direction of time. Therefore, we have

fo=— 2T and T=aq |2 (3.6)
I o

The solution segment (3.5) only approximately satisfies the boundary cond{ore L.,

namely, the difference between thecoordinates of1(0) = v,(to) and the point orl. at
s =1g is

(3.7)

M %+%—J? Iz
2\ 2(V e+ V8
This difference is small, providedl > u, and decreases §s— oo. Hence, if¢ is large
enough, we expect that Newton’s method converges and the first correction step of the con-
tinuation leads to a solution of (3.1)—(3.2). We remark that for a slow-fast system that is not
in normal form an explicit solution is generally not known. This difficulty can be overcome
with a homotopy approach, as is demonstrated in [10].

3.3. Computation of C~ from L, to X,. The computed part of~ depends on the
two user-specified parametefainda that defineL, andX,, respectively. The parametgr
controls the accuracy of the computation in that it determines the initial distance befiveen
and the critical manifolds®. By construction, an orbit segment satisfying (3.1)—(3.2) con-
verges to an actual orbit segment@n in the limit§ — oo. Itis a very difficult task beyond
the scope of this paper to find an expli¢ilependent error bound for the approximation of
C~ and how it depends om. To derive a practical measure for the accuracy of the computa-
tions presented here we make use of the fact that the strong caniardiven as an explicit
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solution (2.12). As mentioned in Sec. 3.2, the orbit segment (3.5) & the seed solution

for Newton’s method, and we use the difference betwegrl” + ¢,) and the approximate
solutionu*(t) as an indication of the overall approximation error. Namely, we consider the
pointwise difference between, (tT + to) andu*(¢) with 0 < ¢ < 1 and ensure that it is
sufficiently small. Att = 0 this difference is given by (3.7), and it decreases exponentially
for t > 0; this decrease is particularly fast due to the difference in time scales. Specifically,
we only consider the difference in thecoordinate and require that

|95 (tT + to) — u*(t)|-< 107

for all ¢t with uz(¢) > —1¢&. In other words, this condition ensures the accuracy of the second
and relevant part of the orbit segment, and we found that it is satisfiedcwithi 00 for all

1 < 8.5 that we consider in this paper. For largealso& needs to be increased; namely, we
use¢ = 200 for p = 14.5, £ = 400 for p = 25.5, and¢ = 1000 for p = 49.5.

The parameted: determines the location of the sectibp. Its choice depends on which
aspect o0+ is of interest. A natural choice is = 0, such that the folded node (the origin) is
contained ir,,. This means thaf'— andC* are computed both up 8,, which emphasizes
their intersection curveé?oi = C* N %, Note that these intersection curves have been
computed before by shooting methods (numerical integration of initial valug$)psee for
example, [27, 26, 48]. By contrast, we compute the cuﬂ?gésas well as the surfaces™®
themselves with the collocation and continuation routines of the package [13]. The
main advantage of using collocation, as opposed to a shooting method, is that the size of
the continuation step is determined as a variation along the entire orbit segment instead of
the initial condition alone. This feature is particularly useful for slow-fast systems, which
are extremely sensitive to variations in the initial condition [19]. Specifically, we compute
the one-dimensional curveﬁgE with an adaptation of the softwaMANBVP [19], where
orbit segments are generated according to the local curvaturg ofThe two-dimensional
surfacesC* are computed with a\uTo run with a fixed continuation step size, which
ensures a uniform distribution of mesh points on the surface.

In order to investigate how'~ andC" intersect near the folded node at the origin, we
consider orbit segments computed upte with o > 0. By symmetryC™ ends inX_,,,
so that the two slow manifolds are seen to interact in the regier< y < «. To visualize
the geometry of this interaction it is convenient to show only the “ribbong” ofandC in
between the planes_, andX,,. To this end, we clip each orbit segment of the computed
manifoldC~ where itintersect& _,. We then determine a mesh with a fixed number of mesh
points that are uniformly distributed according to arclength along clipped orbit segments. The
resulting ribbons o0+ can be readily visualized, which provides insight into the interaction
of the slow manifolds; see already Sec. 4.

3.4. lllustration of the method. Figure 2 illustrates our method for the normal form
(1.2) with . = 1.2. Figure 2(a) shows an approximation of the attracting slow manibtd
for o = 0, that is, we computed a collection of orbit segments that stait;gg the straight
red line in Fig. 2(a), and end iR, the (z, z)-plane shown in green. The bold red curve
in X is the intersectior; of C'~ with ¥y, and a small segment of its symmetrical image
Cg (blue curve, not labeled) is also shown. We started the continuation from the solution
segment (bold black curve) (tT + ty), t € [0, 1], of the explicitly known strong canarg,
with ¢y andT as defined in (3.6). The continuation is done in two directions parametrized by
they-coordinate alond.;,,, where we start aj = to < 0.

Let us first focus on the continuation run wherencreases, because this part generates
most of the intersection curv&; . Note that it is natural to stop the continuation whes 0
is reached. In practice, we use a user-defined functioAumo to stop aty = 0. (The
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FIG. 2. Global overview of the slow manifolds for= 1.2. Panel (a) shows the attracting slow manifaltd-
(red surface) computed from the line of initial conditiab,, (red line) up to sectiofy; panel (b) shows the parts
of C~ andCT (red and blue surfaces, respectively) in between the sectionsand>>;. The two primary canards
~vs and~,, have been hightlighted as bold black curves; the red bold curve (panel (a) only) is the orbit starting at
the intersection poingy,p betweenl;, and thez-nulicline. We also show the intersection curgg$ of the slow
manifoldsC+ with the sectionsy and ©1;. See also the accompanying animatitko _fn _a01.gif  of the
computation of”~ for u = 8.5.

solution family exists fory > 0, but thenT becomes negative.) The result from the first
continuation run, as shown in Fig. 2(a), is an excellent illustration of Fenichel theory [22],
which states that the attracting and repelling sheets of the critical manifold perturb smoothly
to locally invariant manifolds for small # 0 outside a neighborhood of the fold curye

In fact, outside a neighborhood of the origir}, is almost identical to the intersection of the
critical manifold.S with (. At the scale of Fig. 2(a) it is difficult to see what happens near
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the folded node; an enlarged view(c‘igﬁ’E is presented in the next section.

During the second continuation run, wheis decreasing, we encounter the orbit seg-
ment betweerL;,, and X, that corresponds to the weak canasg for which we have an
explicit expression given in (2.12). Note that the symmetry of the normal form forces the
attracting and repelling slow manifolds to intersect exactly on thedire 0 in the section
>y. Hence, by imposing the user-defined functioy{1) = 0 as part of the continuation of
the one-parameter family that solves (3.1)—(34);ro [13] automatically detects all canard
solutions of the normal form (1.2); a more detailed discussion is provided in Sec. 5. The ac-
tual canard solutions are obtained by concatenating the detected orbit segraentwhich
ends inX, on the linez = 0, with its symmetrical copy o' on the other side of.

As y decreases further, we encounter another special solution during the continuation,
which is shown as the bold red curve in Fig. 2(a) that starts at the point lafaglesh L7 ,.

This pointyp is the unique point

2
yLp = _(M:l)\/g’

where thex-direction of the vector field (1.2) vanishes é#,,; that is,y.p ~ 36.777 is the
intersection ofL;,, with the z-nullcline for x = 1.2. We know from Fenichel theory [22]
that, away from#, the attracting slow manifold— is a graph over the attracting she#t of
the critical manifold. Hence, if.;,, were exactly orC'~ then all initial conditions orL},
beyondy; p, that is, withy-coordinates less than,p, would lie on (backward-extended) orbit
segments that interseét,, at y-coordinates larger thagy,p. This behavior corresponds
exactly to the case that an (un)stable manifold in a Poensaction crosses the locus where
the flow is tangent to the section; see [19] for more detalils.

In practice Ly, only lies approximately or’~ and solutions beyongrp do not lie
exactly on the computed approximation@f, but still very close to it. Hence, it appears as
though a new part af ~ is obtained, which manifests itself as a very sharp fold, or ‘crease,
on the approximation of~. From a computational point of view, the continuation makes
sense only fon(0) € [0, y.p], because continuation beyopgde produces a second approx-
imation of the same part af'—. Figure 2(a) does show a computation®f pastyrp to
illustrate what happens. It was reported in [48] that the turning pgiptgives rise to addi-
tional canard solutions that persist only for a very short interval-gélues. The discussion
above, however, implies that these additional ‘canards’ appear due to the numerical error of
the approximation and, hence, are spurious. Note furtheygthat- —oo as¢ — oo, that is,
in the limit whereLg converges to a line o', the pointy,p no longer exists.

Figure 2(b) demonstrated how the ribbons(tf in between:; andX_; can be used
as a means of visualizing the interaction of the two manifolds. For clarity, the intersection
curves;OljE andCiE1 are shown as well. The geometry@f is further enhanced by including
the strong and weak canarglsand-~,,, respectively.

4. Geometry of the slow manifolds.We now study the slow manifolds* for different
values of the parameter. We use botth = 0 anda > 0 in the method from Sec. 3 to
illustrate not only the intersection c:urvé!g;t of C* with ¥, as was done in [48], but also
the geometry of the two-dimensional slow manifold$ themselves. A main goal is to see
how maximal canards arise as new intersection curves bet@WeeandC~. In all figures the
attracting slow manifold’~ is colored red, the repelling slow manifol@™ blue, the section
3, is green, and the strong canardand the weak canarg, are black. Asu is increased,
secondary canards appear, which we label successively &ge adopted a particular color
coding for these secondary canargs:is orange;), is magentays is cyan, and we repeat
these successive colors for each group of three consecutive secondary canards after

14



oos T - |@2) Co
: ' N 0.0125
z Cy
0025 — : !
0— : 1 g o 0.49 0.56 063 T 0.7
05—
,i::::f:l ,,,,, ::,::riﬁ,l,,,,‘_,.;'-::If.‘ ...... ,,,,,,, - :
-0.05 —T—— /\ﬂ
! | | | | T g 7 0
0.025 0.0125 0 -0.0125 -0.025 00375 Y -005
005
4
0.025 —
0—
00ms—
-0.05
0.025 0.0125 0 -0.0125 -0.025 00375 Y -0.05

FiG. 3. Local three-dimensional views of the slow manifald$ computed up to sectioBq (panels (al)
and (b1)), together with two-dimensional illustrations of their intersectiofswith 3. Panel (a) corresponds to
© = 1 and panel (b) tou = 1.2. The weak canard,, and the strong canard are shown as black curves and
their intersections witl( are denoted by black dots. See also Figs. 4 and 5.

4.1. Geometry ofC* up to £,. We begin with a series of images for= 1, i = 1.2,
pu = 2.5, = 3.5, andu = 8.5 that illustrate the behavior @f'* up to the sectiory; see
Figs. 3(a),(b), 4(a),(b), and 5(a), respectively. Each figure shows a three-dimensional view
in a neighborhood of the folded node 6fF and C~, computed up td,, together with
the corresponding intersections in the plaiye To facilitate comparison and analysis, the
viewpoint and aspect ratio is identical for all three-dimensional pictures, although the ranges
along the axes vary.

Figure 3(a) shows the cage= 1, which acts as the starting point whefe" have a
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FIG. 4. Local three-dimensional views of the slow manifald® computed up to sectioBg (panels (al)

and (b1)), together with two-dimensional illustrations of their intersectioffs with (. Panel (a) corresponds to
© = 2.5 and panel (b) tqu = 3.5. Note the existence of the first secondary canardorange dot) in panel (b2),
which appears in a transcritical bifurcation at = 3. See also Figs. 3 and 5.

non-transverse tangent intersection along a single orbit. The first two (maximal) cagards
and~,, are created ag is increased. They are shown in Fig. 3(b) for= 1.2; see also
Fig. 2. Note thaty, and~,, are now two distinct orbits of the normal form (1.2) in which the
slow manifoldsC* intersect transversely. The case= 1.2 is representative for all values

1 <p<2.

A qualitative change occurs at= 2. Figure 4(a) shows the situation for= 2.5. As

can be observed particularly in panel (a2), the tip@[ﬁfhave rotated around so that they now
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FIG. 5. Local three-dimensional views of the slow manifald’ for ;, = 8.5 computed up to sectioR in
panel (a); the inset panel (a2) shows the intersectiﬁﬁé with . See also Figs. 3 and 4 and the accompanying
animationdko _fn _a02.gif . Panel (b) shows the ribbons 6f in betweer:_; and; along with the corres-
ponding intersection curve(é’f1 andC7. There are three secondary canamls 72, andns, indicated by colored
dots inXg in panel (a2).

point inside the region delimited by, and~,,. Indeed, these tips rotate continuously with

At 11 = 2 the tangent bundleg, , C* coincide and the directions 1 are parallel to the-

axis, that ing—L both have a vertical tangency vectornat(0) andC, continues smoothly as

C pasty, (0). Foru = 3 the tips have rotated so that the tangent bun@lles>* coincide

again, butcgE now both have a tangency vector parallel to thaxis and the manifold€'*

meet in a cusp. This cusp-shaped tangency is one of the transcritical bifurcations that occur
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FIG. 6. Three-dimensional views of the ribbong@t in betweer® _g. 5 and 2.5, together with all maximal
canards and the intersection curvé’slcoﬁ. Panel (a) corresponds ta = 25.5, with 12 secondary canards, and
panel (b) corresponds tp = 49.5, with 24 secondary canards. See also Figs. 2(a), 5(b) and the accompanying
animationdko _fn _a03.gif

for all odd integer values ofi > 3 and results in a secondary canard. Figure 4(b) shows a
phase portrait fop, = 3.5 with the first secondary canard (orange curve). As can be seen
clearly in Fig. 4(b2), there are now three intersection point€pfin 3. Note thaty,, is
located between; and~, on thex-axis.

Figure 5(a) shows the situation far = 8.5, where we have three secondary canards,
denotedr; (orange),n, (magenta), andjz (cyan). It gives an idea of how the secondary
canards appear as a result of the spiralling motio@'6faround the weak canarg,; this
is particularly visible forC’gE in Xy, shown in Fig. 5(a2) and in the accompanying animation
dko fn _a02.gif . The figure also illustrates the fact that makeL“;—lj full rotations
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Fic. 7. Different views of the attracting and repelling slow manifolds and C+, respectively, to illustrate
the spiralling dynamics of the secondary canards around the weak cgnatlack curve). The parameteris 8.5
in panel (a),u = 14.5 in panel (b),u = 25.5 in panel (c), andu = 49.5 in panel (d).

aroundy,,.

4.2. Ribbons of C* near the folded singularity. Figures 3, 4, and 5(a) give a good
insight into the topological changes of the geometrg’ef. After the bifurcation of maximal
canards aj: = 1, all secondary maximal canards bifurcate frognin transcritical bifurc-
ations at odd integer values af To bring out this behavior more clearly, we also compute
ribbons ofC* in betweery_,, andX,, for suitablea > 0. Figure 5(b) show§'* in between
3_; and Xy, along with the intersection curves, v, (black curves)y; (orange), andj
(magenta); note thats; is not shown in this picture, because it cannot be distinguished from
. at this scale. The intersection cun@$, andCy in ©_; andX;, respectively, give some
idea of the exponential growth away from the fold curve in forward time (fo) and back-
ward time (forC'™) of the solutions on the slow manifolds. Indeed, the maximal canards
v andmn;, fori=1,..., L“T‘lj, are the only solutions of (1.2) that grow algebraically both
in forward and backward time.
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Figure 6 showsC* for much larger values of, namely, fory = 25.5 andy = 49.5
in panels (a) and (b), respectively. Due to the exponential growth of the slow manifolds, we
show here ribbons af'* only in between:_, 5 andX 5. The figure shows the increased
complexity of C* with many more intersection curves that form additional secondary ca-
nards. For = 25.5 there are twelve secondary canards that wind areyndnly the first
four are labeled in Fig. 6(a). Far= 49.5 there are 24 secondary canards, but again gnly
12, N3, andn, are labeled in Fig. 6(b). The increasejirtauses an increase of the spiralling
amplitude of the intersection curv«éf%:_'to.5 and 03?5 in ¥X_g5 andXq 5, respectively. By
comparing Fig. 6(a) and (b), one can clearly see that the strong canant the labeled
secondary canardg, 72, 3, andny lie further away from the weak canasg, and from each
other; see also the accompanying animatlka _fn _a03.gif

Figure 7 illustrates the increasing complexity wittof the two slow manifolds near the
folded node by showing'* for y = 8.5, u = 14.5, u = 25.5 andpu = 49.5. Here we
rotated the slow manifold§'* about thez-axis with the visualization packaggEoMVIEW
[39] to generate common enlarged views centered around the weak egnaiml this way,
one obtains a good impression of the spiralling behavior of the secondary canards around
7, and how their positions and distancesytp change withi:.. Figure 7(a) shows that for
u = 8.5 C~ andC™ intersect in the two secondary canardsandn,. Foru = 14.5 there
are a total of six secondary canards, four of whighto n4, are shown in Fig. 7(b). Note
how the distance ofj; andn from the central weak canard, (black curve) is now much
larger fory, = 14.5; in a way, this creates space fgy andn, to spiral aroundy,, as well.
For . = 25.5 there are twelve secondary canards in total, but enlyo n, are labeled in
Fig. 7(c). Similarly, forp = 49.5 in Fig. 7(d) there ar4 secondary canards, of which the
first nine are clearly visible while onbhy; to n4 are labeled.

5. Geometric study of the secondary canardsAs we have seen, the secondary ca-
nards arise as intersections of the slow maniféldsandC+. We now find them directly as
special orbits within the boundary value problem setup in Sec. 3. This allows us to visualize
and discuss their spiralling behavior with respect to the weak capard-urthermore, we
continue the secondary canards in the parameterreveal an overall bifurcation diagram.

5.1. Detection of secondary canardsDuring the continuation of (3.1)—(3.2) for fixed
wthe end pointai(1) € ¥, of the computed orbit segments oscillate about:taeis; see, for
example, Fig. 5(a2). Due to symmetry, a secondary canard is characterized by the condition
that thez-coordinateu, (1) satisfiesu.(1) = 0. Hence, secondary canards can be detected
during the continuation by monitoring this condition (with a user-defined functi®timO).
Recall that the pointi, (1) is a function of they-coordinateu, (0) of its begin pointu(0),
which varies alond., .

Figure 8 shows the graph af.(1) as a function ofu,(0) for © = 49.5, where we
show data for the run that starts from the strong cangréor which we haveu, (0) =
to ~ —1.29. Due to the spiralling nature af— N X, the graph oscillates with a rapidly
decreasing amplitude; note that the continuation is in the direction of negaf¢¢. The
enlargement in the inset of Fig. 8 shows the oscillation gfl ) in the region wherg;, to ;5
are detected and the oscillation amplitude has decreased to values dftordeNumerically
it becomes increasingly difficult to detect wheng(1) changes sign when the oscillation
amplitude becomes very small. In other words, for laiges in Fig. 8 foru = 49.5 it is quite
a challenge to detect the secondary canards that lie very cloge to

For all values of: in this paper we start the continuation with theTo accuracy settings
as shown in row (a) of Table 5.1. This is sufficicient for the reliable detection oftlegen
for u = 25.5, but for the case: = 49.5 shown in Fig. 8 the detection stops when extrema
of u,(1) are less than0~—? in modulus. At this stage the secondary canagdt 7,7 have
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FIG. 8. Graph of thez-coordinateu. (1) of the end poinua(1) of the computed orbit segments 6fT for
1 = 49.5 as a function of thej-coordinateu,, (0) of its begin pointu(0) € L, where we used = 1000. The

continuation starts from the weak canaygd, and secondary canardg are detected when. (1) = 0.

NTST [ NCOL | DS | DSMIN | DSMAX | EPSS
@ | 200 4 | 0.001|5x10*| 001 | 10°°

(b) | 400 6 0.001 1077 0.01 1077
TABLE 5.1
AuTO accuracy parameters as used during the detecting the secondary candfdg)ofRow (a) is our regular
accuracy setting, and row (b) is the increased accuracy as used for49.5. HereNTST is the number of mesh
points,NCOL the number of collocation pointSMIN and DSMAX are the minimal and maximal stepsizes for
the continuation, an&PSSis the relative arclength convergence criterion for the detection of special solutions; all
other AUTO accuracy parameters are set to their default values.

been detected reliably. The next four secondary canaggl$o 1., are found in a second
run, where we increase the accuracy parameters to the settings given in row (b) of Table 5.1.
Nevertheless, the detection 9f; to 1,4 is very difficult even with the increased accuracy
settings, because, (1) is now consistently below0~15 in modulus. Since we are reaching
the limit of machine precision spurious rootswf(1) are reported, out of which we need to
selectnss to 194. This can be done by taking into consideration the distance between roots in
u,(0), which leads to a selection that is consistent with the detected secondary caniards
121, See already Fig. 11(d).

Once a secondary canard has been detected for a fixed valwesaf zero ofi, (1), it can
be continued in the parameteby imposingu. (1) = 0 as an additional boundary condition.
In this way, we can compute the-dependent families of all detected secondary canards.
We remark here that the oscillationswf(1) near a fixed canard increaseass increased.
Hence, canards; for largei can be detected reliably for largerand then continued back
into the range of lower values of
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FiG. 9. Spiralling behavior of the secondary canards(@f2) with ;» = 8.5. Panel (a) shows a global view of
the critical manifoldS with the fold curvel. and the singular canardss and?,, (grey). The corresponding strong
canardys and weak canard,, of (1.2)are shown in black. Note how the three secondary canardgs, andns
spiral around~,,. Panels (b) and (c) show the projections onto thez)- and (y, z)-planes, respectively.

5.2. Spiralling behavior of the secondary canards.To explain the spiralling of the
secondary canards around the weak canard we concentrate on the €a8#, for which
there are three secondary canard2p 3. They are shown in Fig. 9 together with the primary
canardsy; and~, (black curves). Figure 9(a) is a three-dimensional view of the canards,
where we also show for orientation the critical maniféldthe grey parabolic cylinder) with
the fold curveL (thick grey line) and the singular canar@s and~,, (grey) onS. The
primary canards, and~,, (black) are perturbations (on the blown-up spherey,cind7,,.
Furthermore, the secondary canargdie seemingly parallel to/; for |x| large, but follow
~,, Near the fold. With increasingthen; lie closer toy,, as they spiral increasingly around it.
Figure 9(b) and (c) are projections of the primary and secondary canards oifig theand
(y, z)-planes, respectively. Figure 9(b) illustrates how each new secondary canard makes one
more full rotation around the weak canarg. Figure 9(c) focuses on the (slow) dynamics of
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FIG. 10. Detailed view of the three secondary canards gndfor ;1 = 8.5. The weak canarg,, lies in the
planeX,, and the three secondary canards start and end in the pBjethat is chosen perpendicular ©,, far
enough away from the fold. The intersections of the secondary canardXwitire marked by dots to emphasize
the rotations aroundy,, .

the secondary canards in the neighborhood of the fold. The grey regions indicate the funnel
through which the weak canards move, which is delimited by the two primary cangrds
and~,; see also Sec. 2.

Figure 10 is a visualization with the packa@EomviEw [39] in the spirit of a wire
and cardboard model to bring out the spiralling of the secondary canartsn; around
Y- Namely, shown are the plaig, = {y = 2z} that containsy,, and the plane&; =
{z = —10} that is perpendicular t&,, chosen so that all spiralling behavior is captured. The
secondary canardg to n; start onx;; below¥,, and return ta2;; abovey,,. Notice that);
has three intersection points (yellow dots) has five intersection points (magenta dots), and
13 has seven intersection points (blue dots) with. This illustrates the theoretical results
thatn; makesL“%lJ rotations around,,. Figure 10 also illustrates that the secondary canards
n; lie successively closer tg,, in the region of the fold.

The spiralling character of a secondary cangydioes not depend on the value jof
When a secondary canards is created in a transcritical bifurcation closggtaban odd
integer value of., its rotating property is fixed. This is illustrated in Fig. 11 with projections
onto the(y, x)-plane of all canards fop = 8.5, p = 14.5, p = 25.5, andp = 49.5,
respectively. For each case we choose aregion dfjthe-plane that allows for a comparison
between the panels; specifically, themaximum of~, is fixed and they-range is adjusted
so that the last secondary canard is seen to ‘leaye’ Figure 11(a) foru = 8.5 should
be compared directly with Fig. 9. There are six secondary canards in Fig. 11(b), twelve in
Fig. 11(c) and4 in Fig. 11(d). Overall, the secondary canards run parallel to (have the same
slope as) the strong cana#d for large |z|, and then spiral around,,. Observe that the
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FiG. 11 Representation in thy, z)-plane of the primary and secondary canards for four different values of
. From panel (a) to panel (d) = 8.5, u = 14.5, u = 25.5, andp = 49.5, respectively, where shown part of the
(y, z)-plan is chosen so that the maximumgfis fixed and all secondary canards are covered.

maxima of they; appear to line up along a curve that connegido the maximum ofy,; an
initial investigation showed that this curve is not a straight line. It would be an interesting
challenge to study limiting features of the canards in a suitably res¢aled-plane forpu
tending tooo.

5.3. Continuation of the secondary canards in:. Itis a particular advantage of our
boundary value problem setup that secondary canards can be continued in the pagzameter
Figure 12 shows the result of the continuation of the secondary canatds);», where we
plot thexz-coordinateau, (1) of the end point ir&,. Also shown in this bifurcation diagram are
the primary canards,, and~,. They are determined from (2.12) as the straight lumgd ) =
1 andu, (1) = &, respectively, which intersect transversely.at 1. The continuation was
started by detecting all twelve secondary canardg:fer 25.5, where we used = 1000 to
ensure sufficient accuracy for their continuation for 25.5.

Figure 12(a) shows howy, to 7, bifurcate from~,, at odd integer values. Notice that
the branches ofy; for odd: are in the region below,, = % while those for even are in
the region above,, = %. This agrees with [48, Fig. 17] of Wechselberger, who sketched the
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FiG. 12. Continuation ofn;, 1 < 4 < 12in u. Shown are the projections @f onto the(y, z)-plane with
~s and~y,, included for reference. Panel (a) is a zoomed view that shows how the first twelve secondary canards
bifurcate fronry,, at odd integer values gf; the bifurcation points for); ton; 2 are indicated by thick colored dots.
Panel (b) shows an enlarged view of the continuation up te 500.

branches of secondary canargsas straight lines that bifurcate fromy, at an angle. As can
be seen in Fig. 12(a), the branchesg;pére actually tangent tg,, and the degree of tangency
appears to increase withFigure 12(b) shows the branchesgfor the much larger:.-range
up top = 500. This image suggests that in the limit of largehe branches for oddappear
to have slopeg as~s, while those for even appear to have slope%. These slopes agree
with the slopes suggested by Wechselberger’s sketch [48, Fig. 17].

6. Beyond the normal form. It is in the nature of a normal form that (1.2) has special
properties. Specificallf’~ andC* are each other’s images under a symmetry operation.
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FIG. 13. Slow manifolds and canard solutions (%.9) with . = 8.5 ande = 0.1. The manifolds are smooth
deformations of the equivalent manifolds foe= 0, but the attracting and repelling slow manifolds are no longer
related by symmetry; compare with Fig. 5.

From the computational point of view, this means that afily needs to be computed. Fur-
thermore, secondary canards can be detected and continued by considering the condition
u,(1) = 0. However, for a system that is not in normal form the symmetry of the normal
form is typically lost. Hence, in general the attracting and repelling slow manifolds must be
computed separately as the solution families of two different two-point boundary value prob-
lems. As a consequence, the primary and the secondary canards must be detected as solutions
correcponding to intersection points of the cur@&s N Xg andC* N Xq.

As an example, we show here what the slow manifolds look like in the perturbation of
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the normal form (1.2) that is given by (2.9) for small nonzgre /¢, that is,

& = gpy—(p+1)z+ 5,
y = 1 (6.1)
2 = x+2°2+4/E

Note that system (6.1) has the same critical manifold as the normal form (1.2), so that its
slow manifolds can be computed with the same boundary conditions as for (1.2). Namely, we
require that the orbit segments start on the Il@edefined by (3.3). For the computation of

the repelling slow manifold, we reverse time in (6.1) and consider

LZ_ = {(_6787 \/g) ‘ s € R}a

which lies onS™ instead ofS®, again parallel ta&" at ‘distance’¢ > 0 from F'. Furthermore,
we require the orbit segments to end in a transverse sextiagiven by (3.4) witha = 0 or
a = =+1.

We consider here the cage= 8.5 ande = 0.1 and fix¢ = 100 as before. Fot = 0.1
the explicitly known solution ofy, of the unperturbed system (1.2) does not work as a starting
solution. (Newton’s method does not converge.) Therefore, startingftome first compute
thee-dependent family of orbit segments that solve (6.1) subject to the boundary conditions
(3.2). Here we fix the parameteithat defines the position ab, to the value (given byy,)
of

as defined in (3.6). When = 0.1 is reached a first orbit segment 6t has been found; a
first orbit segment o™ is found similarly by starting a continuation infrom the part of
~s that connectngr to X,,. We now fixe = 0.1 and continue irs to sweep ouC~ andC™,
respectively.

Figure 13 shows the slow manifolds of (6.1) for= 8.5 ande = 0.1. This figure should
be compared with Fig. 5 far = 0; for ease of comparison we use the same viewpoints in
both figures. In Fig. 13 the slow manifold$~ andC* have deformed and are no longer
each other’s image under a symmetry operation. Nevertheless, the situation is topologically
the same as that far = 0 in Fig. 5. Namely,C~ andC™ intersect in the same way in the
primary canardsy; and~,, and the secondary canarglsto 73; see Fig. 13(a2) and (b). In
particular, the rotating behavior af to n3 around~,, is preserved. The canards are found
by detecting orbit segments afi~ and C* that end at the same point K, (within the
accuracy of the computation). Concatenation of the two respective orbit segments results
in the representation of the secondary canard as a solution that stafts and ends at

Lgr. After applying a Newton step to get an exact solution to this boundary value problem,
detected canards can be continued in a system parameter.

7. Conclusion. We performed a study of slow manifolds and associated canard solu-
tions in a three-dimensional normal form of a slow-fast system with a folded node. Spe-
cifically, we computed the two-dimensional attracting and repelling slow manifolds as one-
parameter families of orbit segments that satisfy appropriately chosen boundary conditions.
This approach also allows us to detect and continue the associated canard solutions in which
the two slow manifolds intersect. The visualization of these geometric objects for different
values of the normal form parametei(the ratio of eigenvalues at the folded node) provided
unprecedented insight into the geometry of the dynamics near a folded node. We discussed
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in detail how the secondary canards spiral around the weak primary canard and presented the
first computed bifurcation diagram showing branches of the secondary canards as a function
of p.

The numerical continuation of solution families of a well-posed boundary value prob-
lems can be performed extremely accurately. In our computations we use the continuation
and boundary value solver routinesAfiTo, which uses pseudo-arclength continuation and
collocation with piecewise-polynomial approximations. Hence, the boundary value problems
we define are solved subject to established error bounds. Therefore, the accuracy of our cal-
culations of slow manifolds and canard solutions comes down to determining how the choice
of boundary condition influences the distance of the approximation from the real object. In
our setup we make use of the fact that far away from the fold line the slow manifolds are very
close to the critical manifold. Hence, we restrict the approximating orbit segments to such
a far away line on the critical manifold. We ensured by numerical checks that the pointwise
distance to the true slow manifolds along selected orbit segments is sufficiently small. A more
detailed error analysis is a challenging subject for further investigation, because the overall
approximation error depends, in general, not only on the distance from the fold curve but also
on system parameters.

While this paper concentrates on the normal form of a folded node, our boundary value
problem approach to computing slow manifolds and canard solutions can be applied more
widely. This was demonstrated with the example of a perturbation of the normal form that
breaks the underlying symmetry. In [10] we computed slow manifolds and canard solutions
in the self-coupled FitzHugh Nagumo model. This required the implementation of a homo-
topy approach to generating initial approximate orbits on the attracting and repelling slow
manifolds. In this way, we were able to identify sectors between different secondary canards
that correspond to mixed-mode oscillations with different numbers of small oscillations.

In the near future we plan to use our computational approach to investigate other slow-
fast systems arising in applications, especially those showing mixed-mode oscillations. This
is relatively straightforward for the case of three-dimensional vector field models with a clear
splitting of the phase space into slow and fast variables, such as the self-coupled FitzHugh
Nagumo model [10] or the forced Van der Pol system [6, 28]. However, we believe that
the computation of invariant manifolds would also be a very helpful tool in situations where
there is no obvious split of the system into slow and fast variables. The goal here would be to
identify slow and fast components of the dynamics numerically, and to use this knowledge to
unravel the geometry of slow manifolds and associated canard solutions.
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