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Abstract 
Stability and surface location error are investigated numerically for milling operations with a helical tool. A 
detailed mechanical model is derived that includes both surface regeneration and the helical teeth of the tool. 
The governing delay-differential equation is analyzed by a modified version of the semi-discretization method. 
The surface location error is predicted based on the (stable) forced motion of the tool for different axial depths 
of cut. It is shown that the surface location error varies periodically along the axial direction due to the helical 
teeth. The relation of the maximum surface location error, the surface waviness and the surface roughness is 
explored.   
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1 INTRODUCTION 
Machine tool vibration is one of the most important 
problems that faces the machinist. Undesired vibrations 
during machining, often called machine tool chatter, 
shorten the lifetime of the tool and result in unacceptable 
surface quality. Recently, the research interest has 
focused on the determination of the chatter-free 
technological parameters in order to check the surface 
quality for stable operations.  
While in milling processes it is essential to use stable 
machining, the surface properties are also very important 
for finishing. Efficient technical parameters for stable 
cutting can be chosen from the stability charts, but in 
most cases, forced vibrations still occur at these 
parameters. Most studies in the literature of machine tool 
chatter consider straight fluted tool models [1,2,3,4], and 
few articles use models to describe the effects of the helix 
angle of the tool [5]. The surface properties are usually 
determined by a straight fluted tool model [3,4], even 
though machine tools typically have helical edges; see [8] 
for geometric description of the surface in a helical tool 
model. 
The goal of this paper is to predict the surface properties 
by means of a helical tool model. 
 
2 MODEL 
In our analysis, a 2 DoF flexible tool and rigid work-piece 
model was used (Fig. 1.), because the first modal 
frequencies in the x and y directions are the lowest and 
most important due to the small damping of the machine 
tool structure. 
In finishing operations, only the stable process is 
acceptable, which can be determined by a linear stability 
calculation. Thus, the cutting force Fj of the j th tooth is 
approximated as a linear function of the chip thickness hj 
at the stationary cutting, and the ratio of the tangential 
cutting force component Fj

t(t) and the radial one Fj
r(t) is 

supposed to be constant: 
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where w is the axial immersion, kr and kt are so called 
cutting coefficients. The chip thickness comprises two 
parts, the static and the dynamic chip thicknesses. The 
static part is generated by the constant feed motion v, 
while the vibration of the tool described by the general 
coordinate vector q=[x y]T generates the dynamic part, so 
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where fj(t) is the angular position of the jth tooth, τ =2π/ ΩZ 
is the time delay, Z is the number of the teeth and Ω is the 
angular velocity of the tool. This formula already contains 
the so called regenerative effect, too, with the presence of 
the time delayed term q(t-t). 

 

Figure 1: 2DoF model. 
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From the modal analysis, we know the mass (M), the 
damping (C) and the stiffness (K) matrices. The 
governing equation is given by 
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In the case of a straight edged tool, the directional force 
coefficient matrix W(t) can be calculated easily: 
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The step function gj shows whether the jth tooth is in 
contact with the work-piece, or it is not. The projection 
matrix T is given by  
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2.1 Helical edged tool 
In our model in Fig. 2, the current angular position of the 
edge also depends on the axial coordinate of the tool z. 
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where p is the helix pitch. 

 

Figure 2: Geometry of a helical edged tool. 

The system of the helical tool model can be described 
with the same governing equation as (3), but we must use 
a different directional force coefficient matrix, which is 
given by 
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Fig. 3 shows that if the axial immersion is large enough 
then the directional force coefficient matrix in (7) can be 
separated into two parts: 
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where Nfull=int(wZ/p). 
The first part contains those sections where the 
integration is made along full periods (p/Z). This part is 
constant in time: 
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Figure 3: Helix pitch and angular position of the edge as a 

function of the coordinate z. 
The second part contains the remainder of the integration, 
which is time dependent: 
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The limits aj(t),bj(t) of the integration  can be determined 
from the systematic scheduling of entry and exit angles, 
so the directional force coefficient matrix can be calculated 
analytically [6]. The directional force coefficient matrix is 
time independent if the Wj is zero, so we integrate along 
full periods only. In this case 
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Z
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This case is represented in Fig. 4 by the straight-lines. 

 
Figure 4: Function of the xx component of the directional 
force coefficient matrix in different axial immersion (w). 

p/Z=10mm 
The governing equation (3) can be separated into two 
parts by using the new variables x and ξ. 
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such that forced motion x(t) satisfies 
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where the right-hand-side contains the time function of the 
cutting force. 
Substituting (12) and (13) into (3) we get the delayed 
parametrically forced part of the governing equation. 
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which describes the stability of the tool motion. If it is 
unstable, the tool vibration amplitude tends to infinity and 
there is no need to calculate the surface, this is already 
unacceptable. When the trivial solution ξ(t)≡0 of (14) is 
stable, the particular motion of the tool centre is given by 
the solution of the forced motion (13). This always has a 



periodic solution because of the small damping. By using 
this solution, we can compute the motion of the teeth, 
which generates the surface after the settled transient 
motion. 
The parameter domains of stable cutting were calculated 
from (14) using the semi-discretization method, which is 
described in detail in [6,7]. 
 
3 SURFACE  
To be able to calculate the general solution, we 
approximate the cutting force by its Fourier series. During 
the calculations, the first 25 terms were used (NF=25).  
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The particular solution of the tool-centre vibration is also 
given by a series of trigonometric functions 
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The coefficients c and d can be determined from 
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Using the solution x(t), the motion of the jth cutting edge 
ej(z,t) can be described by superposing this vibration onto 
the cylindrical rotation; see Fig.5. The cylinder is created 
by the edge of the rigid tool. 
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where R is the radius of the tool and φj comes from (6). 

 
Figure 5: Path of the helical edges e(z,t). Red surface 

denotes the cutting period, blue surface denotes the non-
cutting period. 

During the milling process, each tooth create a single 
surface segment s(z,t) in every revolution. The whole 
surface is formed by these surface segments (see Fig.6.). 
Every surface segment is the same because we neglect 
the transient motion of the tool. The surface properties 
can be described by a single surface segment, which can 
be determined by the motion e(z,t) of any edge relative to 
the work-piece: 
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We have to determine the entering and exiting time 
instants tstart(z),tend(z) at a certain height z when the cutting 
edge just touches the boundary of the surface segment of 
the work-piece. These can be calculated from 
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3.1 Surface properties 
In case of the straight fluted tool, two surface parameters 
are commonly used. First is the surface roughness µ given 
by 
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Second is the surface location error SLE, which is an offset 
error. It is the distance between the desired surface and 
the machined surface. SLE can be calculated by 

( ) RtSLE y
t

−= )(max s . (22) 

In the helical tool model, the surface roughness and the 
surface location error are the functions of the axial 
coordinate z, that is we have the corresponding functions 
µ(z), SLE(z). It is more convenient, though, to describe 
surface properties by a single scalar quantity. In practice 
the surface quality is described by the largest difference 
between the points of the surface. Using a tool with a 
helical edge, there are two different deflections. The first is 
in the feed direction x, which is similar to surface 
roughness at the straight fluted tool model. The second is 
in the z direction due to the varying SLE(z). This error is 
caused only by the helical edge, and hence it is always 
zero in the case of a straight fluted tool. 
It can be seen from (18) and (6), that the surface is 
changing periodically along the z coordinate, too. The 
variation of SLE has wavelength p/Z in the direction z. For 
this reason, the variation of SLE is not really a surface 
roughness but rather a surface waviness. Consequently, 
the surface error is separated into two parts. The first is 
the surface roughness µx: 
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The second is the surface waviness µ~ , given by 
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An overall scalar characteristic value of the surface could 
be the maximum surface location error MSLE, which is 
given by 

))((max)),((max
,

zSLERtzMSLE
z

y
tz

=−= s . (25) 

If we use straight fluted tool, SLE and MSLE are the same. 
The three types of surface errors µx, µ~  and MSLE are 
represented graphically in Fig. 6. 



 
Figure 6: Schematic representation of the surface errors 
made by helical tool. Three surface segments are shown. 

 
4 MECHANICAL MODEL 

4.1 Mechanical parameters 
To describe the effect of the technological parameters on 
the surface quality, we choose a particular machine tool 
and corresponding work-piece parameters. The machine 
tool is described by the same modal parameters as used 
in [3]. These parameters were determined experimentally. 
The mass (M), damping (C) and the stiffness (K) 
matrices were determined by a standard impact test 
procedure of modal analysis: 
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Figure 7: Surface location error SLE (a) and surface 

roughness µ (b) for down-milling with straight fluted tool. 
Parameters are Z=4, τv=0.1[mm], p→∞, a/D=0.05. 

 
During the calculations we use tools with a standard 
radius R=4 mm. 
The chosen material of the work-piece is AlMgSi0.5 
aluminium alloy, which leads to the numerical values of 
the tangential cutting coefficient kt and the non-
dimensional force ratio kr (see [3]): 
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4.2 Effect of technological parameters 
We calculate the machined surface in those technological 
parameter regions where the cutting process is stable. 
The surface quality is especially important in finishing 
operations, where a small radial immersion is typically 
used. We chose a fixed 5% radial immersion for down 
milling. Fig. 7(a) shows the surface location error (SLE) 
and Fig. 7(b) shows the surface roughness (µ) for down-
milling over the stability chart for a straight fluted tool. 
Note, that the surface waviness is always zero for a 
straight fluted tool. 
We can see that there are large offset errors if we are in 
the vicinity of those angular velocities where the ratio of 
the natural frequency of the system and the tooth passing 
frequency is close to an integer. In this case, the tool 
vibration is close to resonance because the frequencies of 
higher harmonics of the cutting force are close to the 
natural frequencies. 
In Fig. 8, we calculated the maximum surface location 
error MSLE and the surfaces roughness µx for the same 
parameters as in Fig. 7, but we changed the helix pitch to 
10 mm. We can see that the helix pitch has a great 
influence on the surface quality. In the case of a constant 
directional force coefficient matrix, when wZ/p is close to 
an integer (see (11)), there is no tool vibration, and there 
is a small but non-zero MSLE due to the constant force. 
The same phenomenon is experienced for roughness µx.  

 

 
 

 
Figure 8: Maximum surface location error (a) and surface 

roughness (b) for down-milling with helical tool. 
Parameters are Z=4, τv=0.1[mm], p=10 [mm], a/D=0.05. 



 
Figure 9: Surface waviness for down-milling with helical 

tool. Parameters are Z=4, τv=0.1[mm], p=10 [mm], 
a/D=0.05.  

The surface waviness plot is shown in Fig. 9. It can be 
seen that the surface waviness is in the same order of 
magnitude as the maximum surface location error. The 
conclusion is the same: the best surface quality is 
obtained at the parameter points where wZ/p is close to 
an integer. 
Fig. 8 and 9 show that we can achieve almost the same 
good surface quality at different parameter values, too. 
There are as many suitable points in a full helix pitch p/Z 
as the number of the ratio of the natural frequency and 
the spindle frequency of the tool.  This phenomenon is 
shown in Fig. 10, where we calculate only MSLE also 
above the unstable region. The optimal surface quality 
points are placed along the dotted straight lines. 
At these optimal points, the contact period of each edge is 
an integer multiple of the period of the natural vibration of 
the tool (see Fig. 11). We can see that the position of the 
tool centre returns close to the equilibrium after the 
cutting period partly due to the small damping of the 
system and partly to the special frequency ratio explained 
above. This way, significant vibrations cannot emerge, so 
we get a better surface quality at these points. 

 

 
Figure 10: Maximum surface location error (a) and its top 
view (b). The dashed line denote the p/Z height. Solid line 

denote the stability boundary. Parameters are Z=4, 
τv=0.1[mm], p=10 [mm], a/D=0.05. 

 
Figure 11: Excitation force (F) and the vibration of the tool 
centre (x). Green lines denote the x components, red lines 

denote the y components and dash lines denote the 
period of the natural vibration of the tool. Parameters are 
Z=1, Ω=888 [rad/s], w=1 [mm], τv=0.05[mm], p=2.5 [mm], 

a/D=0.1. 
 
5 SUMMARY 
In this report, we investigated the effect of the parameters 
of a helical tool model to predict the surface properties of 
the machined surface in high-speed milling. First, we 
determined the governing equation of the tool motion. 
Then we generated the work-piece surface in the 
parameter region of stable cutting. New surface 
parameters like the maximum surface location error MSLE, 
the surface roughness µx and the surface waviness µ~  
were introduced to describe the properties of the surface. 
The influence of the helix pitch on surface quality was 
analysed. 
Our most important observation was that if we use an 
appropriate helix pitch, good surface properties can be 
achieved in the case of resonant angular velocities. We 
also found the new phenomenon that the appropriate helix 
pitches are not just those where the directional force 
coefficient matrix is time independent (so there is constant 
cutting force in time), but that there are other equally 
spaced ones between them, where the spacing depends 
on the angular velocity. 
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