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Abstract

In this paper the nonlinear dynamics of a state-dependent delay model of the
turning process is analyzed. The size of the regenerative delay is determined not only
by the rotation of the workpiece, but also by the vibrations of the tool. A numerical
continuation technique is developed that can be used to follow the periodic orbits
of a system with implicitly defined state-dependent delays. The numerical analysis
of the model reveals that the criticality of the Hopf bifurcation depends on the feed
rate. This is in contrast to simpler constant delay models where the criticality does
not change. For small feed rates, subcritical Hopf bifurcations are found, similar
to the constant delay models. In this case, periodic orbits coexist with the stable
stationary cutting state and so there is the potential for large amplitude chatter
and bistability. For large feed rates, the Hopf bifurcation becomes supercritical for
a range of spindle speeds. In this case, stable periodic orbits instead coexist with
the unstable stationary cutting state, removing the possibility of large amplitude
chatter. Thus, the state-dependent delay in the model has a kind of stabilizing
effect, since the supercritical case is more favorable from a practical viewpoint than
the subcritical one.

Keywords: machine tool chatter, state-dependent delay, Hopf bifurcation

1 Introduction

Delay-differential equations (DDEs) often arise in many different fields of science and
engineering; examples include control systems [1], lasers [2] and neuroscience [3]. One
relevant mechanical application is the dynamics of cutting processes. The first mechanical
models of cutting processes appeared in the works of Tlusty [4] and Tobias [5]. These
models describe the machine tool/workpiece structure as a flexible system, where the
tool and/or the workpiece experience vibrations. These vibrations cause variations in
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the cutting depth and so in the next revolution of the workpiece the tool encounters
the wavy surface that was created. Due to this regeneration effect, the chip thickness
(and hence cutting force) is determined by the current and previous positions of the tool
and the workpiece. In the standard models appearing in the literature the time delay
between two successive cuts is considered to be a constant, which is equal to the period
of the workpiece rotation for turning, and to the tooth passing period for milling. The
corresponding mathematical model of the turning process is an autonomous DDE, while
the milling operation can be described by DDEs with time-periodic coefficients.

An important phenomenon that limits the productivity of machining is the onset of
self-excited vibrations, also known as machine tool chatter. Typically, these vibrations
are associated with subcritical Hopf bifurcations. The locations of these Hopf bifurcations
of machining processes are usually shown in the form of stability lobe diagrams. These
diagrams plot the stable axial cutting depth as function of the spindle speed. Since
DDEs have infinite dimensional state-spaces [6]–[8], closed form stability criteria are not
usually available. However, there exist several numerical and semi-analytical techniques
to construct stability diagrams (see, e.g., [8]–[12]).

Models with constant time delay capture the main character of regenerative dynamics
and can be used to describe linear stability properties in good agreement with experiments.
However, some phenomena can only be explained using more sophisticated models that
incorporate varying time delay as well. Accurate modeling of milling operations shows
that the regenerative delay is in fact time periodic due to the feed motion, and the
corresponding stability diagrams differ from the ones of traditional models with constant
delay (see [13]–[15]).

If the regenerative process is to be modeled accurately, then the vibrations of the tool
should also be included in the time delay. In turning processes, the time delay is basically
determined by the rotation of the workpiece but it is also affected by the current and the
delayed position of the tool as it was shown by Insperger et al. [16], [17]. This results
in a DDE with state-dependent delay (SD-DDE) where the delay depends on the present
state and also on a delayed one, thus giving an implicitly defined delay. The effect of
state-dependent delay is also important in rotary cutting processes (e.g., in milling, or
drilling) where the torsional vibrations of the tool are significant in the system’s dynamics.
Germay et al. [18] and Richard et al. [19] investigated drilling with drag bits and showed
that state-dependent regenerative delay arises due to the torsional vibration of the tool.
Insperger et al. [20] showed that state-dependent delay arises in the governing equation
of the milling process even when only the bending oscillation of the tool is considered and
its torsional compliance is neglected.

The theory of SD-DDEs is an actively developing research area in mathematics (see,
e.g., [21]–[25]) and results, like linearization techniques and stability analysis, are not used
in engineering problems yet. SD-DDEs are always nonlinear, since the state itself arises
in its own argument through the delay. The linearized system, however, is a DDE with
constant (or time-dependent) delay. Linearization of SD-DDEs is complicated by the fact
that the solution of the system is not differentiable with respect to the state-dependent
delay. Consequently, “true” linearization is not possible, rather we are looking for a linear
DDE, which is associated to the original system in the sense that they have the same local
stability properties.

Linear stability analysis of the state-dependent delay model of turning process was
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given in [17] using the technique of Hartung and Turi [22]. In the current paper, the
nonlinear behavior of the same model is analyzed using numerical continuation techniques.

For turning models with constant delay, subcritical Hopf bifurcations occur, i.e., un-
stable periodic orbits coexist with the stable stationary cutting below the stability lobes.
This means that chatter may arise in the cases where the system is linearly stable. This
phenomenon was clearly shown experimentally by Shi and Tobias [26]. The first mechan-
ical model that provided analytical explanation of the unstable limit cycle was presented
by Stépán and Kalmár-Nagy [27]. Since then, their results were confirmed by different
numerical techniques (see, e.g., [28]–[32]).

In this paper, it is shown that the Hopf bifurcation may in fact become supercritical
for some parameter values if a state-dependent regenerative delay is incorporated into the
model. In these cases, small amplitude stable periodic orbits coexist with the unstable
stationary cutting solution above the stability lobes, and no periodic orbits coexist with
the stable stationary cutting. This is practically more favorable than the subcritical
case since chatter cannot occur below the stability lobes. The results are obtained by a
numerical continuation technique.

2 Mechanical model with state-dependent regenera-

tive delay

Fig. 1 shows a sketch of the turning process under investigation. The tool is assumed to
be compliant and experiences bending motion in directions x and y, while the workpiece
is assumed to be rigid. The system can be modeled as a 2 DOF oscillator excited by the
cutting force as it is shown in Fig. 2. The governing equations read

mẍ(t) + cxẋ(t) + kxx(t) = Fx, (1)

mÿ(t) + cy ẏ(t) + kyy(t) = Fy, (2)

where m, cx, cy, kx and ky are the modal mass, the damping and the stiffness parameters
in the x and y directions, respectively. The cutting force is given in the form

Fx = Kxwhq, (3)

Fy = Kywhq, (4)

where Kx and Ky are the cutting coefficients, w is the depth of cut, h is the chip thickness
and q is an exponent (q = 0.75 is a typical empirical value for this parameter). In this
model, it is assumed that the tool never leaves the workpiece, that is, h > 0 during the
cutting process.

If the tool were rigid, then the chip thickness would be a constant h = h0, which is
just the feed per revolution in the case of orthogonal cutting. However, in practical cases
the tool experiences vibrations that alter the cutting depth and, after one revolution of
the workpiece, the tool cuts this wavy surface. Thus, the regenerative effect makes the
chip thickness nonconstant during machining. If the regenerative delay is τ , then the chip
thickness can be given as

h =

{
vτ + y(t − τ) − y(t) if y(t) − y(t − τ) ≤ vτ

0 if y(t) − y(t − τ) > vτ
, (5)
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where v is the speed of the feed. Here, the case y(t)−y(t−τ) > vτ corresponds to the loss
of contact between the tool and the workpiece. In the current work only local bifurcation
phenomena are analyzed and the effect of contact loss is not investigated. Therefore, in
the following analysis, we assume that y(t) − y(t − τ) ≤ vτ during the machining.

Since the tool experiences vibrations in the x direction as well, the time delay is not
equal to the rotation period of the workpiece, but it is determined implicitly by

RΩτ = 2Rπ + x(t) − x(t − τ). (6)

Here Ω is the spindle speed given in [rad/s] and R is the radius of the workpiece. Thus,
the regenerative delay is a state-dependent delay since it depends on the state, both
current (x(t)) and delayed (x(t − τ)). Therefore, we will use the notation τ(xt), where
xt(s) = x(t + s), s ∈ [−r, 0], r ∈ R

+ describes the history of the state.
Thus, the governing equation can be written as

mẍ(t) + cxẋ(t) + kxx(t) = Kxw
(
vτ(xt) + y(t − τ(xt)) − y(t)

)q

, (7)

mÿ(t) + cyẏ(t) + kyy(t) = Kyw
(
vτ(xt) + y(t − τ(xt)) − y(t)

)q

. (8)

This is a system of SD-DDEs, where the state-dependent delay τ(xt) is given implicitly
by equation (6).

In order to reduce the number of parameters we assume that the tool is symmetric,
i.e., cx = cy = c, kx = ky = k. The corresponding natural angular frequency is ωn =√

k/m and the damping ratio is ζ = c/(2mωn). Rescaling the state such that x(t) =
vτ0x̃(t), y(t) = vτ0ỹ(t), where τ0 = 2π/Ω is the mean time delay, and dropping the tildes
immediately gives

ẍ(t) + 2ζẋ(t) + ω2
nx(t) =

Kxw(2πR)q−1

m
ρq−1

(τ(xt)

τ0
+ y(t − τ(xt)) − y(t)

)q

, (9)

ÿ(t) + 2ζẏ(t) + ω2
ny(t) =

Kyw(2πR)q−1

m
ρq−1

(τ(xt)

τ0

+ y(t − τ(xt)) − y(t)
)q

, (10)

where
ρ = vτ0/(2πR) (11)

is the dimensionless feed rate. Note that vτ0 = h0 is the feed per revolution and 2πR is
the circumference of the workpiece. Since h0 � 2πR, practically, ρ � 1. For instance,
ρ = 0.01 correspond to a workpiece of diameter D = 10 mm with feed rate h0 = 0.31
mm. Thus, in conventional turning ρ < 0.01. Still, in the subsequent analysis, we will
investigate cases with ρ > 0.01 as well in order to point out some interesting phenomena
of systems with state-dependent delay.

Rescaling now the time such that t̃ = ωnt, τ̃ = ωnτ , and τ̃0 = ωnτ0, and, again,
dropping the tildes immediately, yields

ẍ(t) + 2ζẋ(t) + x(t) =
1

kr
K1ρ

q−1
(τ(xt)

τ0
+ y(t − τ(xt)) − y(t)

)q

, (12)

ÿ(t) + 2ζẏ(t) + y(t) = K1ρ
q−1

(τ(xt)

τ0
+ y(t − τ(xt)) − y(t)

)q

, (13)
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where

K1 =
Kyw(2πR)q−1

mω2
n

(14)

is the dimensionless depth of cut, and kr = Ky/Kx is the cutting force ratio. Similarly,
the implicit equation for the delay reduces to

τ/τ0 = 1 + ρ(x(t) − x(t − τ)). (15)

Finally, the condition for the continuous cutting (i.e., without loss of contact) is

y(t) − y(t − τ(xt)) ≤ τ(xt)/τ0. (16)

Thus, the system under study is the SD-DDE (12)-(13) with the state-dependent delay
defined by (15) and constrained by the condition (16).

If the state-dependent delay is not included into the model, then the corresponding
equations are obtained by setting τ(xt) = τ0 in (12)-(13) and in (16). In the next sections,
linear stability properties and nonlinear behavior of the models with state-dependent and
with constant delay are compared.

3 Linear stability

True linearization of SD-DDEs is not possible since the solution is not differentiable with
respect to the state-dependent delay (see, [33] and the references therein). Linearization
of SD-DDEs rather means the construction of an associated linear system that has the
same local stability properties as the original system. The linearization technique for
general autonomous SD-DDEs was given by Hartung and Turi [22] and for time-periodic
SD-DDEs by Hartung [24].

Linear stability analysis of the SD-DDE turning problem was given in [17]. In this
section, these results are summarized. The constant solution of (12)-(13) can be given as

x̄ =
1

kr

K1ρ
q−1, ȳ = −K1ρ

q−1. (17)

The corresponding delay is also constant: τ̄ = τ(x̄t) = τ0. The associated linearized
system is

ξ̈(t) + 2ζξ̇(t) + ξ(t) =
1

kr
K1qρ

q−1
(

(η(t − τ0) − η(t)) + ρ (ξ(t) − ξ(t − τ0))
)
, (18)

η̈(t) + 2ζη̇(t) + η(t) =K1qρ
q−1

(
(η(t − τ0) − η(t)) + ρ

(
(ξ(t) − ξ(t − τ0))

)
. (19)

For further details on the construction of this linear system, see [17].
Investigation of the characteristic equation gives the stability boundaries in closed

form:

K1,SDD =

(
kr

kr − ρ

)
(ω2 − 1)

2
+ (2ζω)2

2qρq−1 (ω2 − 1)
, (20)

Ω

ωn
=

2π

τ0
=

ωπ

arctan
(

1−ω2

2ζω

)
+ jπ

, j = 1, 2, . . . , (21)
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Figure 3: Stability lobe diagrams for the state-dependent and for the constant delay
models with different ρ

where the Hopf frequency ω is used as a parameter, and the index SDD refers to state-
dependent delay.

The stability boundaries of the corresponding system with constant time delay is

K1,CD =
(ω2 − 1)

2
+ (2ζω)2

2qρq−1 (ω2 − 1)
, (22)

while the expression for Ω/ωn is identical to (21). Here, the index CD refers to constant
delay.

The difference between the state-dependent and the constant delay model is charac-
terized by the ratio of the corresponding critical dimensionless depth of cut

K1,SDD

K1,CD

=
kr

kr − ρ
> 1. (23)

This shows that the state-dependent delay has a stabilizing effect even at the linear level.
However, it should be noted that this effect is small, since ρ � 1 and typical values of
the cutting force ratio are in the region of kr = 0.3, so the above ratio is close to 1.

Stability boundaries in the plane (K1, Ω/ωn) are presented in Fig. 3 for different di-
mensionless feed rate parameters ρ. Solid lines denote the stability boundaries associated
with the state-dependent delay model, while dashed lines correspond to the constant delay
model. For small feed rate (ρ = 0.001), the stability boundaries for the two models are
practically identical, while for larger feed rates (ρ = 0.01 and 0.1), the difference between
the two models can be seen.

In the next sections, the nonlinear behavior along the stability lobes will be investi-
gated.

4 Bifurcation diagrams for the constant delay model

First, the main features of sub- and supercritical Hopf bifurcations are summarized. A
sketch showing the amplitude of the limit cycles as a function of the dimensionless depth
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of cut is shown in Fig. 4 for both cases. The linear stability boundary is denoted by
K1,LSB. If K1 < K1,LSB then the stationary cutting is stable, otherwise it is unstable.
In the subcritical case, an unstable limit cycle (periodic orbit) coexists with the stable
equilibrium (stationary cutting). In the supercritical case, a stable limit cycle coexists
with the unstable equilibrium.

In the traditional turning models with constant regenerative delay only subcritical
Hopf bifurcation occur as was shown in [27]. This subcritical nature is clearly related to
the nonlinear dependence of the cutting force on the chip thickness. For large amplitude
vibrations, the tool may lose contact with the workpiece. This results in a fold back of
the unstable branch to a periodic (or quasi-periodic or chaotic) attractor at K1,FB. In
mechanical sense, machine tool chatter corresponds to this large amplitude attractor.

If K1,FB < K1 < K1,LSB then the large amplitude attractor coexists with the stable
stationary cutting. Although the stationary cutting is linearly stable in this region, per-
turbations larger than the amplitude of the unstable limit cycle can still lead to chatter.
Practically, the transition between stable cutting and chatter is not smooth in this case,
since for a small increase of the depth of cut, large amplitude vibrations may appear
suddenly.

Fig. 5 shows the stability lobe diagram and three bifurcation diagrams for the constant
delay model described by (12)-(13) with τ(xt) = τ0. Since in this case, the term ρq−1

appears only as a multiplier of the dimensionless depth of cut K1, the combined parameter
K1ρ

q−1 can be used instead of K1 as a parameter proportional to the actual depth of cut.
Thus, the bifurcation diagrams in Fig. 5 represent the amplitude of the periodic motion
of the tool as function of K1ρ

q−1 for fixed Ω/ωn. Here, ‖x‖ denotes the 	2-norm of the
displacement of the tool in the x direction:

‖x‖ =

√∫ T

0

x2(s) ds, (24)

where T is the period of the oscillation. The diagrams were determined using the software
package DDE-BIFTOOL (see, [34], [35]). Continuation of the periodic orbits is stopped
when the continuous cutting condition (16) is broken. The points at which the tool
loses contact with the workpiece are denoted by dots in Fig. 5. It can be seen that the
branches of periodic motions bends to the left for all values of ρ; these are subcritical
Hopf bifurcations.
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left side of the lobe Ω/ωn = 1.2566, (c) centre of lobe Ω/ωn = 1.3541, (d) right side of
the lobe Ω/ωn = 2.5132

5 Non-linear analysis of the state-dependent delay

model

Continuation for the system with state-dependent delay is not so straightforward as it is for
the constant delay model. The software DDE-BIFTOOL can be used to the continuation
of SD-DDEs, where the delay is given as explicit function of the state. However, in the
model of turning, the delay is defined implicitly. To overcome this difficulty, the time
delay τ(xt) along the periodic orbit is added as an extra state variable. Thus, the time
delay is given explicitly as a function of the state. To add the extra algebraic equation
(15) needed to fix the time delay, DDE-BIFTOOL was modified in a similar way to the
method described in [36] for continuation of neutral DDEs written as a system of DDEs
coupled to an algebraic equation.

Fig. 6 shows the stability lobe diagrams and bifurcation diagrams for the state-
dependent delay model with different dimensionless feed ρ. It can clearly be seen that the
subcritical Hopf bifurcations change to supercritical as ρ increases. In the supercritical
case, stable periodic orbits coexist with the linearly unstable stationary cutting state,
while no unstable periodic orbits coexist with the stable stationary cutting state. This
means that the system cannot experience chatter within the linear stability boundaries
of the stationary cutting state. Also, periodic vibrations arise only when the stationary
cutting state loses stability and the amplitude of these vibrations increases continuously
with increasing K1. Thus, in supercritical cases, the transition between stable cutting
and chatter is smooth.

It can be seen that the criticality of the Hopf bifurcation does not change across the
whole lobe. For certain spindle speeds on the left side of the lobes, when ρ is increased
sufficiently, the Hopf bifurcations becomes subcritical again. However, when they become
subcritical again they very quickly bend back and so the effect is minimal. Such a case is
depicted in Fig. 7; note the scale on the horizontal axis.
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The transition between sub- and supercritical cases along the stability boundaries are
presented in Fig. 8 for different values of the dimensionless feed ρ. The sections of the
boundaries where supercritical Hopf bifurcations occur are denoted by thick lines while
subcritical boundaries are denoted by thin lines. It can be seen that the right side of the
lobes become supercritical for increasing ρ, while the left side remains mostly subcritical.

The critical values of the dimensionless feed ρ where the criticality of the Hopf bi-
furcation changes are presented in Fig. 9 for the first lobe (Ω/ωn > 1). It can be seen
that there is a minimum value of the critical feed denoted by point A. The corresponding
parameters are ρA = 0.0209 and (Ω/ωn)A = 1.3225 (it is to the left from the centre of the
lobe). If ρ < ρA, then the Hopf bifurcation is always subcritical. It should be noted that
ρA is quite large value, it corresponds to a workpiece of diameter D = 10 mm with feed
rate h0 = 0.657 mm/rev, which is not typical in practical turning.

It can also be seen that this curve bends back at point B, where ρB = 0.0342,
(Ω/ωn)B = 1.2459. Thus, the bifurcation is also subcritical if Ω/ωn < (Ω/ωn)B.

In Fig. 9 only the first lobe is considered but this phenomenon is the same for all the
other lobes as is seen from the parameterization of (21). Assume that ω = ωcr is the
chatter frequency, where the criticality of the bifurcation changes in the first lobe. In
this case, the period of the limit cycles arising from the Hopf bifurcation is Tcr = 2π/ωcr.
Using (21) with j = 1, the corresponding time delay is

τ01 =
2 arctan

(
1−ω2

cr

2ζωcr

)
+ 2π

ωcr
. (25)
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For any other lobes with j = n > 1, ω = ωcr gives the delay

τ0n =
2 arctan

(
1−ω2

cr

2ζωcr

)
+ n2π

ωcr
. (26)

Note, that τ0n−τ01 = (n−1)2π/ωcr = (n−1)Tcr. Now, we can say, that if x̂(t) = x̂(t+Tcr)
is a periodic solution of the system with time delay τ = τ01, then it is also the solution
for the system with τ = τ0n, since

x̂(t − τ01) = x̂(t − τ01 − (n − 1)Tcr) = x̂(t − τ0n). (27)

This means, that the criticality of the bifurcation changes at the chatter frequency ω = ωcr

for all the lobes.
Fig. 10 shows the variation of the time delay along the periodic branches at the centre

of the lobe (Ω/ωn = 1.3541). In order to be able to compare the variations in the time
delays, the periods of the orbits are normalized to 2π. It can be seen that the amplitude
of the delay variation increases with the dimensionless feed ρ. Also, the assumption of a
constant delay as made by previous DDE models is clearly flawed.

6 Conclusion

The nonlinear dynamics of the state-dependent delay model of turning processes was
analyzed using numerical continuation methods. The important difference between this
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Figure 10: Variation of the time delay at the minimum of the lobe (Ω/ωn = 1.3541) for
ρ = 0.001 (a), ρ = 0.01 (b) and ρ = 0.1 (c). Solid lines – close to the Hopf bifurcation,
dashed lines – close to loss of contact, dash-dot lines – middle of the branches.

model and other models is that the regenerative delay is determined not just by the
rotation of the workpiece, but also by the vibrations of the tool. The linear stability
analysis of the model was given earlier in [17], where it was shown that the stability lobes
associated with the state-dependent delay model are slightly higher than those of the
constant delay model.

The mathematical model is a SD-DDE where the time delay is defined implicitly. The
behavior of the system at the linear stability boundaries was investigated. Specifically,
the criticality of the Hopf bifurcation at the stability loss was determined. A modified
version of DDE-BIFTOOL was used that allows the time delay to be treated as an extra
state variable. The analysis showed that the criticality of the Hopf bifurcations along
the stability lobes depends on the feed rate. For small feed rates, the bifurcation is
subcritical, similarly to the models with constant spindle speed (see [27]). In this case,
an attractor (either a periodic or quasi-periodic orbit, or a chaotic attractor) coexists
with the stable stationary cutting state that may lead to chatter even within the linear
stability boundaries. For large feed rates, it was found that the bifurcation becomes
supercritical for certain spindle speeds, mostly on the right-hand-side of the stability
lobe. In the supercritical case, stable periodic orbits coexist with the linearly unstable
stationary cutting state, and no attractors coexist with the stable stationary cutting
state. This means that the system cannot experience chatter within the linear stability
boundaries. From practical point of view, clearly, the supercritical Hopf bifurcation is
more favourable than the subcritical one. Adaptive chatter control strategies [37] are also
much more efficient at supercritical stability boundaries.

Thus, it was shown that the state-dependent delay in the turning model has a kind
of stabilizing effect. It increases the linear stability limits and it turns the subcritical
bifurcations to supercritical ones. In some respect, the state-dependent time delay has a
kind of compliance compared to the “stiff” constant delay. As a rule of thumb, we might
say that the more flexible the delay is, the more stable the system is.

The fact that varying regenerative delay may stabilize cutting processes is well known
in the machining community. This is the goal when varying spindle speeds are applied, or
milling tools with variable pitch angles are used. However, in these cases, the variation in
the delay is prescribed, while in the cases of state-dependent delays, it is self-regulated.
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