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THE GEOMETRY OF SLOW MANIFOLDS NEAR A FOLDED NODE

M. DESROCHES∗, B. KRAUSKOPF∗, H.M. OSINGA∗

Abstract.
This paper is concerned with the geometry of slow manifolds of a dynamical system with two slow and one fast

variable. Specifically, we study the dynamics near a folded node singularity, which is known to give rise to so-called
canard solutions. Geometrically, canards are intersection curves of two-dimensional attracting and repelling slow
manifolds, and they are a key element of slow-fast dynamics. For example, canard solutions are associated with
mixed-mode oscillations, where they organize regions with different numbers of small oscillations.

We perform a numerical study of the geometry of two-dimensional slow manifolds in the normal form of a
folded node inR3. Namely, we view the part of a slow manifold that is of interest as a one-parameter family of
orbit segments up to a suitable cross-section. Hence, it is the solution of a two-point boundary value problem,
which we solve by numerical continuation with the packageAUTO. The computed family of orbit segments is used
to obtain a mesh representation of the manifold as a surface. With this approach we show how the attracting and
repelling slow manifolds change in dependence on the eigenvalue ratioµ of the reduced flow. Atµ = 1 two primary
canards bifurcate and secondary canards are created at odd integer values ofµ. We compute 24 secondary canards
to investigate how they spiral more and more around one of the primary canards. The first twelve secondary canards
are continued inµ to obtain a numerical bifurcation diagram.

Key words. singular perturbations, canard solution, boundary value problem, slow-fast systems, invariant man-
ifolds

AMS subject classifications.34E15, 34C30, 37C10, 65L10

1. Introduction. Multiple time scale systems are characterized by the property that
certain variables evolve on vastly different time scales, which means that the systems may
display dynamics that is composed of slow and fast elements. The occurence of differ-
ent time scales is quite natural in many applications, including chemical reaction dynamics
[9, 32, 34, 36, 38], cell modelling [14, 42, 43], electronic circuits [12, 46, 47], and laser
dynamics [15, 20]. The first example of slow-fast dynamics was discovered by Van der Pol
[46, 47] in the 1920s. He considered an electrical circuit with a triode valve where the cur-
rent is a cubic function of the voltage. The mathematical model of this circuit — known
today as the Van der Pol equations — has the form of a planar vector field model of an os-
cillator with a cubic nonlinear damping term. The Van der Pol equations show sustained
oscillations, which are harmonic for small damping parameter but very non-harmonic when
the damping parameter is large. In the latter case the periodic solution is composed of slow
motion that closely follows attracting segments of the underlying cubic curve (which forms
one of the nullclines), followed by fast jumps as the trajectory reaches either of the two folds
of this curve. At the jumps one of the variables barely changes until the trajectory reaches
another attracting segment of cubic curve. Van der Pol called these periodic solutionsre-
laxation oscillations. Models showing relaxation oscillations quite similar to that of the Van
der Pol equations have been found in other application areas. A well known example is the
FitzHugh-Nagumo system, which also has two time scales and a cubic nonlinearity. It was
derived independentely by FitzHugh [23] and Nagumo [37] as a simplified planar version of
the famous Hodgkin-Huxley equations for the action potential of the giant axon of a squid in
terms of transmembrane currents [30].

At the end of the 1970s, Benoı̂t et al. [5] found and analyzed even more unusual periodic
solutions in the Van der Pol system, which they calledcanards. A canard orbit has the spe-
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cial property that it follows at least one unstable segment of the underlying cubic nullcline.
In other words, the trajectory does not jump at the respective fold. Canard orbits account
for a sudden increase in the amplitude of the attracting periodic orbit in the transition from
harmonic oscillations to relaxation oscillations. This change is known as acanard explosion,
and it occurs in an exponentially small interval of the damping parameter. For this reason, the
associated canards are extremely difficult to observe in two-dimensional slow-fast systems.

The situation is very different in three-dimensional slow-fast systems, where canards
may occur in much larger regions of system parameters. They have been found in numerous
slow-fast systems. For example, canards explain sudden changes in amplitude and period of
oscillatory behavior in chemical reactions [9, 32, 34, 36, 38]; they organize the dynamics in
models of coupled neurons and also play an important role in intracellular activities [14, 42,
43]; canards have been studied for their role in diffusion-induced instabilities [9, 40]; and
Guckenheimeret al. [6, 28] recently performed an extensive study of a reduced hybrid model
of the forced Van der Pol system, which revealed relaxation oscillations and canard orbits
of different types. A related phenomenon in slow-fast systems aremixed-mode oscillations,
which consists of large-amplitude excursions followed by small-amplitude motions that are
typically of (relatively) high frequency. This type of oscillations have been found in chemical
and biological systems, and the connection between mixed-mode oscillations and canards has
been clarified recently [8, 34, 43, 48]; see also the special issue [7].

For the theoretical study of canards in three-dimensional phase space one considers a
dynamical system with two slow and one fast variable of the form





u̇1 = g1(u1, u2, v, ε),
u̇2 = g2(u1, u2, v, ε),

εv̇ = f(u1, u2, v, ε).
(1.1)

Hereg1, g2, andf are sufficiently smooth functions, andε > 0 is a small parameter that
separates the different time scales. Sinceε is small, the variablesu1 andu2 move on a slower
time scale than the fast variablev. The equivalent of the cubic nullcline of the Van der Pol
equations is now the surface — called thecritical manifold– that is given as thev-nullcline
of (1.1). The critical manifold has repelling parts and attracting parts, which meet along one-
dimensional fold curves. As for the Van der Pol equations, the slow dynamics takes place
close to the critical manifold. When a fold is reached two things can happen. The trajectory
may jump at the fold curve towards another attracting sheet of the critical manifold. If a global
return mechanism is present, e.g., the critical manifold is S-shaped with two fold curves, such
jumps give rise to classical relaxation oscillations [35, 45]. The other possibility is that the
trajectory is a canard solution that does not jump at the fold curve, but instead stays near the
repelling part of the critical manifold for a certain amount of time.

Since the beginning of the 1980s, when canard solutions were first discovered, different
analytical techniques have been applied to their study. Initially, non-standard analysis [3, 4, 5]
and matched asymptotic expansions [35, 18] were used, but more recently canards have been
studied with tools from geometric simgular perturbation theory [22, 31]. Underlying this
geometric approach is the realization that the study of canard solutions comes down to under-
standing the dynamics of the system near folds of the critical manifold. Of specific interest
here are (isolated) points on fold curves where the direction of flow changes from pointing
towards the fold to pointing away from the fold. These points, calledfolded singularities, are
key to the understanding of canard solutions.

We are concerned here with the case of afolded node, which is a type of folded sin-
gularity that has been identified as an organizing center for the creation of canard solutions.
Figure 1 shows the dynamics forε = 0 near a folded node on a regular fold curveF along
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FIG. 1. Sketch of a folded critical manifoldS consisting of an attracting sheetSa and a repelling sheetSr

that meet at a fold curveF . The sketched flow onS is the generic slow flow near a folded node (black dot); shown
are two singular canardsbγs andbγw and some other trajectories of the slow flow. The action of the fast flow is shown
along one fast fiber.

which the attracting sheetSa and the repelling sheetSr of the critical manifold join. At the
folded node (black dot), the direction of the flow on the critical manifold changes. This allows
for the existence of canard solutions on the critical manifold that crossF at the folded singu-
larity with nonzero speed and then follow the repelling sheetSr. These canards forε = 0,
which are referred to assingular canards, occur in an entire region that is bounded by the
repelling part of the fold curveF and the special canard solutionγ̂s in Fig. 1. The main ques-
tion is now what can be said about the dynamics near a folded node whenε 6= 0. According
to a well-known result by Fenichel [21, 22], away from the fold curveF the attracting and
repelling sheets give rise forε 6= 0 to anattracting slow manifoldSa

ε and arepelling slow
manifoldSr

ε , respectively. Importantly, the two surfacesSa
ε andSr

ε do not connect along the
fold curve forε 6= 0, but rather intersect, generically transversely, in one-dimensional solu-
tion curves. Hence, these curves are referred to asmaximal canards, as they stay close to the
repelling part of the critical manifold for a certain amount of time. In other words, finding the
structure of canard solutions near the folded node is equivalent to understanding the geometry
of the two-dimensional surfacesSa

ε andSr
ε .

Canards near a folded node are best analyzed in a normal form setting. Normal forms for
all types of folded singularities, including the folded node, were derived by Il′yashenko [2,
part I, chapter 4]. Benoı̂t [4] completely analyzed the case of a folded saddle and also con-
sidered the case of a folded node. He proved the existence of two maximal canards under a
non-resonance condition with tools of nonstandard analyis and found secondary canards with
spiralling behavior by numerical integration. Szmolyan and Wechselberger [44] consider
all cases of folded singularities. For the folded node they proved the existence of primary
canards by using geometric singular perturbation theory in combination with blow-up trans-
formations. Guckenheimer and Haiduc [27] proved that there are infinite many secondary
canards near a folded node. Wechselberger [48] studied how secondary canards bifurcate
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from the weak primary canard and he sketched the underlying bifurcation structure. Both
Guckenheimer and Haiduc [27] and Wechselberger [48] find canards numerically by comput-
ing the one-dimensional intersection curves of the attracting and repelling slow manifolds in
a two-dimensional cross section with a shooting approach (integration from a line of initial
conditions far from the fold curve); the canards are then identified as crossings of the two
curves.

Our goal is to compute and visualize the slow manifolds as surfaces and the canards
as trajectories inR3 to obtain additional geometric insight into the dynamics near a folded
node. To this end, we consider the normal form as used in [48], which is given as the three-
dimensional vector field 




ẋ = 1
2µy − (µ + 1)z,

ẏ = 1,
ż = x + z2.

(1.2)

In (1.2) the folded node is at the origin and the parameterµ is the ratio of the eigenvalues of
the Jacobian matrix of the so-called desingularized reduced flow evaluated at the folded node.
Note that, as a result of a parameter dependent blow-up procedure, (1.2) does not depend on
ε. Nevertheless, this normal form describes how the attracting and repelling slow manifolds
intersect near a folded node. Specifically, for anyµ (1.2) has an attracting slow manifoldC−

and a repelling slow manifoldC+ that intersect in the maximal canards one wants to study;
see Sec. 2 for more information on the derivation and meaning of the normal form.

Specifically, we compute in this paper the slow manifoldsC− andC+ of (1.2) as surfaces
in R3. This is achieved by representing a piece of interest of a slow manifold as a one-
parameter family of orbit segments that satisfy suitably chosen boundary conditions. The
resulting boundary value problem is solved with the continuation and collocation routines of
the packageAUTO [13]. This setup is very flexible and accurate, because it is based on the
continuation of two-point boundary value problems [33]. It allows us to adjust the boundary
conditions to emphasize certain local features of the underlying dynamics in the vicinity of
the folded node. In particular, we are able to compute the slow manifolds past the folded
node and show their exponential growth on the other side of it. Our method allows for a very
precise visualization of the behavior of the slow manifolds in the vicinity of the folded node.
In particular, we are able to capture in detail the complexity of their intersections, that is, the
canards. For increasingµ, the two surfaces rotate more and more around the weak primary
canard (the perturbation of̂γw in Fig. 1), which leads to the creation of secondary canards
at odd integer values ofµ. Our method allows us to detect canards and to continue them as
solutions of a boundary value problem in the parameterµ. We compute up to 24 secondary
canards and show how they spiral around the weak primary canard. Furthermore, we continue
12 secondary canards inµ to obtain a numerical bifurcation diagram.

Note that very few attempts have been made so far to produce accurate computations of
slow manifolds as surfaces. Miliket al. [34] visualize slow manifolds in the normal form
of a folded saddle-node; in this special case (of codimension one) the system decouples
into a one-parameter family of two-dimensional systems, so that the slow manifolds can
be built up from individual one-dimensional stable and unstable manifolds (which can be
found by integration). Ginoux and Rossetto [24, 25] derive an implicit equation of a two-
dimensional slow manifold as the locus where the torsion vanishes. The implicit equation
is then solved numerically to obtain a grid approximation of a part of the manifold under
consideration; their examples include folded slow manifolds in Chua’s circuit model [24] and
in the Hindmarsh-Rose model of a bursting neuron [24]. Both methods are quite different
from our approach. Our boundary value problem formulation not only allows to compute
slow manifolds as global objects in a specified region of interest, but also to detect canards
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and follow them in system parameters. More generally, computing invariant manifolds by
continuation and collocation as solution families subject to suitable boundary conditions is a
very flexible method [33], which is particularly well suited for slow-fast systems [19]. Our
method is not restricted to the normal form setting but can be used more widely, for example,
for the study of canards in the self-coupled FitzHugh-Nagumo system [10].

The outline of this paper is as follows. In the next section we present some technical
background material. We briefly review slow-fast systems in Sec. 2.1, explain the blow-up
method in Sec. 2.2, and then discuss some known properties of the normal form (1.2) in
Sec. 2.3. Section 3 explains in detail how to compute slow manifolds as collections of orbit
segments. In Sec. 4 we show how the slow manifolds change withµ, and Sec. 5 is devoted to
the detection and continuation of the secondary canards. In Sec. 6 we show that the geometry
of the slow manifolds does not change topologically when the normal form is perturbed. We
conclude with a summary and outlook in Sec. 7.

2. Background on the folded node.In this section we recall some basic facts about
singularly perturbed dynamical systems, folded singularities and the blow-up method to ana-
lyze them. We consider the three-dimensional normal form (1.2), as studied, for example, by
Benôıt [3, 4], Guckenheimer and Haiduc [27], and Wechselberger [48]. Following [48] we
show how the normal form is derived from a generic three-dimensional system with a folded
node at the origin and present some useful properties of (1.2).

2.1. Slow-fast dynamical systems.The slow-time system(1.1) defines a vector field
using the slow timet. An alternative way of writing (1.1) is to introduce the fast timeτ = t

ε ,
which gives thefast-time system





u′1 = εg1(u1, u2, v, ε),
u′2 = εg2(u1, u2, v, ε),
v′ = f(u1, u2, v, ε),

(2.1)

where the prime indicates the derivative with respect to the fast timeτ . This rescaling of
time is valid only forε 6= 0 and does not modify the geometry of the trajectories. The main
question is whether it is possible to understand the dynamics for smallε > 0 by considering
the two limits of (1.1) and (2.1) given byε = 0.

The limit of the slow-time system (1.1) forε = 0 is known as thereduced systemor slow
subsystem





u̇1 = g1(u1, u2, v, 0),
u̇2 = g2(u1, u2, v, 0),
0 = f(u1, u2, v, 0).

(2.2)

System (2.2) is a set of differential algebraic equations (DAE) on the slow time scale, namely,
two differential equations constrained by the algebraic equationf = 0. This condition defines
thecritical manifold

S :=
{
(u1, u2, v) ∈ R3 | f(u1, u2, v, 0) = 0

}
, (2.3)

on which the dynamics of the reduced system (2.2) takes place. We obtain differential equa-
tions that describe the flow of the reduced system (2.2) onS as follows. Differentiating the
algebraic equationf = 0 with respect to time yields





u̇1 = g1(u1, u2, v, 0),
u̇2 = g2(u1, u2, v, 0),

−fv v̇ = fu1 u̇1 + fu2 u̇2.
(2.4)
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We then rescale (2.4) by−fv to obtain the vector field




u̇1 = −fvg1(u1, u2, v, 0),
u̇2 = −fvg2(u1, u2, v, 0),
v̇ = fu1g1 + fu2g2,

(2.5)

that generates aslow flowonS.
The limit of the fast-time system (2.1) forε = 0 is known as thelayer systemor fast

subsystem




u′1 = 0,
u′2 = 0,
v′ = f(u1, u2, v, 0).

(2.6)

The variablesu1 andu2 are constants in system (2.6) and enter the equation forv as paramet-
ers. Hence, the layer system is a two-parameter family of differential equations on the fast
time scale. The critical manifoldS plays a key role in the layer system as well, namely, as a
manifold of equilibria.

The idea of geometric singular perturbation theory [22, 31] is to understand the dynamics
of system (1.1) withε > 0 sufficiently small by splitting the motion into its fast and slow
components. The fast dynamics of (1.1) is described by the layer system (2.6), meaning
that trajectories behave like solutions of (2.6) until they get close toS. On the slow time
scale, solutions are well approximated by the reduced system (2.2); in particular, trajectories
remain confined to anε-neighborhood ofS. The overall dynamics can indeed be understood
in this way if the critical manifoldS is normally hyperbolic. This means that the dynamics
in the normal direction to the manifold dominates the dynamics in the tangent direction [29].
Due to results by Fenichel [21, 22], a normally hyperbolic critical manifoldS persists under
small perturbations as a nearby normally hyperbolic invariant manifoldSε for the singularly
perturbed system (1.1).

In the vicinity of points where normal hyperbolicity fails, the singularly perturbed prob-
lem can give rise to very complex dynamics. In order to study what happens whenS is not
normally hyperbolic, we consider the projection ofS onto the(u1, u2)-plane of slow vari-
ables. The critical manifoldS consists of regular points wherefv 6= 0 and critical points of
the projection wherefv = 0. According to singularity theory [1], regular points are generic
and they correspond to points whereS is normally hyperbolic. Moreover, a generic critical
point is a fold point, and together the fold points form a codimension-one submanifoldF of
S. AlongF two sheets ofS meet. InR3 there may be cusp points (degenerate folds), but they
are generically isolated. We focus here on fold points and their influence on the dynamics of
system (1.1).

Specifically, we consider a critical manifoldS with (locally) a nonempty fold curve that
does not contain cusp points. Therefore,S can be written asS = Sa ∪F ∪Sr, whereSa and
Sr refer to the attracting and repelling sheets ofS, respectively, that meet atF ; formally

Sa = {(u1, u2, v) ∈ S | fv(u1, u2, v) < 0},
F = {(u1, u2, v) ∈ S | fv(u1, u2, v) = 0},
Sr = {(u1, u2, v) ∈ S | fv(u1, u2, v) > 0}.

(2.7)

System (2.4) is singular alongF while the desingularized system (2.5) governs the dynamics
in the vicinity of the critical manifoldS. Note that the rescaling by−fv that achieves this
desingularization changes the direction of time wherefv > 0, that is, on the repelling sheet
Sr of the critical manifoldS.
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Roughly speaking, the original system (1.1) is governed by system (2.5) when it evolves
almost on the attracting sheetSa. The situation changes when a trajectory reaches the fold
curveF , that is, whenfv becomes zero. In the generic situation, that is, ifv̇ 6= 0 the prom-
inent dynamics switches to the fast dynamics (2.6) and the trajectory escapes fromS along a
fast fiber parallel to thev-axis. The conditioṅv = fu1g1 + fu2v2 6= 0 is called thenormal
switching condition[35] and means geometrically that the reduced flow projected onto the
(u1, u2)-plane is not tangent to the fold curveF . The point on the fold curveF where the
change of dynamics occurs is called ajump point. If S is S-shaped, that is, there are two
separate attracting sheets and two fold curves connected to a repelling sheet, then the pres-
ence of jump points typically leads to the existence ofrelaxation oscillations[35, 45], that
is, periodic solutions that involve both fast and slow segments; a detailed discussion of this
phenomenon is given in [28] for the forced Van der Pol system.

If fu1g1 + fu2v2 = 0 then (2.5) has an equilibrium on the fold curveF and there is no
jump. Such an equilibrium is called afolded singularity. According to the topological type
of the singularity as an equilibrium of system (2.6), one has genericallyfolded nodes, folded
saddles, andfolded foci. Locally, the dynamics near a folded singularity can be described
by normal forms. Normal forms for planar or three-dimensional slow-fast systems were first
derived by Il′yashenko [2]. These normal forms were subsequently used by Benoı̂t [4], Sz-
molyan and Wechselberger [44], and Guckenheimer and Haiduc [27], among others, to obtain
analytical results concerning the possible bifurcations near such folded singularities.

The case of a folded-node singularity is sketched in Fig. 1 and several trajectories of the
slow flow associated with the normal form (1.2) are shown. Notice the change of direction of
the slow flow across the fold curveF . As a result, some initial conditions onSa are attracted
to regular points onF , which leads to a jump. However, an entire wedge exists, bounded by
the singular canard̂γs and a half-line onF that ends at the folded node, where trajectories
converge to the folded node and pass through to follow the repelling sheetSr. This wedge is
called thefunnel region[48] and it is responsible for the generic existence of canard solutions
in systems withε 6= 0. Note that Fenichel theory cannot be invoked to describe the geometry
of the slow manifolds in this region of the phase space simply by using the unperturbed
limiting problems (2.2) and (2.6). Instead, blow-up methods are used to obtain the dynamics
through the funnel region.

2.2. Blow-up of the folded node.One can apply the method of blow-up in the setting
of geometric singular perturbation theory [16, 41]. The general idea is to rescale the variables
of the original problem together with the singular parameterε. In this way, one can transform
a singularly perturbed system into a regularly perturbed system that is defined on a higher-
dimensional phase space.

The slow manifoldsSa
ε andSr

ε correspond toε-leaves of three-dimensional attracting
and repelling center manifoldsMa andMr of the extended system





u′1 = εg1(u1, u2, v, ε),
u′2 = εg2(u1, u2, v, ε),
v′ = f(u1, u2, v, ε),
ε′ = 0.

(2.8)

The linearization of the extended system (2.8) has all eigenvalues equal to zero at the folded
node. Hence, one cannot apply center manifold theory at points onF and describe the beha-
vior of the slow manifolds in a neighborhood ofF . A good way of overcoming this difficulty
is to apply a blow-up transformation at the folded node, which is a degenerate singularity of
system (2.8). Roughly speaking, the blow-up method is a well-chosen coordinate transform-
ation that desingularizes such a degenerate singularity. It was originally developed for planar

7



vector fields [17], but has been adapted to the case of three-dimensional singularly perturbed
systems [44, 48]. The change of coordinates transforms the degenerate singularity at the ori-
gin into a sphereS3 that contains points with (at least) one non-zero eigenvalue. Then the
general methods of dynamical systems are applicable, in particular, center manifold theory;
see [44] for a detailed exposition of the blow-up in this specific context.

In the case of a three-dimensional singularly perturbed system with a folded node at the
origin, the desingularizing transformation is defined by

u1 = ρ2x, u2 = ρy, v = ρz, ε = ρ2ε̄,

where(x, y, z, ε̄) ∈ S3 andρ ∈ [0, ρ0] is a new radial parameter. As is explained in [48],
two chartsκ1 andκ2 of the sphereS3 suffice to understand the entire extended phase space.
These charts yield so-calleddirectional rescalingsobtained by setting one coordinate inS3

equal to±1 and desingularizing the vector field in both charts, where chartκ1 is defined by
x = −1 and chartκ2 by ε̄ = 1.

To investigate the possible intersections between the slow manifolds, that is, the existence
of maximal canards, one only needs to look at chartκ2, which describes the situation on the
blown-up locus. As a main result, the blow-up extends the normal hyperbolicity of the slow
manifoldsSa

ε andSr
ε to the blown-up sphere. After desingularization, the system inκ2 is

given by





ẋ = 1
2µy − (µ + 1)z + O(ρ),

ẏ = 1,
ż = x + z2 + O(ρ).

(2.9)

By definition of the directional rescaling in chartκ2 we haveρ =
√

ε. The key idea is now to
study system (2.9) forρ = 0, which is the normal form (1.2).

We now explain briefly why it is sufficient to consider system (1.2) to obtain all the
information concerning the original singularly perturbed system (1.1). To avoid technical
details about the blow-up, which can be found in [44, 48], we follow here the intuitive point
of view (and the underlying notations) developed in [8]. By Fenichel’s theorems, for any
fixedε > 0 sufficiently small, the slow manifoldsSa

ε andSr
ε exist outside a neighborhood of

the fold curveF , that is, foru1 < −δ (whereδ > 0 depends onε). It is possible to extend
Sa

ε andSr
ε up to sectionσ′ := {u1 = −δ′ε} (δ′ > 0 such that−δ < −δ′ε) by considering

orbit segments starting in sectionσ := {u1 = −δ} and ending in sectionσ′. Note that these
cross-sections are well defined as long as the flow is not tangent to theu2-axis, which is
satisfied in the vicinity of a folded node. Hence,σ andσ′ are defined on intervalsIu2 and
I ′u2

of u2, respectively. Then we define, still following [8], the setsSa
ρ andSr

ρ as collections
of orbit segments starting inIu2 and ending inI ′u2

. One can prove [48] thatSa
ρ andSr

ρ are
smooth perturbations of the critical manifoldS outside a neighborhood of the fold curveF
of size(O(ε), O(ρ), O(ε)) in (u1, u2, v). The great benefit of the blow-up transformation in
chartκ2 is that forρ → 0 the slow manifoldsSa

ρ andSr
ρ tend to invariant setsC− andC+ of

(1.2), respectively. This is possible because in(x, y, z), the sectionσ is given byx = −δ/ε,
hence byx = −δ/ρ2, andσ′ by x = −δ′. Therefore,Sr

ρ andSa
ρ can be seen as smoothO(ρ)

perturbations ofC+ andC−, respectively.
In other words, we can study and understand the dynamics ofC± up to the folded node;

in particular, we can investigate their transverse intersections and deduce information about
the singularly perturbed system. Indeed, by the Implicit Function Theorem, transverse inter-
sections ofC− andC+ persist under small perturbationsρ > 0, as system (2.9) is a regularly
perturbed system with respect toρ. Consequently, the geometry of the manifoldsC±, which
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we refer to as the repelling and attracting slow manifolds from now on, contains all the rel-
evant information regarding the corresponding “true” slow manifoldsSr

ε andSa
ε of system

(1.1), respectively. Indeed, the study of the geometry ofC± is the main topic of this paper.

2.3. Properties of the normal form. The normal form (1.2) was already studied, in an
equivalent form, by Benôıt in [4] and Guckenheimer and Haiduc in [27]. By looking at the
equation forż in (1.2), it is clear that the critical manifold associated with this normal form
is the parabolic cylinder

S := {(x, y, z) ∈ R3 | x + z2 = 0}, (2.10)

that is folded along they-axis, that is,

F := {(0, y, 0) ∈ R3}. (2.11)

This is exactly the picture in Fig. 1. An important property of the normal form (1.2) is its
invariance under the time-reversing symmetry(x, y, z, t) 7→ (x,−y,−z,−t). Therefore, it
suffices to concentrate on the attracting slow manifoldC−; the repelling slow manifoldC+

is given by the symmetry. A main advantage of (1.2) is that it possesses two explicit canard
solutions of algebraic growth,γs andγw, given as

γs(t) =
(
−µ2

4
t2 +

µ

2
, t,

µ

2
t

)
,

γw(t) =
(
−1

4
t2 +

1
2
, t,

1
2
t

)
.

(2.12)

We refer toγs as thestrong canardand toγw as theweak canard, because they correspond to
the strong and the weak eigendirection of the linearization of system (1.2) at the folded node,
respectively. Note that the geometry of the critical manifolds forµ > 1 and for1/µ ∈ [0, 1] is
topologically the same (where the roles ofγs andγw are interchanged); recall thatµ denotes
the ratio of the eigenvalues of system (2.5) projected onto the(y, z)-plane and linearized at
the origin. Therefore, we consider here the changes of the slow manifoldsC± as a function
of µ only for µ ≥ 1.

It has been proved thatC± intersect transversely alongγs and γw when µ is not an
integer [4, 44]. For integer values ofµ the manifoldsC+ andC− intersect transversely along
γs and tangentially alongγw. A new canard is created from the weak canardγw at every
odd integer value of the parameterµ (for µ ≥ 3) [48]. The bifurcating canardsηi are called
secondary canards. It was analytically proved in [44] that the slow manifoldsC− andC+

spiral bµc times around the weak canardγw (herebqc denote the integer part of the real
numberq). Due to the time-reversing symmetry of the normal form, this implies thatC− and
C+ makebµ−1

2 c full rotations around each other. Each one of these full rotations ends in a
transverse intersection along a secondary canard. Hence, there arebµ−1

2 c secondary canards
that successively make one additional complete revolution aroundγw. More precisely,ηi

makesi + 1
2 rotations aroundγw; see already Sec. 5. Geometrically, we can think of the

strong canardγs as the secondary canardη0, becauseγs makes a half rotation aroundγw.
Due to the symmetry of (1.1), the intersection points of the canard solutions with the section
Σ0 = {y = 0} lie on thex-axis, and their order is such thatγw is always located between
ηbµ−1

2 c andηbµ−1
2 c−1.

3. Computing slow manifolds. To get an insight into the geometry of the attracting
and repelling slow manifoldsC± we developed a computational technique for their numer-
ical approximation and visualization. The main underlying idea of our approach is that one
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can compute (a finite part of) a two-dimensional invariant manifold of a system of ordinary
differential equations as a collection of orbit segments by numerical continuation of a one-
parameter family of two-point boundary value problems. This idea can be applied in a wide
variety of contexts [33]. Below we explain how we use this general idea to computeC± for
the normal form; see [10] for details on how to computeC± for systems not in normal form.

3.1. Slow manifolds as collections of orbit segments.As is common in numerical
continuation, we consider a vector field of the form

u̇ = Tg(u, λ), (3.1)

whereg : Rn × Rp → Rn is sufficiently smooth andT ∈ R andλ ∈ Rp are parameters.
The parameterT is the total integration time. It appears explicitly as a free parameter on the
right-hand side of (3.1), so that an orbit segmentu(t) is always represented over the interval
[0, 1]. By imposing suitable boundary conditions on solutions of (3.1) we can characterize
anyk-dimensional invariant submanifold inRn × Rp. To be more precise, we consider the
boundary conditions

{
u(0) ∈ L,
u(1) ∈ Σ,

(3.2)

whereL is a one-dimensional submanifold andΣ a codimension-one submanifold ofRn.
One needs(n − 1) boundary conditions to restrictu(0) to the curveL and one boundary
condition to restrictu(1) to the(n− 1)-dimensional manifoldΣ. Hence, the total number of
boundary conditions in (3.2) isn. That is, withT as a free parameter Eqs. (3.1)–(3.2) define
a one-parameter family of well-posed two-point boundary value problems that represent orbit
segments starting atL and ending in the sectionΣ; see, for example, [11]. The family is
parametrized by the position ofu(0) on L, andT is the integration time to reachΣ from
L. Depending on the choice ofL andΣ, this general setup can be used to compute different
types of dynamical objects, including two-dimensional invariant manifolds [33] and their
one-dimensional intersection curves with the sectionΣ [19].

In the present setting the phase space is three dimensional and our goal is to find appro-
priate definitions forL andΣ so that (3.1)–(3.2) defineC± as surfaces in a region of interest.
SinceC+ can be found fromC− by symmetry in (1.2), we only explain here the computation
of C−. The family of orbit segments obtained by continuation of (3.1)–(3.2) defines (part
of) the two-dimensional manifoldC−, provided the one-dimensional submanifoldL satisfies
L ⊂ C− [22, 48]. Since we do not knowC−, we chooseL on the attracting sheetSa of the
critical manifoldS sufficiently far away from the fold curveF , that is in a region whereSa

is a good approximation ofC−. Then the boundary value problem defines an approximation
of C−. From (1.2) and (2.10) we know that

Sa = {(x, y, z) ∈ R3 | x + z2 = 0, z < 0}.
Since the fold curveF is they-axis, we define

L = L−ξ := {(−ξ, s,−
√

ξ) | s ∈ R}, (3.3)

which is the line onSa with x = −ξ parallel toF at ‘distance’ξ > 0 from F . The inter-
esting dynamics takes place near the folded node onF , so a suitable choice forΣ is a plane
transverse toF near the origin. We define

Σ = Σα := {y = α}, (3.4)

whereα ≥ 0. The two-point boundary value problem (3.1)–(3.2) for the choices (3.3) and
(3.4) defines a one-parameter family of orbit segments that lie onC− in good approximation,
providedξ is large enough.
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3.2. Finding a first orbit segment on the slow manifold.To start the continuation we
must provide a first orbit segment that solves (3.1) subject to the boundary conditions (3.2).
For the normal form (1.2) two explicit canard solutions are known, which we can use as seed
solutions. Note that neither one of the two explicit solutions has a point in common with the
attracting sheetSa of the critical manifold, which means that it is not possible to chooseξ
such that the two explicit canard solutions contain segments that start onL−ξ and solve the
boundary value problem (3.1)–(3.2). However, we only use the explicit solutions as a seed
for the Newton iteration, that is, we must find a suitable solution segment such that Newton’s
method converges to a solution of (3.1)–(3.2).

To be concrete, we start from the strong canardγs given in (2.12) and consider the initial
orbit segment

u(t) = γs(tT + t0), 0 ≤ t ≤ 1, (3.5)

for some start timet0 and total integration timeT . We chooset0 < 0 such that thex-
coordinate ofγs(t0) is equal to−ξ, that is,

−µ2

4
t20 +

µ

2
= −ξ.

In order to satisfy the second boundary conditionu(1) ∈ Σα, we need

γs(T + t0) ∈ Σα ⇔ T + t0 = α.

Note that the start timet0 must be negative, because they-coordinate acts as time in the
normal form (1.2) and we wish to preserve the direction of time. Therefore, we have

t0 = −
√

2µ + 4ξ

µ2
and T = α +

√
2µ + 4ξ

µ2
. (3.6)

The solution segment (3.5) only approximately satisfies the boundary conditionu(0) ∈ L−ξ ,

namely, the difference between thez-coordinates ofu(0) = γs(t0) and the point onL−ξ at
s = t0 is

µ

2

√
2µ + 4ξ

µ2
−

√
ξ =

µ

2
(√

µ
2 + ξ +

√
ξ
) . (3.7)

This difference is small, providedξ À µ, and decreases asξ → ∞. Hence, ifξ is large
enough, we expect that Newton’s method converges and the first correction step of the con-
tinuation leads to a solution of (3.1)–(3.2). We remark that for a slow-fast system that is not
in normal form an explicit solution is generally not known. This difficulty can be overcome
with a homotopy approach, as is demonstrated in [10].

3.3. Computation ofC− from L−ξ to Σα. The computed part ofC− depends on the

two user-specified parametersξ andα that defineL−ξ andΣα, respectively. The parameterξ

controls the accuracy of the computation in that it determines the initial distance betweenC−

and the critical manifoldSa. By construction, an orbit segment satisfying (3.1)–(3.2) con-
verges to an actual orbit segment onC− in the limit ξ →∞. It is a very difficult task beyond
the scope of this paper to find an explicitξ-dependent error bound for the approximation of
C− and how it depends onµ. To derive a practical measure for the accuracy of the computa-
tions presented here we make use of the fact that the strong canardγs is given as an explicit
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solution (2.12). As mentioned in Sec. 3.2, the orbit segment (3.5) ofγs is the seed solution
for Newton’s method, and we use the difference betweenγs(tT + t0) and the approximate
solutionu∗(t) as an indication of the overall approximation error. Namely, we consider the
pointwise difference betweenγs(tT + t0) andu∗(t) with 0 ≤ t ≤ 1 and ensure that it is
sufficiently small. Att = 0 this difference is given by (3.7), and it decreases exponentially
for t > 0; this decrease is particularly fast due to the difference in time scales. Specifically,
we only consider the difference in thez-coordinate and require that

|γs(tT + t0)− u∗(t) |z< 10−5

for all t with u∗x(t) > − 1
2ξ. In other words, this condition ensures the accuracy of the second

and relevant part of the orbit segment, and we found that it is satisfied withξ = 100 for all
µ ≤ 8.5 that we consider in this paper. For largerµ alsoξ needs to be increased; namely, we
useξ = 200 for µ = 14.5, ξ = 400 for µ = 25.5, andξ = 1000 for µ = 49.5.

The parameterα determines the location of the sectionΣα. Its choice depends on which
aspect ofC± is of interest. A natural choice isα = 0, such that the folded node (the origin) is
contained inΣα. This means thatC− andC+ are computed both up toΣ0, which emphasizes
their intersection curvesC±0 = C± ∩ Σ0. Note that these intersection curves have been
computed before by shooting methods (numerical integration of initial values ofSa); see for
example, [27, 26, 48]. By contrast, we compute the curvesC±0 as well as the surfacesC±

themselves with the collocation and continuation routines of the packageAUTO [13]. The
main advantage of using collocation, as opposed to a shooting method, is that the size of
the continuation step is determined as a variation along the entire orbit segment instead of
the initial condition alone. This feature is particularly useful for slow-fast systems, which
are extremely sensitive to variations in the initial condition [19]. Specifically, we compute
the one-dimensional curvesC±0 with an adaptation of the softwareMANBVP [19], where
orbit segments are generated according to the local curvature ofC−0 . The two-dimensional
surfacesC± are computed with anAUTO run with a fixed continuation step size, which
ensures a uniform distribution of mesh points on the surface.

In order to investigate howC− andC+ intersect near the folded node at the origin, we
consider orbit segments computed up toΣα with α > 0. By symmetryC+ ends inΣ−α,
so that the two slow manifolds are seen to interact in the region−α ≤ y ≤ α. To visualize
the geometry of this interaction it is convenient to show only the “ribbons” ofC− andC+ in
between the planesΣ−α andΣα. To this end, we clip each orbit segment of the computed
manifoldC− where it intersectsΣ−α. We then determine a mesh with a fixed number of mesh
points that are uniformly distributed according to arclength along clipped orbit segments. The
resulting ribbons ofC± can be readily visualized, which provides insight into the interaction
of the slow manifolds; see already Sec. 4.

3.4. Illustration of the method. Figure 2 illustrates our method for the normal form
(1.2) withµ = 1.2. Figure 2(a) shows an approximation of the attracting slow manifoldC−

for α = 0, that is, we computed a collection of orbit segments that start onL−100, the straight
red line in Fig. 2(a), and end inΣ0, the (x, z)-plane shown in green. The bold red curve
in Σ0 is the intersectionC−0 of C− with Σ0, and a small segment of its symmetrical image
C+

0 (blue curve, not labeled) is also shown. We started the continuation from the solution
segment (bold black curve)γs(tT + t0), t ∈ [0, 1], of the explicitly known strong canardγs

with t0 andT as defined in (3.6). The continuation is done in two directions parametrized by
they-coordinate alongL−100, where we start aty = t0 < 0.

Let us first focus on the continuation run wherey increases, because this part generates
most of the intersection curveC−0 . Note that it is natural to stop the continuation wheny = 0
is reached. In practice, we use a user-defined function inAUTO to stop aty = 0. (The

12



y

x

z Σ0

C−

L−

100

γs

yLP

γw

C−

0

(a)

y
x

z

Σ1

C−

C+

γs

γw

C+

−1

C−

−1C−

1

C+

1

(b)

.

.

FIG. 2. Global overview of the slow manifolds forµ = 1.2. Panel (a) shows the attracting slow manifoldC−
(red surface) computed from the line of initial conditionsL−100 (red line) up to sectionΣ0; panel (b) shows the parts
of C− andC+ (red and blue surfaces, respectively) in between the sectionsΣ−1 andΣ1. The two primary canards
γs andγw have been hightlighted as bold black curves; the red bold curve (panel (a) only) is the orbit starting at
the intersection pointyLP betweenL−100 and thex-nullcline. We also show the intersection curvesC±α of the slow
manifoldsC± with the sectionsΣ0 and Σ±1. See also the accompanying animationdko fn a01.gif of the
computation ofC− for µ = 8.5.

solution family exists fory > 0, but thenT becomes negative.) The result from the first
continuation run, as shown in Fig. 2(a), is an excellent illustration of Fenichel theory [22],
which states that the attracting and repelling sheets of the critical manifold perturb smoothly
to locally invariant manifolds for smallε 6= 0 outside a neighborhood of the fold curveF .
In fact, outside a neighborhood of the origin,C−0 is almost identical to the intersection of the
critical manifoldS with Σ0. At the scale of Fig. 2(a) it is difficult to see what happens near
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the folded node; an enlarged view ofC±0 is presented in the next section.
During the second continuation run, wheny is decreasing, we encounter the orbit seg-

ment betweenL−100 andΣ0 that corresponds to the weak canardγw, for which we have an
explicit expression given in (2.12). Note that the symmetry of the normal form forces the
attracting and repelling slow manifolds to intersect exactly on the linez = 0 in the section
Σ0. Hence, by imposing the user-defined functionuz(1) = 0 as part of the continuation of
the one-parameter family that solves (3.1)–(3.2),AUTO [13] automatically detects all canard
solutions of the normal form (1.2); a more detailed discussion is provided in Sec. 5. The ac-
tual canard solutions are obtained by concatenating the detected orbit segment onC−, which
ends inΣ0 on the linez = 0, with its symmetrical copy onC+ on the other side ofΣ0.

As y decreases further, we encounter another special solution during the continuation,
which is shown as the bold red curve in Fig. 2(a) that starts at the point labeledyLP onL−100.
This pointyLP is the unique point

yLP = −2(µ + 1)
µ

√
ξ,

where thex-direction of the vector field (1.2) vanishes onL−100; that is,yLP ≈ 36.777 is the
intersection ofL−100 with thex-nullcline for µ = 1.2. We know from Fenichel theory [22]
that, away fromF , the attracting slow manifoldC− is a graph over the attracting sheetSa of
the critical manifold. Hence, ifL−100 were exactly onC− then all initial conditions onL−100
beyondyLP, that is, withy-coordinates less thanyLP, would lie on (backward-extended) orbit
segments that intersectL−100 at y-coordinates larger thanyLP. This behavior corresponds
exactly to the case that an (un)stable manifold in a Poincaré section crosses the locus where
the flow is tangent to the section; see [19] for more details.

In practiceL−100 only lies approximately onC− and solutions beyondyLP do not lie
exactly on the computed approximation ofC−, but still very close to it. Hence, it appears as
though a new part ofC− is obtained, which manifests itself as a very sharp fold, or ‘crease,’
on the approximation ofC−. From a computational point of view, the continuation makes
sense only foru(0) ∈ [0, yLP], because continuation beyondyLP produces a second approx-
imation of the same part ofC−. Figure 2(a) does show a computation ofC− pastyLP to
illustrate what happens. It was reported in [48] that the turning pointyLP gives rise to addi-
tional canard solutions that persist only for a very short interval ofµ-values. The discussion
above, however, implies that these additional ‘canards’ appear due to the numerical error of
the approximation and, hence, are spurious. Note further thatyLP → −∞ asξ →∞, that is,
in the limit whereL−ξ converges to a line onC−, the pointyLP no longer exists.

Figure 2(b) demonstrated how the ribbons ofC± in betweenΣ1 andΣ−1 can be used
as a means of visualizing the interaction of the two manifolds. For clarity, the intersection
curvesC±1 andC±−1 are shown as well. The geometry ofC± is further enhanced by including
the strong and weak canardsγs andγw, respectively.

4. Geometry of the slow manifolds.We now study the slow manifoldsC± for different
values of the parameterµ. We use bothα = 0 andα > 0 in the method from Sec. 3 to
illustrate not only the intersection curvesC±0 of C± with Σ0, as was done in [48], but also
the geometry of the two-dimensional slow manifoldsC± themselves. A main goal is to see
how maximal canards arise as new intersection curves betweenC− andC+. In all figures the
attracting slow manifoldC− is colored red, the repelling slow manifoldC+ blue, the section
Σα is green, and the strong canardγs and the weak canardγw are black. Asµ is increased,
secondary canards appear, which we label successively asηi. We adopted a particular color
coding for these secondary canards:η1 is orange,η2 is magenta,η3 is cyan, and we repeat
these successive colors for each group of three consecutive secondary canards afterη3.
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FIG. 3. Local three-dimensional views of the slow manifoldsC± computed up to sectionΣ0 (panels (a1)
and (b1)), together with two-dimensional illustrations of their intersectionsC±0 with Σ0. Panel (a) corresponds to
µ = 1 and panel (b) toµ = 1.2. The weak canardγw and the strong canardγs are shown as black curves and
their intersections withΣ0 are denoted by black dots. See also Figs. 4 and 5.

4.1. Geometry ofC± up to Σ0. We begin with a series of images forµ = 1, µ = 1.2,
µ = 2.5, µ = 3.5, andµ = 8.5 that illustrate the behavior ofC± up to the sectionΣ0; see
Figs. 3(a),(b), 4(a),(b), and 5(a), respectively. Each figure shows a three-dimensional view
in a neighborhood of the folded node ofC+ andC−, computed up toΣ0, together with
the corresponding intersections in the planeΣ0. To facilitate comparison and analysis, the
viewpoint and aspect ratio is identical for all three-dimensional pictures, although the ranges
along the axes vary.

Figure 3(a) shows the caseµ = 1, which acts as the starting point whereC± have a
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FIG. 4. Local three-dimensional views of the slow manifoldsC± computed up to sectionΣ0 (panels (a1)
and (b1)), together with two-dimensional illustrations of their intersectionsC±0 with Σ0. Panel (a) corresponds to
µ = 2.5 and panel (b) toµ = 3.5. Note the existence of the first secondary canardη1 (orange dot) in panel (b2),
which appears in a transcritical bifurcation atµ = 3. See also Figs. 3 and 5.

non-transverse tangent intersection along a single orbit. The first two (maximal) canardsγs

andγw are created asµ is increased. They are shown in Fig. 3(b) forµ = 1.2; see also
Fig. 2. Note thatγs andγw are now two distinct orbits of the normal form (1.2) in which the
slow manifoldsC± intersect transversely. The caseµ = 1.2 is representative for all values
1 < µ < 2.

A qualitative change occurs atµ = 2. Figure 4(a) shows the situation forµ = 2.5. As
can be observed particularly in panel (a2), the tips ofC±0 have rotated around so that they now
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FIG. 5. Local three-dimensional views of the slow manifoldsC± for µ = 8.5 computed up to sectionΣ0 in
panel (a); the inset panel (a2) shows the intersectionsC±0 with Σ0. See also Figs. 3 and 4 and the accompanying
animationdko fn a02.gif . Panel (b) shows the ribbons ofC± in betweenΣ−1 andΣ1 along with the corres-
ponding intersection curvesC±−1 andC±1 . There are three secondary canardsη1, η2, andη3, indicated by colored
dots inΣ0 in panel (a2).

point inside the region delimited byγs andγw. Indeed, these tips rotate continuously withµ.
At µ = 2 the tangent bundlesTγwC± coincide and the directions inΣ are parallel to thez-
axis, that is,C±0 both have a vertical tangency vector atγw(0) andC−0 continues smoothly as
C+

0 pastγw(0). Forµ = 3 the tips have rotated so that the tangent bundlesTγwC± coincide
again, butC±0 now both have a tangency vector parallel to thex-axis and the manifoldsC±

meet in a cusp. This cusp-shaped tangency is one of the transcritical bifurcations that occur
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FIG. 6. Three-dimensional views of the ribbons ofC± in betweenΣ−0.5 andΣ0.5, together with all maximal
canards and the intersection curvesC±±0.5. Panel (a) corresponds toµ = 25.5, with 12 secondary canards, and
panel (b) corresponds toµ = 49.5, with 24 secondary canards. See also Figs. 2(a), 5(b) and the accompanying
animationdko fn a03.gif .

for all odd integer values ofµ ≥ 3 and results in a secondary canard. Figure 4(b) shows a
phase portrait forµ = 3.5 with the first secondary canardη1 (orange curve). As can be seen
clearly in Fig. 4(b2), there are now three intersection points ofC±0 in Σ0. Note thatγw is
located betweenη1 andγs on thex-axis.

Figure 5(a) shows the situation forµ = 8.5, where we have three secondary canards,
denotedη1 (orange),η2 (magenta), andη3 (cyan). It gives an idea of how the secondary
canards appear as a result of the spiralling motion ofC± around the weak canardγw; this
is particularly visible forC±0 in Σ0, shown in Fig. 5(a2) and in the accompanying animation
dko fn a02.gif . The figure also illustrates the fact thatC± makebµ−1

2 c full rotations
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FIG. 7. Different views of the attracting and repelling slow manifoldsC− andC+, respectively, to illustrate
the spiralling dynamics of the secondary canards around the weak canardγw (black curve). The parameterµ is 8.5
in panel (a),µ = 14.5 in panel (b),µ = 25.5 in panel (c), andµ = 49.5 in panel (d).

aroundγw.

4.2. Ribbons ofC± near the folded singularity. Figures 3, 4, and 5(a) give a good
insight into the topological changes of the geometry ofC±. After the bifurcation of maximal
canards atµ = 1, all secondary maximal canards bifurcate fromγw in transcritical bifurc-
ations at odd integer values ofµ. To bring out this behavior more clearly, we also compute
ribbons ofC± in betweenΣ−α andΣα for suitableα > 0. Figure 5(b) showsC± in between
Σ−1 andΣ1, along with the intersection curvesγs, γw (black curves),η1 (orange), andη2

(magenta); note thatη3 is not shown in this picture, because it cannot be distinguished from
γw at this scale. The intersection curvesC±−1 andC±1 in Σ−1 andΣ1, respectively, give some
idea of the exponential growth away from the fold curve in forward time (forC−) and back-
ward time (forC+) of the solutions on the slow manifolds. Indeed, the maximal canardsγs,
γw andηi, for i = 1, . . . , bµ−1

2 c, are the only solutions of (1.2) that grow algebraically both
in forward and backward time.
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Figure 6 showsC± for much larger values ofµ, namely, forµ = 25.5 andµ = 49.5
in panels (a) and (b), respectively. Due to the exponential growth of the slow manifolds, we
show here ribbons ofC± only in betweenΣ−0.5 andΣ0.5. The figure shows the increased
complexity ofC± with many more intersection curves that form additional secondary ca-
nards. Forµ = 25.5 there are twelve secondary canards that wind aroundγw; only the first
four are labeled in Fig. 6(a). Forµ = 49.5 there are 24 secondary canards, but again onlyη1,
η2, η3, andη4 are labeled in Fig. 6(b). The increase inµ causes an increase of the spiralling
amplitude of the intersection curvesC±−0.5 andC±0.5 in Σ−0.5 andΣ0.5, respectively. By
comparing Fig. 6(a) and (b), one can clearly see that the strong canardγs and the labeled
secondary canardsη1, η2, η3, andη4 lie further away from the weak canardγw and from each
other; see also the accompanying animationdko fn a03.gif .

Figure 7 illustrates the increasing complexity withµ of the two slow manifolds near the
folded node by showingC± for µ = 8.5, µ = 14.5, µ = 25.5 andµ = 49.5. Here we
rotated the slow manifoldsC± about thez-axis with the visualization packageGEOMVIEW

[39] to generate common enlarged views centered around the weak canardγw. In this way,
one obtains a good impression of the spiralling behavior of the secondary canards around
γw and how their positions and distances toγw change withµ. Figure 7(a) shows that for
µ = 8.5 C− andC+ intersect in the two secondary canardsη1 andη2. Forµ = 14.5 there
are a total of six secondary canards, four of which,η1 to η4, are shown in Fig. 7(b). Note
how the distance ofη1 andη2 from the central weak canardγw (black curve) is now much
larger forµ = 14.5; in a way, this creates space forη3 andη4 to spiral aroundγw as well.
For µ = 25.5 there are twelve secondary canards in total, but onlyη1 to η4 are labeled in
Fig. 7(c). Similarly, forµ = 49.5 in Fig. 7(d) there are24 secondary canards, of which the
first nine are clearly visible while onlyη1 to η4 are labeled.

5. Geometric study of the secondary canards.As we have seen, the secondary ca-
nards arise as intersections of the slow manifoldsC− andC+. We now find them directly as
special orbits within the boundary value problem setup in Sec. 3. This allows us to visualize
and discuss their spiralling behavior with respect to the weak canardγw. Furthermore, we
continue the secondary canards in the parameterµ to reveal an overall bifurcation diagram.

5.1. Detection of secondary canards.During the continuation of (3.1)–(3.2) for fixed
µ the end pointsu(1) ∈ Σ0 of the computed orbit segments oscillate about thez-axis; see, for
example, Fig. 5(a2). Due to symmetry, a secondary canard is characterized by the condition
that thez-coordinateuz(1) satisfiesuz(1) = 0. Hence, secondary canards can be detected
during the continuation by monitoring this condition (with a user-defined function inAUTO).
Recall that the pointuz(1) is a function of they-coordinateuy(0) of its begin pointu(0),
which varies alongL−ξ .

Figure 8 shows the graph ofuz(1) as a function ofuy(0) for µ = 49.5, where we
show data for the run that starts from the strong canardγs for which we haveuy(0) =
t0 ≈ −1.29. Due to the spiralling nature ofC− ∩ Σ0 the graph oscillates with a rapidly
decreasing amplitude; note that the continuation is in the direction of negativeuy(0). The
enlargement in the inset of Fig. 8 shows the oscillation ofuz(1) in the region whereη12 to η15

are detected and the oscillation amplitude has decreased to values of order10−4. Numerically
it becomes increasingly difficult to detect whereuz(1) changes sign when the oscillation
amplitude becomes very small. In other words, for largeµ as in Fig. 8 forµ = 49.5 it is quite
a challenge to detect the secondary canards that lie very close toγw.

For all values ofµ in this paper we start the continuation with theAUTO accuracy settings
as shown in row (a) of Table 5.1. This is sufficicient for the reliable detection of theηi even
for µ = 25.5, but for the caseµ = 49.5 shown in Fig. 8 the detection stops when extrema
of uz(1) are less than10−9 in modulus. At this stage the secondary canardsη1 to η17 have
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FIG. 8. Graph of thez-coordinateuz(1) of the end pointu(1) of the computed orbit segments onC− for
µ = 49.5 as a function of they-coordinateuy(0) of its begin pointu(0) ∈ L−ξ , where we usedξ = 1000. The

continuation starts from the weak canardγw and secondary canardsηi are detected whenuz(1) = 0.

NTST NCOL DS DSMIN DSMAX EPSS
(a) 200 4 0.001 5×10−4 0.01 10−4

(b) 400 6 0.001 10−7 0.01 10−7

TABLE 5.1
AUTO accuracy parameters as used during the detecting the secondary canards of(1.2). Row (a) is our regular

accuracy setting, and row (b) is the increased accuracy as used forµ = 49.5. HereNTST is the number of mesh
points,NCOL the number of collocation points,DSMIN andDSMAX are the minimal and maximal stepsizes for
the continuation, andEPSSis the relative arclength convergence criterion for the detection of special solutions; all
otherAUTO accuracy parameters are set to their default values.

been detected reliably. The next four secondary canardsη18 to η21 are found in a second
run, where we increase the accuracy parameters to the settings given in row (b) of Table 5.1.
Nevertheless, the detection ofη22 to η24 is very difficult even with the increased accuracy
settings, becauseuz(1) is now consistently below10−15 in modulus. Since we are reaching
the limit of machine precision spurious roots ofuz(1) are reported, out of which we need to
selectη22 to η24. This can be done by taking into consideration the distance between roots in
uy(0), which leads to a selection that is consistent with the detected secondary canardsη1 to
η21; see already Fig. 11(d).

Once a secondary canard has been detected for a fixed value ofµ as a zero ofuz(1), it can
be continued in the parameterµ by imposinguz(1) = 0 as an additional boundary condition.
In this way, we can compute theµ-dependent families of all detected secondary canards.
We remark here that the oscillations ofuz(1) near a fixed canard increase asµ is increased.
Hence, canardsηi for largei can be detected reliably for largerµ and then continued back
into the range of lower values ofµ.
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FIG. 9. Spiralling behavior of the secondary canards of(1.2)with µ = 8.5. Panel (a) shows a global view of
the critical manifoldS with the fold curveL and the singular canardsbγs andbγw (grey). The corresponding strong
canardγs and weak canardγw of (1.2)are shown in black. Note how the three secondary canardsη1, η2, andη3

spiral aroundγw. Panels (b) and (c) show the projections onto the(x, z)- and(y, z)-planes, respectively.

5.2. Spiralling behavior of the secondary canards.To explain the spiralling of the
secondary canards around the weak canard we concentrate on the caseµ = 8.5, for which
there are three secondary canards,η1 toη3. They are shown in Fig. 9 together with the primary
canardsγs andγw (black curves). Figure 9(a) is a three-dimensional view of the canards,
where we also show for orientation the critical manifoldS (the grey parabolic cylinder) with
the fold curveL (thick grey line) and the singular canardsγ̂s and γ̂w (grey) onS. The
primary canardsγs andγw (black) are perturbations (on the blown-up sphere) ofγ̂s andγ̂w.
Furthermore, the secondary canardsηi lie seemingly parallel toγs for |x| large, but follow
γw near the fold. With increasingi theηi lie closer toγw as they spiral increasingly around it.
Figure 9(b) and (c) are projections of the primary and secondary canards onto the(x, z)- and
(y, z)-planes, respectively. Figure 9(b) illustrates how each new secondary canard makes one
more full rotation around the weak canardγw. Figure 9(c) focuses on the (slow) dynamics of
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FIG. 10. Detailed view of the three secondary canards andγw for µ = 8.5. The weak canardγw lies in the
planeΣw and the three secondary canards start and end in the planeΣ⊥w that is chosen perpendicular toΣw far
enough away from the fold. The intersections of the secondary canards withΣw are marked by dots to emphasize
the rotations aroundγw.

the secondary canards in the neighborhood of the fold. The grey regions indicate the funnel
through which the weak canards move, which is delimited by the two primary canardsγw

andγs; see also Sec. 2.
Figure 10 is a visualization with the packageGEOMVIEW [39] in the spirit of a wire

and cardboard model to bring out the spiralling of the secondary canardsη1 to η3 around
γw. Namely, shown are the planeΣw = {y = 2z} that containsγw and the planeΣ⊥w =
{x = −10} that is perpendicular toΣw chosen so that all spiralling behavior is captured. The
secondary canardsη1 to η3 start onΣ⊥w belowΣw and return toΣ⊥w aboveΣw. Notice thatη1

has three intersection points (yellow dots),η2 has five intersection points (magenta dots), and
η3 has seven intersection points (blue dots) withΣw. This illustrates the theoretical results
thatηi makesbµ−1

2 c rotations aroundγw. Figure 10 also illustrates that the secondary canards
ηi lie successively closer toγw in the region of the fold.

The spiralling character of a secondary canardηi does not depend on the value ofµ.
When a secondary canards is created in a transcritical bifurcation closest toγw at an odd
integer value ofµ, its rotating property is fixed. This is illustrated in Fig. 11 with projections
onto the(y, x)-plane of all canards forµ = 8.5, µ = 14.5, µ = 25.5, andµ = 49.5,
respectively. For each case we choose a region of the(y, x)-plane that allows for a comparison
between the panels; specifically, thex-maximum ofγs is fixed and they-range is adjusted
so that the last secondary canard is seen to ‘leave’γw. Figure 11(a) forµ = 8.5 should
be compared directly with Fig. 9. There are six secondary canards in Fig. 11(b), twelve in
Fig. 11(c) and24 in Fig. 11(d). Overall, the secondary canards run parallel to (have the same
slope as) the strong canardγs for large |x|, and then spiral aroundγw. Observe that the
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FIG. 11. Representation in the(y, x)-plane of the primary and secondary canards for four different values of
µ. From panel (a) to panel (d)µ = 8.5, µ = 14.5, µ = 25.5, andµ = 49.5, respectively, where shown part of the
(y, x)-plan is chosen so that the maximum ofγs is fixed and all secondary canards are covered.

maxima of theηi appear to line up along a curve that connectsγw to the maximum ofγs; an
initial investigation showed that this curve is not a straight line. It would be an interesting
challenge to study limiting features of the canards in a suitably rescaled(y, x)-plane forµ
tending to∞.

5.3. Continuation of the secondary canards inµ. It is a particular advantage of our
boundary value problem setup that secondary canards can be continued in the parameterµ.
Figure 12 shows the result of the continuation of the secondary canardsη1 to η12, where we
plot thex-coordinateux(1) of the end point inΣ0. Also shown in this bifurcation diagram are
the primary canardsγw andγs. They are determined from (2.12) as the straight linesux(1) =
1
2 andux(1) = µ

2 , respectively, which intersect transversely atµ = 1. The continuation was
started by detecting all twelve secondary canards forµ = 25.5, where we usedξ = 1000 to
ensure sufficient accuracy for their continuation forµ > 25.5.

Figure 12(a) shows howη1 to η12 bifurcate fromγw at odd integer values. Notice that
the branches ofηi for odd i are in the region belowγw = 1

2 , while those for eveni are in
the region aboveγw = 1

2 . This agrees with [48, Fig. 17] of Wechselberger, who sketched the
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FIG. 12. Continuation ofηi, 1 ≤ i ≤ 12 in µ. Shown are the projections ofηi onto the(µ, x)-plane with
γs andγw included for reference. Panel (a) is a zoomed view that shows how the first twelve secondary canards
bifurcate fromγw at odd integer values ofµ; the bifurcation points forη1 to η12 are indicated by thick colored dots.
Panel (b) shows an enlarged view of the continuation up toµ = 500.

branches of secondary canardsηi as straight lines that bifurcate fromγw at an angle. As can
be seen in Fig. 12(a), the branches ofηi are actually tangent toγw and the degree of tangency
appears to increase withi. Figure 12(b) shows the branches ofηi for the much largerµ-range
up toµ = 500. This image suggests that in the limit of largeµ the branches for oddi appear
to have slope12 asγs, while those for eveni appear to have slope− 1

2 . These slopes agree
with the slopes suggested by Wechselberger’s sketch [48, Fig. 17].

6. Beyond the normal form. It is in the nature of a normal form that (1.2) has special
properties. SpecificallyC− andC+ are each other’s images under a symmetry operation.
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FIG. 13. Slow manifolds and canard solutions of(2.9)with µ = 8.5 andε = 0.1. The manifolds are smooth
deformations of the equivalent manifolds forε = 0, but the attracting and repelling slow manifolds are no longer
related by symmetry; compare with Fig. 5.

From the computational point of view, this means that onlyC− needs to be computed. Fur-
thermore, secondary canards can be detected and continued by considering the condition
uz(1) = 0. However, for a system that is not in normal form the symmetry of the normal
form is typically lost. Hence, in general the attracting and repelling slow manifolds must be
computed separately as the solution families of two different two-point boundary value prob-
lems. As a consequence, the primary and the secondary canards must be detected as solutions
correcponding to intersection points of the curvesC− ∩ Σ0 andC+ ∩ Σ0.

As an example, we show here what the slow manifolds look like in the perturbation of
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the normal form (1.2) that is given by (2.9) for small nonzeroρ =
√

ε, that is,




ẋ = 1
2µy − (µ + 1)z +

√
ε,

ẏ = 1,
ż = x + z2 +

√
ε.

(6.1)

Note that system (6.1) has the same critical manifold as the normal form (1.2), so that its
slow manifolds can be computed with the same boundary conditions as for (1.2). Namely, we
require that the orbit segments start on the lineL−ξ defined by (3.3). For the computation of
the repelling slow manifold, we reverse time in (6.1) and consider

L+
ξ := {(−ξ, s,

√
ξ) | s ∈ R},

which lies onSr instead ofSa, again parallel toF at ‘distance’ξ > 0 from F . Furthermore,
we require the orbit segments to end in a transverse sectionΣα given by (3.4) withα = 0 or
α = ±1.

We consider here the caseµ = 8.5 andε = 0.1 and fixξ = 100 as before. Forε = 0.1
the explicitly known solution ofγs of the unperturbed system (1.2) does not work as a starting
solution. (Newton’s method does not converge.) Therefore, starting fromγs we first compute
theε-dependent family of orbit segments that solve (6.1) subject to the boundary conditions
(3.2). Here we fix the parameters that defines the position onL−ξ to the value (given byγs)
of

s = t0 = −
√

2µ + 4ξ

µ2

as defined in (3.6). Whenε = 0.1 is reached a first orbit segment onC− has been found; a
first orbit segment onC+ is found similarly by starting a continuation inε from the part of
γs that connectsL+

ξ to Σα. We now fixε = 0.1 and continue ins to sweep outC− andC+,
respectively.

Figure 13 shows the slow manifolds of (6.1) forµ = 8.5 andε = 0.1. This figure should
be compared with Fig. 5 forε = 0; for ease of comparison we use the same viewpoints in
both figures. In Fig. 13 the slow manifoldsC− andC+ have deformed and are no longer
each other’s image under a symmetry operation. Nevertheless, the situation is topologically
the same as that forε = 0 in Fig. 5. Namely,C− andC+ intersect in the same way in the
primary canardsγs andγw and the secondary canardsη1 to η3; see Fig. 13(a2) and (b). In
particular, the rotating behavior ofη1 to η3 aroundγw is preserved. The canards are found
by detecting orbit segments onC− andC+ that end at the same point inΣ0 (within the
accuracy of the computation). Concatenation of the two respective orbit segments results
in the representation of the secondary canard as a solution that starts onL−ξ and ends at

L+
ξ . After applying a Newton step to get an exact solution to this boundary value problem,

detected canards can be continued in a system parameter.

7. Conclusion. We performed a study of slow manifolds and associated canard solu-
tions in a three-dimensional normal form of a slow-fast system with a folded node. Spe-
cifically, we computed the two-dimensional attracting and repelling slow manifolds as one-
parameter families of orbit segments that satisfy appropriately chosen boundary conditions.
This approach also allows us to detect and continue the associated canard solutions in which
the two slow manifolds intersect. The visualization of these geometric objects for different
values of the normal form parameterµ (the ratio of eigenvalues at the folded node) provided
unprecedented insight into the geometry of the dynamics near a folded node. We discussed
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in detail how the secondary canards spiral around the weak primary canard and presented the
first computed bifurcation diagram showing branches of the secondary canards as a function
of µ.

The numerical continuation of solution families of a well-posed boundary value prob-
lems can be performed extremely accurately. In our computations we use the continuation
and boundary value solver routines ofAUTO, which uses pseudo-arclength continuation and
collocation with piecewise-polynomial approximations. Hence, the boundary value problems
we define are solved subject to established error bounds. Therefore, the accuracy of our cal-
culations of slow manifolds and canard solutions comes down to determining how the choice
of boundary condition influences the distance of the approximation from the real object. In
our setup we make use of the fact that far away from the fold line the slow manifolds are very
close to the critical manifold. Hence, we restrict the approximating orbit segments to such
a far away line on the critical manifold. We ensured by numerical checks that the pointwise
distance to the true slow manifolds along selected orbit segments is sufficiently small. A more
detailed error analysis is a challenging subject for further investigation, because the overall
approximation error depends, in general, not only on the distance from the fold curve but also
on system parameters.

While this paper concentrates on the normal form of a folded node, our boundary value
problem approach to computing slow manifolds and canard solutions can be applied more
widely. This was demonstrated with the example of a perturbation of the normal form that
breaks the underlying symmetry. In [10] we computed slow manifolds and canard solutions
in the self-coupled FitzHugh Nagumo model. This required the implementation of a homo-
topy approach to generating initial approximate orbits on the attracting and repelling slow
manifolds. In this way, we were able to identify sectors between different secondary canards
that correspond to mixed-mode oscillations with different numbers of small oscillations.

In the near future we plan to use our computational approach to investigate other slow-
fast systems arising in applications, especially those showing mixed-mode oscillations. This
is relatively straightforward for the case of three-dimensional vector field models with a clear
splitting of the phase space into slow and fast variables, such as the self-coupled FitzHugh
Nagumo model [10] or the forced Van der Pol system [6, 28]. However, we believe that
the computation of invariant manifolds would also be a very helpful tool in situations where
there is no obvious split of the system into slow and fast variables. The goal here would be to
identify slow and fast components of the dynamics numerically, and to use this knowledge to
unravel the geometry of slow manifolds and associated canard solutions.
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