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Mixed-mode oscillations and slow manifolds in the
self-coupled FitzHugh Nagumo system
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(Dated: August 8, 2007)

We investigate the organisation of mixed-mode oscillations in the self-coupled FitzHugh Nagumo
system. This type of oscillations can be explained as a combination of relaxation oscillations and
small-amplitude oscillations controlled by canard solutions that are associated with a folded singu-
larity on a critical manifold. The self-coupled FitzHugh Nagumo system has a cubic critical manifold
for a range of parameters, and an associated folded singularity of node type. Hence, there exist cor-
responding attracting and repelling slow manifolds that intersect in canard solutions. We present
a general technique for the computation of two-dimensional slow manifolds (smooth surfaces). It is
based on a boundary value problem approach where the manifolds are computed as one-parameter
families of orbit segments. Visualisation of the computed surfaces gives unprecedented insight into
the geometry of the system. In particular, our techniques allow us to identify canard solutions as
the intersection curves of the attracting and repelling slow manifolds.

A mixed-mode oscillation (MMO) is an oscil-
latory cycle formed by several small-amplitude
oscillations followed by a number of large ex-
cursions. While frequently observed in both ex-
periments and models of chemical or biological
systems [1], the precise mechanism that gener-
ates such MMOs in slow-fast systems has only
recently been explained [2–4]. The main ingredi-
ents for the occurrence of MMOs are the presence
of (at least) one fast variable, two slow variables
and a folded critical manifold. The dynamics in
such a system consists of slow motion on an at-
tracting slow manifold, followed by a fast jump
to another attracting slow manifold. This clas-
sical behaviour of a relaxation oscillation accounts
for the large excursions of an MMO. The small-
amplitude oscillations of the MMO, on the other
hand, are organised by so-called canard solutions,
which are intersection curves of attracting and re-
pelling slow manifolds. In this paper we showcase
a technique to compute attracting and repelling
slow manifolds. Specifically, we explain how each
slow manifold can be approximated as the one-
parameter solution family of a two-point bound-
ary value problem. By concatenation of two such
boundary value problems we are able to identify
the canard solutions that separate the slow man-
ifolds into regions of different types of MMOs.
We demonstrate our method by computing slow
manifolds and canard solutions in the self-coupled
FitzHugh Nagumo system — a model that arises
in the study of synchronization in a network of
neurons.

∗Electronic address: M.Desroches@bristol.ac.uk

Throughout, we consider the self-coupled FitzHugh
Nagumo system in the form





v′ = h− v3 − v + 1
2

− γsv,

h′ = −ε(2h + 2.6v),
s′ = βH(v)(1− s)− εδs.

(1)

System (1) is a simplified model for the study of syn-
chronization in a network of Hodgkin-Huxley neurons;
see also Wechselberger [4]. In particular, this model rep-
resents only one neuron with self-coupling, which is equi-
valent to a network of coupled neurons. The variable v
represents the voltage potential of the neuron membrane,
h the inactivation of the sodium channels, and s the syn-
aptic coupling in the network. The parameter γ is the
coupling strength, β the activation rate, and ε and δ de-
termine the decay rates of inactivation h and the synapse
s. By means of the Heaviside function H(v), system (1)
incorporates the feature that s varies slowly when v < 0
(the silent phase), while s is fast when v > 0 (the act-
ive phase). Note that the parameter β only plays a role
when the system is in the active phase. Indeed, ε acts as
the singular perturbation parameter and both h and the
deactivation of s evolve on a much slower timescale than
the voltage potential v.

If the self-coupling is not present (γ = 0) then the
neuron fires an action potential at a rate of about 100 Hz.
The introduction of the synaptic coupling with a partic-
ular strength γ > 0 substantially slows down the firing
rate, and small-amplitude oscillations can be observed in
between the action potentials; see already Fig. 1(a) where
the frequency of the action potentials is only about 5 Hz.

The self-coupled FitzHugh Nagumo system was used
by Wechselberger [4] to illustrate how canards organise
the behaviour in a real application. His analysis focused
on how the canard solutions divide the attracting slow
manifold into sectors that correspond to an increasing



2

number of small-amplitude oscillations. We take this
analysis further by computing the actual attracting and
repelling slow manifolds. While similar in spirit to the
work of Wechselberger [4] and Milik et al. [2], our com-
putational technique is based on the continuation of two-
point boundary value problems [5], which is more power-
ful and versatile than integration methods used previ-
ously. Furthermore, within our set-up we can calculate
the canard solutions directly as the intersection of an at-
tracting and a repelling slow manifold. This offers the
possibility of following canard solutions when a para-
meter of the system is varied. The method presented
here has been used in [6] to compute slow manifolds and
associated canard solutions for a three-dimensional nor-
mal form of a slow-fast system with a folded node; we
refer to [4, 7] for details on different normal forms of
the folded node singularity. In the normal-form setting
a start solution for the computation is known analytic-
ally. The self-coupled FitzHugh Nagumo system studied
here also has a folded node, but it is not in normal form
and no start solution is known. The aim of this paper is
to show how one can compute the slow manifold in this
more general application setting.

This paper is organised as follows. In the next section
we present relevant properties of (1) in the silent phase
in between the action potentials, where we closely fol-
low [4]. Section II explains how a two-point boundary
value problem can be set up for the computation of the
attracting and repelling slow manifolds. We also discuss
how the concatenation of two such boundary value prob-
lems can be used for finding canard solutions. We end
with a discussion in Sec. III.

I. PROPERTIES OF THE SELF-COUPLED
FITZHUGH NAGUMO SYSTEM

The occurrence of MMOs in the self-coupled FitzHugh
Nagumo system is organised by the dynamics of the silent
phase in between the action potentials. This phase can
be defined as v < 0; compare also Fig. 1(a). For v < 0
the Heaviside function H(v) ≡ 0 in system (1), so that
we only need to study the silent-phase system





v′ = h− v3 − v + 1
2

− γsv,

h′ = −ε(2h + 2.6v),
s′ = −εδs.

(2)

We consider the self-coupled FitzHugh Nagumo system
(1) for the fixed silent-phase system (2) given by γ = 0.5,
ε = 0.015 and δ = 0.565. The dynamics of (2) gives rise
to MMOs of (1) (that also involve the active phase where
v > 0).

System (2) has the natural formulation of a three-
dimensional slow-fast system with two slow variables h
and s and one fast variable v. There is a wealth of liter-
ature on the dynamics of slow-fast systems of this type;

we refer to [8–18] for an entry into the literature. An im-
portant object is the critical manifold S for ε = 0, which
for a three-dimensional system with two slow variables is
a surface. For system (2), the critical manifold S is im-
plicitly defined by the equation v′ = f(v, h, s) = 0, which
gives

S :=
{

(v, h, s) ∈ R3

∣∣∣∣ h =
v3 + (2γs− 1)v + 1

2

}
. (3)

The surface S has a fold (with respect to the fast variable
v) along the curve

F :=
{

(v, h, s) ∈ R3

∣∣∣∣ h =
1
2
− v3, s =

1− 3v2

2γ

}
. (4)

The fold curve F has a cusp point at (v, h, s) = (0, 1
2 , 1

2γ )
and divides the surface S into an attracting and a re-
pelling sheet. For suitable γ the critical manifold S is fol-
ded in the physically realistic range s ∈ [0, 1] and consists
there locally of two attracting and one repelling sheets.
(Note that one of the attracting sheets lies outside the
region of interest, namely, it exists for v > 0.)

The critical manifold S is normally hyperbolic every-
where except in the vicinity of the fold curve F . So ac-
cording to Fenichel theory [19], away from F the attract-
ing and repelling sheets of S perturb smoothly to invari-
ant attracting and repelling manifolds for ε > 0, respect-
ively. This means that system (2) also has attracting
and repelling slow manifolds in the range s ∈ [0, 1]. The
dynamics for small ε is therefore as follows. A traject-
ory generated by system (2) that starts at an arbitrary
point on the (admissible) attracting sheet of S will follow
this sheet until it reaches F . At F the trajectory may
jump, that is, it leaves S; the trajectory will then leave
the admissible space v < 0, so that the further dynamics
is dictated by system (1). However, the trajectory may
actually cross the fold curve and continue for some time
near the repelling sheet of S; such a trajectory is called
a canard solution.

In order to study this behaviour, it is customary to
determine the so-called desingularised reduced system of
system (2). Rather than expressing the slow flow in terms
of the slow variables h and s, we consider the flow in
terms of v and s and think of h as a function of v and s.
A rescaling of time with the factor − ∂

∂v f(v, h, s) leads to
the desingularised reduced system





v̇ = −v3 + 1.6v − (2 + δ)γsv − 1,

ṡ = −δs
3v2 − 1 + 2γs

2
.

(5)

The dynamics of (5) determines the dynamics on S;
we can project the phase portrait of system (5) onto S,
but then time must be reversed on the repelling sheet of
S where ∂

∂v f(v, h, s) > 0. In particular, an equilibrium of
system (5) that lies on the fold curve F is called a folded
singularity, but note that a folded singularity is not an
equilibrium of the flow on S. For all δ > 0 system (5)
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FIG. 1: The geometry of the MMO of system (1) for β = 0.035, where γ = 0.5, ε = 0.015, and δ = 0.565. Panel (a) shows its
time evolution of the voltage potential v. Panel (b) shows the MMO periodic orbit Γ5 projected onto the (h, v)-plane, together
with six canard solutions (labelled ξ3–ξ8) of the silent-phase system (2). Panel (c) shows Γ5 with the associated attracting
slow manifold Sa

ε (red surface) and repelling slow manifold Sr
ε (blue surface) of (2), both calculated up to a plane through the

folded node; also shown are the two neighboring canard solutions ξ4 and ξ5.

has a folded node pfn on F with v < 0; for our choice of
parameters pfn ≈ (−0.4900, 0.6176, 0.2797). As a result
there are trajectories on the attracting sheet of S that
converge to the folded node in finite time and then pass
through it with nonzero speed (hence following the re-
pelling sheet of S for some time); these trajectories are
called singular canards [8].

The folded node pfn on S and the corresponding singu-
lar canard solutions generate actual canard solutions for
system (2), which in turn generate MMOs for the self-
coupled FitzHugh Nagumo system (1). Figure 1 gives
an idea of what this looks like for a particular choice
of parameters. Panel (a) shows the time evolution of the
voltage v of the MMO of system (1) for β = 0.035. In this
case there are five small-amplitude oscillations in between

each large spike of the action potential, which means that
the MMO is of type 15 [20]. Figure 1(b) shows a projec-
tion of the MMO periodic orbit Γ5 onto the (h, v)-plane.
Also shown are projections of some of the canards (la-
belled ξ3 to ξ8) of system (2). Fig. 1(c) shows the three-
dimensional view of Γ5 with the attracting (denoted Sa

ε )
and repelling (denoted Sr

ε ) slow manifolds; here only the
canards ξ4 and ξ5 are shown. Notice how the canards
rotate around the fold curve F ; the number of rotations
is represented in their labelling.

Figure 1 shows that the silent phase of the MMO is
organised by the canards. Since the MMO periodic orbit
Γ5 enters the attracting slow manifold in between canards
ξ4 and ξ5, the number of small-amplitude oscillations is
five. The MMO follows the repelling slow manifold Sr

ε for
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a short while before it makes a large-amplitude excursion
into the region of v > 0.

The curve labelled Lr in Figs. 1(b) and (c) represents
one of the boundary conditions in our calculation of the
canards and the repelling slow manifold Sr

ε . How these
calculations are performed is explained next.

II. COMPUTING THE SLOW MANIFOLDS

Our numerical method is based on the idea that a part
of interest of a two-dimensional manifold can be repres-
ented as a family of orbit segments. This family can be
computed by continuation of the solutions of a suitable
two-point boundary value problem, for example with the
package Auto [21, 22]. This general approach is quite
powerful; see [23] for more examples of its use. The key is
to set up and follow solutions to the right kind of bound-
ary value problem.

To compute Sa
ε and Sr

ε we make use of the normal
hyperbolicity of the critical manifold S [19]. Namely, for
small ε > 0 the slow manifolds Sa

ε and Sr
ε are smooth per-

turbations of the critical manifold S, as long as one stays
away from the fold curve F . In other words, sufficiently
far away from F the surfaces Sa

ε and Sr
ε are approxim-

ated well by S, where the error goes to zero for ε → 0.
Therefore, we compute Sa

ε (and Sr
ε ) as a one-parameter

family of orbit segments of (2) where one end point varies
along a curve on the critical manifold S that lies at a suf-
ficient distance from F . To obtain a family of well-posed
boundary value problems, the other end point is required
to lie in a suitable plane transverse to the flow near F .
As is explained below, this plane is chosen such that the
resulting surface covers a particular region of interest.

A. Computation of the attracting slow manifold Sa
ε

As is common in the field of numerical continuation,
we consider a vector field of the form

u̇ = Tg(u), (6)

where the (free) parameter T is the actual integration
time. In other words, the total integration time of any
solution of (6) is rescaled to 1. For the self-coupled
FitzHugh Nagumo system u = (v, h, s) and g is the right-
hand side of system (2). The idea is to continue solutions
of system (6) subject to suitably chosen boundary con-
ditions at u(0) and u(1), which can be achieved with
numerical packages such as Auto; see, for example, [5]
for more background information on numerical continu-
ation.

To ensure that solutions of (6) lie (in good approxima-
tion) on the attracting slow manifold Sa

ε we require that
the begin point u(0) lies on a curve La on S that is suf-
ficiently far away from F . Note that the best choice for
La ⊂ S would run ‘parallel’ to F , meaning that it lies at

an approximately uniformly large distance from F . Since
Sa

ε is unbounded, La can be chosen as far from F as one
wishes. In the computation of Sa

ε we used the boundary
condition

u(0) ∈ La := S ∩ {h = −6.0}. (7)

To ensure that we compute the relevant part of Sa
ε near

the folded node pfn, we restrict the end point u(1) to a
plane Σ through pfn ∈ F and transverse to the flow. A
choice that works in general is to take the tangent vector
of F at pfn as the normal of Σ. However, only transvers-
ality is required and for system (2) a satisfactory choice
is the plane of constant s, which gives the boundary con-
dition

u(1) ∈ Σ := {(v, h, s) ∈ R3 | s = 0.2797}. (8)

The solution family of the two-point boundary value
problem (6)-(8), where the integration time T is a
single free parameter, forms a good approximation of Sa

ε

between La and Σ. We compute this solution family with
the continuation and collocation routines of the package
Auto. A particular strength of Auto is that the step
length in the continuation is determined in terms of the
L2-norm between solutions. Therefore, the computed or-
bit segments are not only numerically accurate but also
nicely spaced on the resulting surface, which is a distinct
advantage for the rendering.

However, before Sa
ε can be computed one must first

construct a solution of (6)-(8). To this end, we use a
homotopy method with two steps. We first consider the
family of orbit segment that solve (6) subject to (8) and
the boundary condition

u(0) ∈ F. (9)

Note that the trivial orbit segment given by the folded
node, that is, {pfn | 0 ≤ t ≤ 1}, is a solution of (6) sub-
ject to (8) and (9) for T = 0. Starting from this trivial
orbit, continuation in T grows the orbit where the end-
point is restricted to the fold curve F . This continuation
is stopped when u(0) is at some predetermined distance
from pfn, which is detected by a user-defined function
in Auto. Specifically, our computation was set to stop
when

u(0) ∈ Σ̃a := {(v, h, s) ∈ R3 | s = 0.6}. (10)

We then switch to the second step of the homotopy, which
aims to move u(0) ∈ S away from F while remaining
approximately at the same distance from Σ. Hence, we
introduce the boundary condition

u(0) ∈ L̃a = S ∩ Σ̃a. (11)

and continue solutions of (6) subject to (8) and (11).
The continuation is stopped when La is reached, which
is again detected by a user-defined function in Auto.

Figure 2(a) illustrates the continuations that are per-
formed to obtain the first solution of (6)–(8). The dark
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FIG. 2: Illustration of the homotopy steps needed to generate a suitable first orbit segment to start the computation of the
attracting slow manifold Sa

ε (a) and the repelling slow manifold Sr
ε (b) of (2) for γ = 0.5, ε = 0.015, and δ = 0.565; also shown

are the critical manifold S and its fold curve F . The dark red orbit segment in panel (a) and the cyan orbit segment in panel

(b) are obtained in the first homotopy step and connect eLa ∩F and eLr ∩F , respectively, with the section Σ. The red and blue
orbit segments are generated during the second homotopy step; the last of them is the sought-after first orbit segment from La

and Lr, respectively, to the section Σ.

red curve is the orbit segment from L̃a∩F to the plane Σ
as obtained at the end of the first homotopy step. This
orbit is then continued while u(0) is restricted to L̃a un-
til La = S ∩ {h = −6.0} is reached. The red curves in
Fig. 2(a) are a selection of orbit segments, shown near the
fold curve F , that are computed during this second homo-
topy step. Note that these orbit segments do not form
a good approximation of Sa

ε . However, as u(0) moves
along L̃a ⊂ S further away from F (in the direction of

decreasing h), the orbit segment {u(t) | 0 ≤ t ≤ 1} lies
closer and closer to Sa

ε . The last of these orbits (with
u(0) ∈ La) is deemed close enough and serves as the
start solution of the actual computation of Sa

ε from (6)-
(8). The attracting slow manifold Sa

ε (red surface) in
Fig. 1(c) was rendered from a total of 2700 orbit seg-
ments. Throughout the different steps we used a mesh of
400 mesh intervals (NTST = 100 and NCOL = 4) for each
orbit segment.
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B. Computation of the repelling slow manifold Sr
ε

The repelling slow manifold Sr
ε is computed in much

the same way as Sa
ε . Namely, we consider negative T in

(6), which effectively reverses the direction of the flow.
However, there is an additional difficulty in that the re-
pelling sheet of S is bounded by the fold curve. There-
fore, the possibility of moving away from F by changing s
is limited by the fact that one simultaneously approaches
the other branch of F (with respect to the cusp point).
This problem must be expected in general, namely it oc-
curs for any system whose slow manifold is more com-
plicated than a simple parabolic cylinder. Indeed the
cusp surface considered here is a classic case. The best
strategy is to restrict the begin point u(0) to a curve Lr

that is ‘furthest away’ from the respective two bounding
fold curves.

For the slow manifold S given by (3), one finds from
(4) that the fold curve F is symmetric with respect to
v = 0, so that the best choice for the boundary condition
is

u(0) ∈ Lr := S ∩ {v = 0.0}. (12)

The end point u(1) is again restricted to lie in the section
Σ by imposing boundary condition (8). In other words,
Sr

ε can be computed as the family of orbit segments that
are solutions of (6) subject to (8) and (12).

As before, a first solution can be contructed in two ho-
motopy steps. Namely, we again continue the boundary
value problem (6) with boundary conditions (8) and (9)
from the trivial orbit segment {pfn | 0 ≤ t ≤ 1} with
T = 0, but this time in the direction of negative T . We
stop the continuation, when

u(0) ∈ Σ̃r := {(v, h, s) ∈ R3 | s = 0.05} (13)

as detected by a user-defined function in Auto. We then
switch to the second continuation run, where we solve
system (6) subject to boundary conditions (8) and

u(0) ∈ L̃r := S ∩ Σ̃r. (14)

The continuation now finds solution segments with
u(0) ∈ L̃r that lie increasingly further away from F , and
it stops when Lr is reached.

Figure 2(b) illustrates these continuations in the com-
putation of Sr

ε . The cyan curve is the orbit segment from
L̃r ∩ F to Σ, which is then continued in the second ho-
motopy step while u(0) is restricted to L̃r until Lr =
S ∩ {v = 0.0} is reached. This continuation gives rise to
the blue orbit segments in Fig. 2(b), the last of which is
the start solution for the computation of Sr

ε with bound-
ary conditions (8) and (12). The resulting image of the
repelling slow manifold Sr

ε is shown in Fig. 1(c) (blue
surface). As for Sa

ε , we used 400 mesh intervals for the
1200 orbit segments that make up the surface.
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FIG. 3: The curves Sa
ε ∩Σ and Sr

ε ∩Σ in the plane Σ intersect
at isolated points that correspond to the canard solutions of
system (2). The image is for γ = 0.5, ε = 0.015, and δ = 0.565
and the ‘outermost’ canard solutions ξ3–ξ8 are color coded as
in Fig. 1.

C. Computation of canard solutions

The advantage of computing Sa
ε and Sr

ε up to the plane
Σ, is that we can easily identify the canard solutions.
Each (generic) canard solution ξi corresponds to an isol-
ated intersection point of Sa

ε ∩ Σ and Sr
ε ∩ Σ, as is illus-

trated in Fig. 3. The number of canard solutions can be
determined in the normal form by the ratio of eigenvalues
µ of the folded node pfn [4, 6]; for the parameters of (2)
as chosen µ ≈ 55.5, which means that we expect to find
29 canard solutions (2 primary canards and 27 secondary
canards).

In our present setup, a canard solution is represented
as a solution u of system (6) subject to the boundary
conditions

u(0) ∈ La and u(1) ∈ Lr. (15)

A solution of the boundary value problem (6) with (15)
can be found as follows. We detect an orbit segment ua

on Sa
ε and an orbit segment ur on Sr

ε that almost match
up in the plane Σ, meaning that ua(0) ≈ ur(0) ∈ Σ.
From this pair of orbits we generate the concatenation of
ua with the reverse of ur (which has positive rather than
negative integration time). The resulting orbit segment
is then rescaled back to the time interval [0, 1], so that
its integration time T is simply the sum of the two (now
both positive) integration times for ua and ur. Provided
|ua(0) − ur(0)| is sufficiently small, the application of a
Newton step in Auto generates a solution of (6) with
(15) that represents the respective canard solution. The
canard solution can then be continued in a system para-
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FIG. 4: The attracting slow manifold Sa
ε and the repelling slow manifold Sr

ε of system (2) for γ = 0.5, ε = 0.015, and δ = 0.565,
shown locally between the sections Σa of (17) and Σr of (18) with the three ‘outermost’ canard solutions ξ6–ξ8.

meter. In this way, it is possible to obtain information
about how the canard solutions change with parameters;
we refer to [6] for more details. Here we found the six
canard solutions ξ3–ξ8 that are shown in Fig. 1(b). They
were constructed by considering the respective intersec-
tion points of the curves Sa

ε ∩Σ and Sr
ε∩Σ that are shown

in Fig. 3. How selected canard solutions lie on Sa
ε and

Sr
ε is illustrated in Fig. 1(c) and Fig. 4.

D. Visualizing the interaction of Sa
ε and Sr

ε

In Fig. 1 we computed Sa
ε and Sr

ε up to the plane Σ that
contains the folded node pfn ≈ (−0.4900, 0.6176, 0.2797).
Indeed, one can imagine that the dynamics in the silent-
phase system (2) takes place on the attracting slow man-
ifold Sa

ε before pfn is reached, and on the repelling slow
manifold Sr

ε from then on. However, to get a better idea
of the geometry of the slow manifolds, in particular of
how Sa

ε and Sr
ε intersect, both manifolds need to be com-

puted past the plane Σ. This is straightforward in our
boundary value problem setup.

Namely, we consider two new planes transverse to the
flow close to the fold curve F . The most convenient
choice for (2) is to take planes of the form

Σσ := {(v, h, s) ∈ R3 | s = σ}, (16)

which are parallel to Σ = Σ0.2797. Specifically, we replace
boundary condition (8) by

u(1) ∈ Σa := Σ0.15 (17)

for the calculation of Sa
ε , and by

u(1) ∈ Σr := Σ0.40. (18)

for the calculation of Sr
ε .

A start solution on Sa
ε that satisfies (17) can be ob-

tained from an orbit segment u from La to Σ by con-
tinuation in T and the parameter σ of the section Σσ,
where we start from σ = 0.2797. Here we keep u(0) fixed
and require that u(1) ∈ Σa. This continuation is stopped
when Σa is reached, which is detected by a user-defined
function in Auto. Similarly, an orbit segment on Sr

ε can
be continued up to Σr to obtain a start solution that
satisfies (18).

The computation of Sa
ε and Sr

ε can now be performed
as before. The two slow manifolds are shown in Fig. 4,
where we clipped the surfaces so that only the part in
between Σr and Σa is visualised. This kind of repres-
entation is designed to give good geometric insight into
how the two manifolds intersect near pfn and give rise to
canard solutions. The three canard solutions ξ6, ξ7 and
ξ8 are shown in Fig. 4.

The silent-phase system (2) and, hence, the geometry
of its slow manifolds, does not depend on the activation
rate β. Rather, β controls the relaxation oscillation dur-
ing the active phase and, in particular, where exactly the
orbit returns back to the silent phase. As a result, vary-
ing β causes the resulting MMO to move relative to the
canard solutions on Sa

ε , which means that the number of
small oscillations can be adjusted by changing β.

This phenomenon is illustrated in Fig. 5, where we
show the computed slow manifolds Sa

ε and Sr
ε of sys-

tem (2) subject to boundary conditions (17) and (18),
together with the canard solutions ξ5–ξ7. Also shown
are the two MMO periodic orbits Γ6 and Γ7 of type 16

and 17 of system (1) for β = 0.043 and β = 0.048, re-
spectively. Figure 5(c) clearly shows how the MMO Γk

enters the attracting slow manifold (after the excursion
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FIG. 5: A larger view of the slow manifolds Sa
ε and Sr

ε of Fig. 4 and the canard solutions ξ5–ξ7. Panels (a) and (b) show the
MMOs of system (1) for β = 0.043 and β = 0.048, respectively. Panel (c) shows the corresponding MMO periodic orbits Γ6

and Γ7 relative to Sa
ε , Sr

ε and the canard solutions ξ5–ξ7; compare also with Fig. 1.

corresponding to the active phase) in between the canard
orbits ξk−1 and ξk, and the orbit stays in this region dur-
ing the whole silent phase. This geometry explains the
different types of MMOs and their dependance on β in
the self-coupled FitzHugh Nagumo system (1).

III. DISCUSSION

We presented the technique of computing slow mani-
folds and corresponding canard solutions in slow-fast sys-
tems by means of solving suitable two-point boundary
value problems. Specifically, two-dimensional attracting
and repelling slow manifolds can be found in this way
as a family of orbit segments starting on a curve on the
critical manifold and ending in a prescribed section. We
showed how an inititial solution of this sort can be gen-
erated by specified continuation runs. We used the pack-
age Auto [21, 22] for solving the BVPs, that is, their
solutions are found with the method of collocation as
piecewise polynomials on a defined mesh. This provides
global accuracy along orbit segments, which is a distinct

advantage over shooting methods in the context of slow-
fast systems.

We illustrated the methods with the example of the
self-coupled FitzHugh Nagumo system. We considered
the geometry of the slow manifold as given by the silent-
phase system. It is governed by a folded node singularity
that gives rise to canard solutions and we brought out this
dynamics by computing the attracting and repelling slow
manifolds. These manifolds are divided by the canard
solutions into regions corresponding to different types of
MMOs when they are subject to the active phase of the
system.

Overall, we demonstrated how the calculation of the
slow manifolds of the self-coupled FitzHugh Nagumo sys-
tem can lead to geometrical insight into the dynamics of
a slow-fast system arising in an application. A more de-
tailed bifurcation study of canard solutions remains an
interesting topic beyond the scope of this paper. In the
future we plan to apply this technique also to other slow-
fast models with two-dimensional slow manifolds. In-
deed there are many such examples, including models of
neuron [3, 24] and chemical [2, 20, 25] systems.
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[8] E. Benôıt, in Troisième rencontre du Schnepfenried (Soc.

Math. France, 1983), vol. 109–110 of Astérisque, pp.
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