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ABSTRACT

This paper investigates the performance of different
parameter estimation algorithms in direction finding using
a linear array with element spacing of more than half a
wavelength. The study shows that all the common
algorithms namely the beamformer methods, MUSIC, Min-
Norm, JoDeG, ESPRIT, and SAGE, generate an
ambiguous error in the estimated direction-of-arrival
results, when the antenna element spacing is more than
half the carrier wavelength. Here, the source of this
ambiguity is identified, and our proposition confirmed by
applying the algorithms on the real measured data in a
controlled environment. Furthermore, the relative
sensitivity of each candidate algorithm is appraised.

I. INTRODUCTION

The performance of future wireless communication
systems can be significantly improved by applying
antenna arrays. Channel information like the
direction-of-arrival (DoA) of the signals is crucial to
those techniques that exploit the channel spatial
information, e.g. beamforming methods. Following
the undesirable consequences of poor resolution of
the classical beamforming techniques (e.g. Bartlett’s
method, Min-Variance) in estimating the DoA, a
number of efficient high resolution algorithms have
been developed to enhance the resolution of the
estimated parameters beyond the Fourier limit.

Some of the most commonly used high resolution
algorithms are MUltiple SIgnal Classification
(MUSIC) [1], Min-Norm [2], JoDeG1 [3], Estimation
of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [4], and Space-Alternating
Generalised Maximisation-expectation (SAGE) [5].
Disregarding the resolution capability of these
algorithms, they generate an ambiguity error when
applied to estimate the DoA of radio signals
impinging on a uniform linear array (ULA), when
the element spacing is more than half wavelength.
This ambiguity error leads to unexpected wrong
estimation of the DoA and has direct impact on the
antenna array application that relies on the DoA
information.
In this paper, the source of this ambiguity in all the
aforementioned algorithms is identified and our
                                                
1 The name ‘JoDeG’ was derived from the names of the authors

[3] in order to identify the method proposed by them.

proposition confirmed by applying these algorithms
to estimate the DoA of the signals from the real
measurement data in a controlled environment (an
anechoic chamber). The ULA used in the test had an
element spacing (d) of 0.563*λ, where λ is the
wavelength of the radiated signal at 2.12 GHz. The
results show that the ambiguous error will only affect
the estimated DoA values, as these are evaluated in
the spatial domain. Other signal parameters, such as
Time-Delay-of-Arrival (TDoA) and path weights, are
unaffected since they are not a spatial domain
estimation problem and thus not influenced by the
antenna element separation.

Throughout the paper, it is assumed that the readers
have a fundamental knowledge of the herein
algorithms under investigation. The paper is
organised as follows. Section 2 explains the
ambiguity in the classical beamformer methods,
Section 3 explains the ambiguity in MUSIC, Min-
Norm and the JoDeG algorithms. Section 4 and 5
explain the ambiguity in ESPRIT and SAGE
respectively. Section 6 describes the setup procedure
for the test measurement and presents the estimation
results. Finally, Section 7 concludes the paper.

II. AMBIGUITY IN THE CLASSICAL
BEAMFORMER METHODS

The classical beamformer methods (e.g. Bartlett’s
method, Min-Variance) used in the past are among
the simplest in the direction finding algorithms. They
are based on the beamforming, where a beam is
formed at different directions across the azimuth and
the DoA is located by the peak in the spatial power
spectrum.  Since this is a beamforming application,
its performance is degraded by the grating lobes that
occur when d >λ/2 [6].

For the ULA, grating lobes will occur when equation
(1) is satisfied

[ ] πθθ
λ

π n
d

og ±=− sinsin (1)

where θg is the azimuth angular position of the
grating lobe, θo is the azimuth angular position of the
main lobe, and n is a non-zero integer. For d =
0.563λ, grating lobes will occur when |θo|>50º (eq.
1). Figure 1 illustrates the occurrence of the
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undesirable grating lobe at -73º when a beam is
formed at 55º. However, note that the array does not
suffer from grating lobe when a beam is formed at
20º.
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Figure 1 Beamforming with 8-element ULA, d=0.563λ

Hence, the false peak (corresponding to the grating
lobe) as well as the true peak (corresponding to the
true DoA) will both occur in the power spectrum,
implying that there are two different sources in the
far field. The wrong DoA estimate will be obtained if
the grating lobe has got strong and distinct peak as
the main lobe. This ambiguous problem is
unavoidable since in practice the number of
impinging signals and their true DoAs are unknown.

III. AMBIGUITY IN MUSIC, MIN-NORM AND
JODEG

The development and implementation of the MUSIC,
Min-Norm and JoDeG algorithms on an ULA are
well documented in [1-3]. Although the
implementation of each of these algorithms is
different, their fundamental philosophy is the same.
They identify the signal parameters by exploiting the
property of the noise subspace of the covariance
matrix through eigen-decomposition. Generally,
these algorithms search the array manifold for the
steering vector (corresponding to the true DoA) that
is closest to the signal subspace, or orthogonal to the
noise subspace.

Assuming only one signal is impinging on a ULA
with an element spacing greater than half wavelength
(d >λ/2), ambiguity is said to arise when there are
two steering vectors that are (almost) orthogonal to
the noise subspace. This is similar to the occurrence
of grating lobes in a beamforming application
discussed in Section 2 when d >λ/2.

This has a direct impact on the performance of
MUSIC, Min-Norm, and JoDeG algorithms. For
example, if the true DoA of the signal impinged on a
ULA with 0.563λ element spacing is 55º, there will
be two steering vectors that are very close to the
signal subspace. One of them corresponds to the true
DoA at 55º, while the other one corresponds to a

false DoA at -73º (from eq. 1), where the peak of the
grating lobe occurs. In this case, there will be two
peaks in the spectrums of MUSIC, Min-Norm and
JoDeG algorithms (at 55º and -73º respectively), and
the search function2 of these algorithms will provide
two different DoA estimates for the same impinging
signal. This leads to misleading results, since there is
only one valid DoA and this is unknown to the user.

IV. AMBIGUITY IN ESPRIT

The main objective of the ESPRIT-type3 algorithms
is to compute the so-called ‘invariance phase shift’
� 
���������������������������������������

θ
λ

π sin2
d=Φ (2)

where θ is the DoA measured from the ULA
broadside. Assuming that only one signal impinges
on the ULA and the effective angular range of the
ULA is restricted to ±90º (measured from the array
broadside), in order to avoid mirror image
ambiguity4. For any incident DoA (θ) and element

spacing (d
�� ���  ���������� !�� �� 180180 ≤Φ≤− .
"��������������� ���  ���#���!������� �� ����! ����

restricted to �� 1800 ≤Φ≤  for �� 900 ≤≤ θ , and
�� 0180 ≤Φ≤−  for �� 090 ≤≤− θ . This ambiguity-

free condition sets an upper limit of d at λ/2 (spatial
Nyquist sampling theorem).

���������	
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�����������
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195.8º = -164.2º

Now suppose that d=0.563λ (>λ/2) and θ=75º.
$!�����!������������� !���������%
���� ��� &	'()
º. In

this case, since �� 180180 ≤Φ≤− , a phase shift of
195.8º is cyclically equivalent to -164.2º (Figure 2).
ESPRIT will misinterpret this to be -164.2º and
compute the estimated DoA at -54º (from eq. 2),
which is very different from the true DoA at 75º. In
short, for d=0.563λ, ambiguous error due to
misinterpretation of cyclically ambiguous phase shift
in ESPRIT will occur if |θ|>62.6º (eq. 2). Also, the
DoA ambiguity reported is different to that of the
previous methods.

                                                
2 To search for the peaks in the spectrum.
3 This includes the whole family of algorithms based on the

‘invariance phase shift’ property of ESPRIT, eg. LS ESPRIT,
TLS ESPRIT, SLS ESPRIT, Multiple Invariance ESPRIT,
Unitary ESPRIT, etc.

4 Angular range is usually restricted to less than ±90° depending
on the beamwidth of the individual elements.
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V. AMBIGUITY IN SAGE

The underlying concept of the SAGE algorithm [5] is
the same as the classical Expectation-Maximisation
(EM) algorithm, except that the SAGE algorithm
updates its multi-dimensional (m-D) parameters
sequentially in different 1-D parameter space
domains. This parameter updating procedure (M-
step) relies on the maximum likelihood of occurrence
of the estimated parameter value that is calculated
from a cost function.

In terms of the DoA estimation using an N-element
ULA, the M-step in SAGE is given by [5]

( )






=′

2ˆ;arg lXzxma θθ
θ

(3)

where

( ) ( ) ( )∑
=

− ⋅=
N

n
l

dnj

l XeXz
1

sin12 ˆˆ;
θλπθ (4)

is the spatial correlation function, and lX̂  is the

complete data of the l-path obtained in the
Expectation step (E-step).

Note that effectively (4) represents a 1-D
beamforming process where the estimated DoA (θ’)
of the l-path is given by the value of θ (within the θ
space of eq. 3) which maximises the energy of the
correlation function. This in turn is sensitive to the
grating lobes problem described in Section 2 when

2
λ>d , which creates a high possibility that the

false θg (corresponding to the grating lobe) will
maximise the energy of the correlation function (eq.
4), rather than a true DoA. Indeed, the ambiguous

error in SAGE due to 2
λ>d  is said to arise when

the correlation in (4) with θg in the M-step is higher
than that of the true θo.

VI. MEASUREMENT AND ESTIMATED
RESULTS

In order to confirm the above observations, a
controlled measurement has been conducted in the
University of Bristol’s anechoic chamber with a
single source impinging on the 8-element ULA. The
measurement was performed in a 20 MHz bandwidth
centred at 2.12 GHz, with d=0.563λ  (ULA element
separation of 80 mm). The channel complex
frequency response data was recorded using the
Medav RUSK BRI channel sounder [7]. Both the
transmitter and the ULA were fixed at one position
in such a way that the ULA broadside directly faced
the transmitter at the same height. Measurements
were taken for each of the ULA’s orientation from -
90º to 90º in 1º steps (angle measured from ULA’s
broadside). An electrical positioner was used to
rotate the ULA in every 1º step to guarantee absolute
accuracy. The additional undesired responses of the

ULA caused by its manufacturing imperfections and
antenna mutual coupling had been calibrated out
from the measured data before applying the post-
processing described below.

Figure 3 Power spectrum of the Bartlett’s beamforming method

Figure 3 shows the power spectrum of the Bartlett’s
beamforming method when applied to the measured
data. As discussed in Section 2, since d=0.563λ,
grating lobes start to occur when |θo|>50º. It can be
clearly seen that two peaks of (almost) equal energy
appear in the region of |θo|>50º.

The channel data was recorded as a frequency
response over 20 MHz of bandwidth. Thus the 2-D
high resolution algorithms were applied to jointly
estimate the DoA and TDoA of the signals together.
In each of the following 2-D high resolution
algorithms that based on eigen-decomposition
(except 2-D SAGE), a 2-D forward-backward spatial
smoothing [8] process had been applied prior to
implementing the algorithms5.
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Figure 4 Estimated DoA results of 2-D Unitary MUSIC algorithm

                                                
5 The reason of doing this is to follow the standard procedure in

the implementation of eigen-decomposition based algorithms so
that a fair judgement can be obtained, although there is no need
for applying it in this case.
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Figures 4-6 show the estimated DoA results using the
2-D Unitary MUSIC, 2-D Unitary JoDeG, and 2-D
Min-Norm algorithms respectively. As discussed in
Section 3, since these algorithms produce two
distinct peaks in their respective spectrums6 that
correspond to the true DoA and the false DoA when
|θo|>50º, two different estimates are obtained in
|θo|>50º. The false estimates are indicated in the
circles since the true DoA is known in an anechoic
chamber. In practice, since the true DoA is unknown,
one might think that there are two different sources
since there are two distinct peaks in these spectrums
when d >λ/2. However, the algorithms are able to
produce (almost) correct estimates when |θo|�(�º
since this is the error-free region. Note that the
ambiguity-free estimates (indicated in blue crosses)
in the region of |θo|>80º have an error within ±5º.
This is caused by low signal-to-noise ratio (SNR) in
the measured data since the antennas of the ULA
have directional beam pattern.
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Figure 5 Estimated DoA results of 2-D Unitary JoDeG  algorithm
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Figure 6 Estimated DoA results of 2-D Min-Norm  algorithm

                                                
6 The spectrums are not displayed in this paper for brevity. Here

we estimated the DoAs and TDoAs based on the spatial and
temporal location of the peaks in the spectrums.

On the other hand, 2-D Unitary ESPRIT [9]
algorithm provides consistent wrong estimates when
|θo|>62.6º, since the estimated result given by
ESPRIT is strictly determined by (2). Results show
that ESPRIT has a larger error-free angular range
compared to the rest of the algorithms. This is
because ESPRIT is not affected by the effect of the
grating lobes (strictly speaking), but it is due to the
misinterpretation of the cyclically ambiguous phase
shift when d > λ/2 (violation of spatial Nyquist
sampling theorem).
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Figure 7 Estimated DoA results of 2-D Unitary ESPRIT
algorithm

The estimated results of the 2-D SAGE algorithm are
shown in Figure 8. SAGE is able to estimate correct
DoA results when |θo|�(�º, but the probability of
estimating the correct results and the wrong results
when |θo|>50º is equal. As discussed in Section 5, the
M-step of the SAGE algorithm is based on the spatial
correlation given in (4). If the  steering vector
corresponding to the false DoA (due to the grating
lobe) has a higher correlation with the complete
signal of the l-path than the steering vector
corresponding to the true DoA, then SAGE will
produce a wrong estimate, and vice-versa. Since this
is a grating lobes related problem, the probabilities of
both events are equal.
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Figure 8 Estimated DoA results of 2-D SAGE  algorithm
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Since the M-step of the SAGE algorithm is based on
the correlation property, if we could increase the
correlation corresponding to the true DoA, then the
chances of obtaining the correct estimate will be
higher. Note that the result in Figure 8 is obtained  by
correlating the data with the ideal array manifold of
the ULA. When |θo|>50º, correlation with the ideal
manifold provides equal probability of obtaining the
correct and the false estimates. The probability of
obtaining the correct estimate can be increased by
correlating the data with the real measured array
manifold in the M-step. This is demonstrated in
Figure 9 in which the result is obtained by using the
proposed correlation method in the 2-D SAGE
algorithm. By doing this, the SAGE algorithm is able
to produce accurate estimate up to |θo|>75º even in
the occurrence of the grating lobes when |θo|>50º.
Furthermore, this also implies that the spatial
calibration procedure [10] is not needed in
implementing the SAGE algorithm, provided that an
exact knowledge of the array manifold is available.
However, in doing this, more memory would be
required to store the array manifold data and the
angular resolution of the SAGE algorithm in this
case depends on the angular resolution of the array
manifold (i.e. the step size of the spatial sampling
grid of the measured array manifold).
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Figure 9 Estimated DoA results of 2-D SAGE  algorithm with real
measured array manifold

Note that using the reference data of the array
manifold (measured in an anechoic chamber) in the
correlation process in the M-step is merely a
suggested alternative method of implementation of
the SAGE algorithm. This does not constitute a
solution to the ambiguity problem in the SAGE
algorithm when the element spacing is more than
half wavelength. The result shown in Figure 9
demonstrates a huge improvement since the
measurement in the anechoic chamber has a high
SNR and only a single source is present. In the real
environment, we might still obtain the wrong
estimate since more than one path is present. But the
probability of estimating the wrong results could be

reduced by using the reference data with a small
spatial sampling grid in the correlation process.

Although all the aforementioned algorithms produce
the ambiguous error when d >λ/2, they are still able
to produce accurate TDoA estimates and path gain
values7 since these parameters are not affected by the
antenna element separation (assuming both the
transmitter and receiver are properly synchronised
[7]). All the TDoA estimates produced by these 2-D
algorithms are very similar to each other. The
variance of the TDoA estimates is less than 5 ns (the
resolution of the channel sounder is 50 ns in 20 MHz
bandwidth) and the path gain values are very
consistent (almost equal to the element beam pattern)
throughout the azimuth range. Hence, as expected, it
can be verified that the antenna element spacing in
the ULA will only affect the applications in the
spatial domain (e.g. DoA estimation, beamforming),
but has virtually no effect on other domains (e.g.
temporal and frequency domains).

VII. CONCLUSION

It is shown that the DoA estimation algorithms
(beamformer methods, MUSIC, Min-Norm, JoDeG,
ESPRIT, and SAGE) rely on certain array geometry
to generate the best performance. A ULA with
element spacing of more than half a wavelength will
produce ambiguity problems to the direction finding
algorithms. As a short-term solution, a ULA with
highly directive elements to restrict the effective
visible range of the array into the error-free zone can
solve this problem. However, this effectively reduces
the visible range of the ULA into a smaller region,
which in fact is not practically feasible since the
ULA will reject all useful information from all other
directions. A long-term solution, on the other hand,
would be to use a ULA of no more than half
wavelength spacing, with the expense of increased
correlation between elements and increased
difficulties in putting the elements and feedlines this
close together. This work provides useful
information to array designers if DoA estimation
based on the aforementioned algorithms is to be
implemented.
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7 The estimated TDoA values and the path gain values are not

displayed here for brevity.
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