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Abstract. We study the local dynamics of an impacting system near a grazing bifurcation
point. In particular, we investigate local invariant manifolds of grazing periodic orbits. At
a grazing bifurcation point the local return map does not have a Jacobian nor is of Lipschitz
continuous, so that the classical theory does not apply. Nevertheless, we are able to use the
Graph Transform technique and show that under certain conditions a local Lipschitz unstable
manifold of the periodic orbit exists at the grazing bifurcation point.



Unstable manifolds near grazing 2

In this paper we investigate the local unstable invariant manifolds of periodic points of
square root type maps. Invariant manifolds are organizing centers in every dynamical system
because they form typically basins of attraction or separate different dynamical behaviors in
phase space [1, 7, 18]. In smooth invertible systems the existence of local stable and unstable
manifolds of a fixed point is guaranteed if the eigenvalues of the fixed point are not on the
complex unit circle. However, non-smooth systems are different in this respect, because they
cannot be linearized at the switching manifold. Square root maps are even more particular,
since they are not Lipschitz continuous at the switching boundary. Here we give conditions
and prove the existence of a local unstable manifold of a grazing periodic orbit.

Maps that include square root terms arise as local return maps of periodic orbits in
hybrid systems, where the dynamics is determined by a smooth vector field and a map on
the associated codimension-one bounding hyperplane. These systems occur as mathematical
models of rotor dynamics [8], control [20], gear rattle [16], and several other mechanical
systems [17]. To analyze impacting periodic orbits Nordmark [15] introduced a so-called
discontinuity mapping, which is a correction to the smooth Poincaré map to account for
the low-velocity impact. The discontinuity mapping is usually an approximation and can
be obtained as a power series containing fractional powers such as the square root. The idea
of the discontinuity map was further extended to other types of non-smooth systems and the
coefficients of higher-order terms in the power series were calculated by di Bernardo et al.
[4, 6].

In the one-dimensional case the dynamics of the square-root map is well understood
[5, 10]. If the dynamics is non-trivial (e.g., the system has a globally stable fixed point or
diverging orbits) then one of the following three scenarios are possible at a grazing bifurcation
point [5]: 1) immediate chaos arises without periodic windows; 2) a reversed period-adding
cascade occurs in which the period of the stable orbit tends to infinity as the system approaches
the bifurcation point; or 3) the period-adding cascade is interspersed with chaotic windows.
If the dimension of the local mapping is greater than one, similar phenomena can be observed
under certain conditions, e.g., when the eigenvalues of the linear part of the map are strictly
positive, real, and less than one. In this case the dynamics remains essentially one dimensional
and it is organized on an invariant set that consist of several lines referred to as fingers
[5, 11, 14].

Already in two-dimensional impacting systems other phenomena can be found when the
linear part of the map has a pair of complex eigenvalues. In this case an unstable periodic
orbit arises around the grazing point. Often this periodic orbit coexists with a stable periodic
orbit that emerged in a smooth fold bifurcation [2]. In higher dimensions a lot less is known
about this bifurcation and systems require a case-by-case analysis.

We focus in this paper on the n-dimensional case, where a grazing bifurcation occurs.
The paper is organized as follows. In the first section we recall preliminary results on
low-velocity impacts and introduce the normal form map. We also perform some basic
transformations to bring the normal form into a more convenient format. In section 2 we
discuss the existence and stability of fixed points for our transformed normal form map.
Section 3 describes the main result of the paper and shows that an invariant unstable manifold
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of the grazing fixed point exists even if the system cannot be linearized at the switching
boundary. Finally, we illustrate our theory in section 4 with a two-dimensional example.

1. Background

We study a dynamical system with impacts. Our model consists of two parts, a smooth vector
field and a smooth impact map. The vector field is given by the equation

ẋ(t) = g(x(t), µ), (1)

where x ∈ R
m, µ is a real parameter and the dot denotes differentiation with respect to time.

We assume that g : S × R → R
n is Cq smooth with q ≥ 1, where S ⊂ R

m is a half space
defined as S = {x ∈ R

m : h(x, µ) ≤ 0} and h : R
m × R → R

m is a Cq smooth function.
We define the boundary of S as Σ = {x ∈ R

m : h(x, µ) = 0}. Trajectories of our system can
live only in S, which means that if they reach its boundary Σ an impact occurs and they will
be reflected back by the impact map p : Σ → Σ.

Here, we are only interested in the phenomenon, called grazing, which happens when a
periodic orbit of (1) is tangent to Σ. We denote the family of periodic orbits of (1) by Γµ and
parameterize it such that periodic orbits for µ < 0 do not leave S\Σ, the periodic orbit Γ0

has a tangency with Σ at x̄, and for µ > 0 periodic orbits leave S\Σ, which induces impacts.
Locally near x̄ we may assume that Σ is flat and approximate h by a linear functional.

Since we are interested in the dynamics local to an orbit Γµ, we introduce an approximate
Poincaré return map. The Poincaré section is chosen to be transversal both to Σ and Γ0. A
natural choice for the Poincaré section is the manifold Π = {x ∈ R

m : d
dt

(h(x(t), µ))|t=0 =

0}. Thus, the return map is composed of the smooth dynamics P : Π → Π induced by (1),
disregarding the boundary Σ, and a non-smooth correction called the discontinuity mapping
PD. Assuming that periodic orbits in Γ are hyperbolic, P can be replaced by its Jacobian about
x̄, because the nearby dynamics is structurally stable. The impact map p maps Σ into itself
and not from Π to Π. Hence, the discontinuity mapping PD should account for a backward
trajectory from Π to Σ, include the impact defined by p, and follow a trajectory of (1) from
Σ to Π. Clearly, if a trajectory around Γµ does not impact, no correction is necessary and
PD = I .

Therefore, the local Poincaré mapping can be expressed as F : R
n×R → R

n, n = m−1,
F = P ◦ PD, or more precisely,

x → F (x, µ) =

{

Nx + Mµ + E
√

H(x, µ), H(x, µ) ≥ 0,

Nx + Mµ, H(x, µ) < 0,
(2)

where H(x, µ)

H(x, µ) = CT (Nx + Mµ) + Dµ,

with N ∈ R
n×n, C, E, M ∈ R

n and µ, D ∈ R. This mapping is called a normal form because
many bifurcations persist with respect to higher-order perturbations. Due to the strongly
nonlinear nature of (2) it is difficult to obtain a complete understanding of the dynamics.
Our goal is to show the existence of a local unstable manifold for a saddle periodic orbit near
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a grazing bifurcation. To this end we assume that the periodic orbit is stable before grazing,
that is, ‖N‖ < 1.

It is convenient to perform a series of transformations. First we translate the grazing
fixed point at µ = 0 to the origin

x 7→
{

Nx + Kµ + E
√

CT Nx, CT Nx ≥ 0,

Nx + Kµ, CT Nx < 0,
(3)

where K = −C D/(CTC). Then, by appropriately selecting new orthogonal coordinates via
a transformation matrix TE, we transform system (3) into

x 7→
{

N̂x + K̂µ + e1α̂
√

CT NTEx, CT NTEx ≥ 0,

N̂x + K̂µ, CT NTEx < 0,
(4)

where N̂ = T−1
E NTE , K̂ = T−1

E K and e1 = (1, 0, 0, . . .). We assume that CT NTEe1 6= 0, so
that there exists another linear transformation that brings (4) into the form

x 7→
{

Ñx + K̃µ + e1α̃
√

eT
1 x, eT

1 x ≥ 0,

Ñx + K̃µ, eT
1 x < 0.

(5)

Note that the stability of the non-impacting periodic orbit was preserved because ‖Ñ‖ =

‖N‖ < 1. In what follows we use system (5) where we drop the tilde from our notation.

2. Fixed points and their stability

Assuming that ‖N‖ < 1, the map (5) has a non-impacting stable fixed point x∗

1 = (N −
I)−1Kµ for eT

1 x∗

1 < 0, and at most two impacting fixed points x∗

2, x∗

3 for which the existence
and first coordinate y2,3 = eT

1 x∗

2,3 is determined by the scalar equation

y + eT
1 (N − I)−1(Kµ + e1α

√
y) = 0. (6)

Because x∗

1 is an admissible non-impacting fixed point for µ < 0 and virtual for µ > 0 we
have eT

1 (N − I)−1K > 0. Depending on the sign of αeT
1 (N − I)−1e1 and µ, equation (6) has

a different number of solutions. If αeT
1 (N − I)−1e1 < 0 there are two solutions, y∗

2 = e1x
∗

2,
which is admissible for µ ≤ 0 and y∗

3 = e1x
∗

3, which is admissible in a neighbourhood of
µ = 0. In this case x∗

2 is created at the grazing bifurcation point, where x∗

2 = x∗

1, and collides
with the other fixed point x∗

3 at a smooth fold bifurcation for some µ∗ < 0; this case is shown
in Fig. 1.(a). If αeT

1 (N − I)−1e1 > 0, there is only one admissible fixed point x∗

2 which arises
at the grazing bifurcation and exists for µ > 0; see Fig. 1.(b). In both cases x∗

2 arises as an
unstable fixed point, while x∗

3 is stable if it exists. The stability change at the bifurcation point
µ = 0 is due to the infinite stretching in the e1-direction.

If µ 6= 0 (but small) none of the fixed points are on the switching boundary and the
Jacobian of (5) at x∗

2 exists. The Stable Manifold Theorem [12] then implies that, x∗

2 has a
unique one dimensional unstable manifold with a tangent at x∗

2 close to the e1 direction. As
µ approaches zero, this direction will tend to e1. It is important to realize that this limit is not
continuous, that is, e1 is not an eigenvector of the grazing periodic orbit at µ = 0. Therefore,
we cannot conclude that x∗

2 has a local unstable manifold for µ = 0.
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Figure 1. The generic grazing bifurcation leads to a non-smooth fold (a) or persistence of the
fixed point branch (b).

In order to find out what happens when µ = 0 we separate system (5) into two parts
using the projections π1x := eT

1 x and π2 := (I − e1e
T
1 ). We also use a new coordinate system

in the impacting region of the phase space defined by π1x 7→ ξ2 and π2x 7→ η; this makes our
analysis simpler in the next section. System (5) can be written in (ξ, η) as

f :

(

ξ

η

)

7→
(

√

N11ξ2 + N12η + αξ + K1µ

N21ξ
2 + N22η + K2µ

)

, (7)

where Nij = πiNπj and Ki = πiK. Note that N11 and K1 are scalars. Also, note that
the local dynamics around almost every maximal period-k orbit, that is a periodic orbit that
consists of k − 1 linear and one nonlinear iterations can be described by (7).

3. The unstable manifold

Under certain conditions we can show that the unstable fixed point x∗

2 has a one-dimensional
unstable manifold. This is formulated in the following theorem.

Theorem 1 Consider system (2) with ‖N‖ < 1. Assume that CT NTEe1 6= 0 so that (2) can
be transformed into (5). Then system (5) has a unique Lipschitz-continuous local unstable
manifold W u(x∗

2) at µ = 0, provided α > 0.

The proof of Thm. (1) uses the Graph Transform operator. The idea is to represent
W u(x∗

2) as the graph of a Lipschitz function

σ∗ ∈ Sr,δ := {σ ∈ Lipδ([0, r], R
n−1) : σ(0) = 0}.

Note that supx∈[0,r] ‖σ(x)‖ < rδ, which we will use in the proof. The Graph Transform
operator Gf : Sr,δ → Sr,δ maps σ ∈ Sr,δ to a function Gf(σ) ∈ Sr,δ for which gr(Gf(σ)) =

f(gr(σ)). Figure (2) sketches the action of Gf . The crucial step is to consider this definition
pointwise, that is, we wish to express (Gf (σ))(ξ) as a computable expression. As illustrated
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Figure 2. The Graph Transform operator Gf maps a Lipschitz function σ to a Lipschitz
function with a graph that is the image under f of the graph of σ.

in Fig. 2, we need to find a point ξ ′ on the e1 line such that π1f(ξ′, σ(ξ′)) = ξ. If such a point
ξ′ can be found then the value of the Gf(σ) at ξ is π2f(ξ′, σ(ξ′)), that is,

(Gf(σ))(π1f(ξ′, σ(ξ′))) = π2f(ξ′, σ(ξ′)),

or equivalently,

(Gf(σ))(ξ) = π2f([π1f(·, σ(·))]−1(ξ), σ([π1f(·, σ(·))]−1(ξ))).

Our goal is to show that Gf is well defined and a contraction on Sr,δ. The Banach fixed
point theorem [13] then implies that Gf has a unique fixed point σ∗. By definition of Gf , this
means that gr(σ∗) is f invariant.

The first step is to show that Gf is well defined. We must show that for every ξ ∈ [0, r],
with r > 0 sufficiently small, there is a unique ξ ′ ∈ [0, r] with Gf(σ) ∈ Sr,δ. For any
ξ ∈ [0, r] =⇒ ξ′ < ξ it is not hard to show that the solution ξ ′ of ξ = π1f(ξ′, σ(ξ′)) satisfies
ξ′ < ξ. Indeed, ξ ′ < ξ is equivalent to

(ξ′)2 ≤ N11(ξ
′)2 + N12σ(ξ′) + αξ′.

Since α > 0, αξ′ has a positive slope so that (ξ ′)2 ≤ αξ for ξ′ small enough. Clearly, we can
choose and r, δ small enough so that that the additional term N11(ξ

′)2 + N12σ(ξ′) does not
alter the inequality.

The second step is to make sure that Gf(σ) is δ-Lipschitz continuous. We estimate

‖(Gf(σ))(ξ1) − (Gf (σ))(ξ2)‖ = ‖N21((ξ
′

1)
2 − (ξ′2)

2) + N22(σ(ξ′1) − σ(ξ′2))‖
≤ (2r‖N21‖ + δ‖N22‖)|ξ′1 − ξ′2|.

By Cauchy’s Mean Value Theorem we find that

|ξ′1 − ξ′2|
|ξ1 − ξ2|

≤ sup
z∈[0,r]

2

√

N11z2 + N12σ(z) + αz

|2N11z + α + N12(dσ/dz)(z)|

≤ 2

√

|N11|r2 + ‖N12‖ε + αr

α − ‖N12‖δ
,
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which implies that

‖(Gf(σ))(ξ1) − (Gf(σ))(ξ2)‖ ≤ (2r‖N21‖ + δ‖N22‖)

×2

√

|N11|r2 + ‖N12‖ε + αr

α − ‖N12‖δ
|ξ1 − ξ2|.

If r is small enough such that

2r‖N21‖ + δ‖N22‖ < δ (8)

and
√

|N11|r2 + ‖N12‖rδ + αr

α − ‖N12‖δ
<

1

2
(9)

then we have Gf(σ) ∈ Sε,δ. Note that (8) and (9) can always be satisfied if ‖N22‖ < 1,
provided r and δ are chosen small enough.

We now show that Gf has a unique fixed point. For arbitrary σ1, σ2 and ξ ∈ [0, r], we
find ξ1, ξ2 ∈ [0, r] such that ξ = π1f(ξ1, σ1(ξ1)) = π1f(ξ2, σ2(ξ2)). Then we have

‖(Gf(σ1))(ξ) − (Gf(σ2))(ξ)‖ = ‖N21(ξ
2
1 − ξ2

2) + N22(σ1(ξ1) − σ2(ξ2))‖
≤ 2r‖N21‖ |ξ1 − ξ2| + ‖N22‖ ‖σ1(ξ1) − σ2(ξ1)‖ + ‖N22‖ ‖σ2(ξ1) − σ2(ξ2)‖
≤ (2r‖N21‖ + δ‖N22‖)|ξ1 − ξ2| + ‖N22‖‖σ1 − σ2‖,

To estimate |ξ1 − ξ2| in terms of ‖σ1 − σ2‖ we introduce the notation g1(ξ, η) = (f1(ξ, η))2.
Note that

|g1(ξ1, σ1(ξ1)) − g1(ξ2, σ1(ξ1))| ≥ |N−1
11 | |ξ1 − ξ2|

and also

|g1(ξ2, σ2(ξ2)) − g1(ξ2, σ1(ξ1))| = |N12(σ2(ξ2) − σ1(ξ1))|
≤ ‖N12‖(‖σ2(ξ2) − σ2(ξ1)‖ + ‖σ2(ξ1) − σ1(ξ1)‖
≤ ‖N12‖(δ|ξ1 − ξ2| + ‖σ1 − σ2‖)

Since g1(ξ1, σ1(ξ1)) = g1(ξ2, σ2(ξ2)) and, therefore, the left-hand-side of the above two
inequalities are the same, we get

|ξ1 − ξ2| ≤
‖N12‖

|N−1
11 | − δ‖N12‖

‖σ1 − σ2‖,

as in [9], which yields

‖(Gf(σ1))(ξ) − (Gf(σ2))(ξ)‖ ≤
(‖N12‖(2r‖N21‖ + δ‖N22‖)

|N−1
11 | − δ‖N12‖

+ ‖N22‖
)

‖σ1 − σ2‖.

Recall the assumption that ‖N22‖ < 1. Hence, r, δ can be chosen small and we can conclude
that Gf is a contraction.
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Remark: Theorem 1 shows that only the coefficient of the square root term and one part
of the linear part plays a role in the existence of the unstable manifold. This is due to the
infinite stretching of the square root term, which ultimately determines the direction of the
local unstable manifold.

It may seem that our conditions are not too restrictive, but, in fact, in most physical
systems α < 0. Because of the nature of impacts, the map brings every orbit back into the
linear region until it starts to impact again. In most cases this problem can be resolved by
iterating the linear part as many times as necessary to get a positive α. However, when N

has only positive real eigenvalues this method does not work. Simulations show that system
(5) has, in this case, one of the three kinds of dynamics similar to the one-dimensional square
root map, but the invariant set (the fingers) is rather interspersed; see [5] for examples.

4. Example

We illustrate the theorem with a two-dimensional example. Consider the impacting system

(x, y) 7→
{

(βx + y + µ,−γx), x ≤ 0,

(y + µ −√
x,−γx), x > 0,

which is the local Poincaré map of a periodic orbit in a forced impacting linear oscillator
taken from [15]. In its original form α = −1, but we consider period-three maximal orbits
and perform the transformations described in section 2. We find that



















x 7→−2βγx − (β4 + β2γ(γ − 2) + γ2)y

+µ(1 + β + β2 − γ) + (γ − β2)
√

x

y 7→ γ3x

β4 + β2γ(γ − 2) + γ2
− (β + γ)µ

β4 + β2γ(γ − 2) + γ2

(10)

for x > 0, and α = (γ − β2). Hence, in certain regions of the parameter space α is positive.
Here, we use (γ, β) = (0.5, 0.02) as in [2] where the authors found that a grazing bifurcation
induces an unstable period-three orbit for µ < 0. This unstable orbit then undergoes a smooth
fold bifurcation and continues to exists for µ > 0. In this case α = 0.46 and Thm. 1 guarantees
the existence of the unstable manifold of the period-three orbit at the grazing bifurcation point
for µ = 0.

At the moment of grazing, that is, when µ = 0, two period-three orbits exists that are
fixed points of (10). The grazing orbit corresponds to the fixed point (x∗

2, y
∗

2) = (0, 0) and the
other period-three orbit corresponds to the attracting fixed point (x∗

3, y
∗

3) ≈ (9.6× 10−5, 6.0×
10−5. As shown in Fig. 3, the unstable manifold W u(x∗

2, y
∗

2) accumlates onto (x∗

3, y
∗

3).
We computed W u(x∗

2, y
∗

2) using the Graph Transform operator Gf . Indeed, the initial
stretching along the manifold is rather large, so that it is very difficult to find an approximation
of W u(x∗

2, y
∗

2) by other means. We found that it is possible to consider the space of Lipschitz
functions y = σ(x), x ∈ [0, r] for r = x∗

3, that is, Gf is a contraction on the maximal interval
and the graph of its fixed point σ∗ is the global manifold W u(x∗

2, y
∗

2). An approximation of
gr(σ∗) is obtained by iterating the function σ ≡ 0 eight times, namely, then the graph of the
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Figure 3. The unstable manifold of the grazing fixed point (x∗

2
, y∗

2
) of (10) at µ = 0

accumlates on the attracting fixed point (x∗

3
, y∗

3
). The Graph Transform operator is a

contraction along the entire interval [0, x∗

3
].

result lies within line thickness of the previous iteration. Figure 3 shows the manifold in the
(x, y)-plane along with the fixed points (x∗

2, y
∗

2) and (x∗

3, y
∗

3).

5. Discussion

We have shown that a one-dimensional invariant unstable manifold of an impacting fixed point
persists at a grazing bifurcation point, provided the coefficient of the square-root term in the
expression of the local Poincaré map points back to its own domain after a finite number of
iterations, which is the case for period-k maximal orbits. If this condition is not satisfied,
e.g., if the linear part has strictly positive real eigenvalues, the situation is different, because
of the ensuing period-adding cascade, which results in an infinite-period orbit at the grazing
bifurcation point. Exactly at the this point the square-root term maps any point to the linear
region where it will stay forever. In this case we were unable to prove the existence of the
invariant manifold of the grazing orbit. Beyond the grazing bifurcation point the system
will have a finite Jacobian at the fixed point. Hence, the classical Stable Manifold Theorem
applies and one can globalize the manifold and obtain either a strange attractor or an attractor
that contains a large-period orbit.

In the proof of our result we successfully applied the Graph Transform technique, despite
the fact that the governing map is not Lipschitz continous. We are hoping that a similar
approach can reveal more information about grazing invariant tori in hybrid or Filippov
systems. Initial investigations by Dankowicz and Piiroinen [3] and Thota and Dankowicz
[19] show that persistence of grazing tori is a subtle problem. It appears that after the grazing
bifurcation an attractor persists, even though it may not be a torus in the classical sense.



Unstable manifolds near grazing 10

References

[1] B. Aldridge, G. Haller, P. Sorger, and D. Lauffenburger. Direct Lyapunov exponent analysis enables
parametric study of transient signaling governing cell behavior. IEE Proc. Systems Biology, 153:425–
432, 2007.

[2] W. Chin, E. Ott, H. E. Nusse, and C. Grebogi. Grazing bifurcations in impact oscillators. Phys. Rev. E,
50(6):4427–4444, 1994.

[3] H. Dankowicz and P. Piiroinen. Low-velocity impacts of quasi-periodic oscillations. Chaos, Solitons, and
Fractals, 14(2):241–255, 2002.

[4] M. di Bernardo, C. J. Budd, and A. R. Champneys. Normal form maps for grazing bifurcations in n-
dimensional piecewise-smooth dynamical sytems. Physica D, 160:222–254, 2001.

[5] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk. Bifurcation and Chaos in Piecewise-
Smooth Dynamical Systems: Theory and Applications. Springer. (In press)

[6] M. di Bernardo, P. Kowalczyk, and A. B. Nordmark. Bifurcations of dynamical systems with sliding:
Derivation of normal-form mappings. Physica D, 170(3-4):175–205, 2002.

[7] E. J. Doedel, B. Krauskopf, and H. M. Osinga. Global bifurcations of the Lorenz manifold. Nonlinearity,
19:2947–2972, 2006.

[8] R. D. Eyres, P. T. Piiroinen, A. R. Champneys, and N. A. J. Lieven. Grazing bifurcations and chaos in the
dynamics of a hydraulic damper with relief valves. SIAM J. Applied Dynamical Systems, 4(4):1076–
1106, 2005.

[9] N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana University Mathematics
Journal, 21(3):193–226, 1971.

[10] S. Foale and R. Bishop. Bifurcations in impact oscillators. Nonlinear dynamics, 6(285–299), 1994.
[11] M. H. Fredriksson and A. B. Nordmark. Bifurcations caused by grazing incidence in many degrees of

freedom impact oscillators. Proc. R. Soc. Lond. A, 453:1261–1276, 1997.
[12] P. Guckenheimer and J. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector

Fields. Springer-Verlag, New-York, 1983.
[13] Einar Hille and Ralph S. Phillips. Functional Analysis and Semigroups. American Mathematical Society,

Providence, R.I., 1957.
[14] H. Lamba and C. J. Budd. Scaling of Lyapunov exponents at nonsmooth bifurcations. Phys. Rev. E,

50(1):84–90, 1994.
[15] A. B. Nordmark. Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of

Sound and Vibration, 145(2):279–297, 1991.
[16] F. Pfeiffer. Seltsame Attraktoren in Zahnradgetrieben. Archive of Applied Mechanics, 58:113–125, 1988

(in German).
[17] W. J. Stronge. Impact Mechanics. Cambridge University Press, 2000.
[18] A. Surana, O. Grunberg, and G. Haller. Exact theory of three-dimensional flow separation. Part I. Steady

separation. J. Fluid. Mech., 564:57–103, 2006.
[19] P. Thota and H. Dankowicz. Analysis of grazing bifurcations in quasiperiodic system attractors. Physica

D, 220(2):163–174, 2006.
[20] V. I. Utkin. Sliding Modes in Control and Optimization. Springer, 1992.


