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1 Introduction
"'.

The merits of decorrelating solutions to the near-far
problem have been established [1]. Decorrelating solu-
tions are clearly optimal in mobile radio environments
especially when applied together with RAKE diversity
combining [2]. The Sliding Window Decorrelating AI-
goritlun (SLWA) as proposed initially in [1] is based
on finite sequence length decorrelation and hence has
a much lower recomputation cost compared with the
standard decorrelator [3]. Here we investigate the
computational requirements of a decorrelating solu-
tion and propose a novel algorithm for the dynamic
updating of the interference cancellation coefficients.
The resulting architecture lends itself to fully paral-
lel ASIC implementation thus making finite sequence
length decorrelation comparable to sub-optimal tech-
niques proposed in the literature [4, 5] in complexity.

2 Finite Sequence Length
Decorrelation

Central to the implementation of a decorrelating al-
gorithm is the solution of the linear system [1]. It
is important to split the solution into two compo-
nents. The first is the inversion or LU decomposi-
tion of the system matrix. The second component
involves repeated solution of the system (using the al-
ready computed matrix inverse or decomposition) for
different RHS (corrected matched filter output vectors
in SL\VA) vectors. The former operation needs to be
performed on a relatively infrequent basis. Recompu-
tation is required if the timing configuration changes
significantly, dynamic selection of multi-paths is ap.
plied or voice activity is to be exploited. The cost
of performing repeated solutions however, determines
the cost of each iteration of the algorithm and has to
conform to the overall processing delay requirements
of the system.

\Ve first examine the per-iteration (symbol interval)
operations. Iterations are implemented inexpensively
using a simple Zero Force Equaliser structure - see
Figure (1). Each user (or multi-path) being decor-
related is assigned a receiver similar to a zero force
equaliser. The tap weights for the equaliser are de-
rived from the inverse cross correlation matrix. It is
clear that

dk(i) = ~k}X
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Figure 1: Zero Forcing Decorrelator

where dk(i) is the decorrelator output for the ith sym-
bol interval of the kth user, ~k~ is the kth row within
the ith block of the inverse of ~, and X is the cor-
rected matched filter vector. If the total number of
paths/users being decOlTelated is J( and the window
size N, the degree of parallelism will ideally be N K.
However it is conceivable that lower orders of paral-
lelism may be used with the rows of the inverse matrix
being cycled through the filter taps. It must be noted
that specialised high speed ZF equaliser IC technol-
ogy is readily available' making the decorrelator the
simplest interference cancellation technique to imple-
ment on a per-iteration basis.

2.1 Competing Techniques

(1)

The decorrelator has a low per-iteration cost due to
its standard zero-forcing operation. This makes the
effect of the number of users on the processing delay
negligible in the light of currently available zero-force
IC equaliser technology. In contrast CDMA-IC [4] is
inherently a serial solution based on successive cancel-
lation of users proposed by Viterbi [6]. A channel gain
table needs to be maintained and updated in response
to the dynamic nature of the mobile radio channel.
The bulk of the processing is done on a per-iteration
basis, and additional users, or multi-path combining
represent additional steps in a serial process.
There has been an increased level of interest in Min-
imum Mean Squared Error (MMSE) algorithms for
interference rejection due to their modest demands
on information regarding interfering users. It is thus
ideal for a de-centralised solution e.g. at the mobile
handset. The training of such algorithms is likely to



represent a significant system overhead (on the mo-
bile to base link) due to indepe~dent variation of the
multi-user signals. Training requirements (frequency
of training and adaptation algorithms which are criti-
cal factors for a mobile application) have not yet been
investigated in the literature. A large part of the pro-
cessing once again translates to a per-iteration pro-
cessing load. The disadvantage of the decorrelator lies
with the recomputation overhead. The recomputation
time is critical in order to avoid deterioration of over-
all system performance due to inaccurate correlation
data. However the recomputation can be performed
off-line so as not to interrupt the normal functioning
of the system.

2.2 Recomputation of Linear System
. 'Ve now consider the recomputation of the linear. sys-

tem. A brute force approach is the recomputation of
the matrix inverse. A serial solution to this problem
is considered in [1]. The iterative process involves the
serial application of the LU decomposition. Stone [7]
has proposed a parallel algorithm using recursive dou-
bling to perform both the LV decomposition and the
forward/backward sweeps for a tri-diagonal matrix.
Let M, A, S, D denote multiplications, additions,
subtractions and di\'isions respectively. By extend-
ing this algorithm to the block-tridiagonal case (and
identifying overlapping processes resulting in further
reductions in serial computation time) we make an
estimate of the operations involved as given below.

LU Cost
1<'3

((4N - 3)J{3 + ~)M + ((4N - 3)1(32
F3 N 1-z

+~)(N-1)J{Z)A+ ~D2 2
5.LogzN.K3M + 5.LogzN.K3 A/ /LU Cost

Comparing the parallel and serial solutions in equa-
tion (2), we conclude that there is no advantage in
parallelising the algorithm unless N > > K. Since
this is not met in practice, we investigate a different
strategy.

3 Filter Coefficient

Algorithm
U p.dating

'We propose a novel algorithm for updating the filter
coefficients in response to changes in the correlation
coefficients. using a fully parallel architecture. The
architecture lends itself to a direct trade-off between
parallelism and recomputation time. The algorithm is
based on the Sherman-Morrison Formula [8] and ex-
ploits the sparse nature of the block tri-diagonal sys-
tem matrix. \Ve consider a situation where the code
synchronisation point of one user changes to such an
extent that there results a significant change in the
cross-correlation between this user and one or more
other users in the system. The '!:,ignificance' is clearly
determined by system tolerance, capacity and signal
to noise ratio, and can be determined by a subsidiary
system operating off-line or in parallel with the main
algorithm. We refer to Figure (2) in the following dis-
cussion. A change with respect to one user or path
will result in changes in the elements of a single row
(and column) in the matrices R(O), R(l) and R( -1).

~
~

-:.-

Row Correction Vectors

0 ... ... R(1) R(O)

IR(O)R(.1)0 ... 0

(1) R(O)R(.1)... 0

Compute

I

0 R(1)R(O)". 0
Correction.
Vector. :

UJ.~~~r~
Column Correction Vectors

Figure 2: Correction Vectors - Example

It will only be in the worst case that all the cross cor-
relation coefficients related to the user concerned will
change significantly. From the structure of ~, and the
fact that it is made up of the matrices R(O), R( -1)
and R(l), a change to the timing of a particular user
will result in both row-wise and column-wise correc-
tions. N rows and an equal number of columns need
to be corrected. For clarity we consider only row-wise
corrections. Let v ,u be N K vectors. Let v be a row
correction vector containing the 'corrections' to the
row of ~ being considered. The sparsity of the vector
v will depend on the number of coefficients affected.
In the worst case these vectors will have only 2K con-
tiguous non-zero elements due to the sparsity of the
block tridiagonal matrix and the fact that R( -1) and
R(l) are lower and upper triangular matrices respec-
tively (see Figure 2). We note that

(2) [u @ V]i,j = u[i].v[j] (3)

if u is the unit vector ej, then the correction vector
can be applied (added) to the ph row of ~ as follows

~ ~ ~+ A (4)

where
A=u@v

The new inverse matrix is then (~+ A) -1. Note that

(~+ A)-l

= (1+ ~-1)-1~-1 (5)

= (1 - ~-1 A + (~-l A)z - (~-1 A)3 +... )~-1

From the associativity of outer and inner products,
and replacing A by u @v we have

(~+U@V)-l = ~-1_~-1.u0v.~-1 (1-j3+iJz-iJ3+..)
(6)

where
iJ = V.~-l.U

so that

(~+ u @V)-l = ~-l - (~-lU) @ ((~-1 )Tv)l+iJ
(7)

Given the matrix ~ and the two vectors u, v, we need
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only perform two matrix vector multiplications and a
vector dot product as follows

(8)

(9)
(10)

then

-.

R-J -- ~-l - Z(8)W
1+.8

\\"ithout loss of generality we consider a correction
initiated by the first user and the corresponding row
in the second block of~. The edge blocks are special
cases (even more sparse) to which we will return. U
is in this case the (I( + l)SI unit vector and v is all
zero except for the first 2K elements. "Verequire only
one such correction vector, since the others are easily
deriwd by a cyclic shift. In any case only the non-zero
portion is required as will be seen below. Con5ider
each of the equations (8),(9M10) in turn.
(a) z = R-1u
Since u is the (E + 1)st unit vector, z is clearly the
(I( + 1)st column of R-1. 'Ve denote xth column of a
matrix M by .11". 'Ve then have

(11)

z = (~-l )K+l (12)

(b) W = vT~-l
Since v has only 2E nonzero elements we need con-
sider only 2E ~uccessive rows of ~-1, in this case
beginning with the first row. Define P to be this sub-
matrix of dimension 2K *N K and Y to be a 2K vector
consisting of the non-zero portion of v. We then have

W = yTp (13)

.:\ext consider t he term

(c) 3 = vT~-lU
This is clearly a scalar constant for the particular row
operation. Using the previous notation for a column
of a matrix

,3 = vT(~-lh(+l

yTpK+l (14)

from (13) it is clear that

!3= WJ(+l (15)

'Ve have hence expressed the terms in equations
(8),(9),(10) in terms of rows and columns of the in-
verse system matrix R-1 , and the elements of the cor- '
rection wctor.

3.1 Estimation of Operation Counts

The basic computational element (cell) is the correc-
tion to a single filter coefficient. We will now consider
this operation and estimate the number of computa-
tions required. Since z is the (K + 1)st row of ~-1,
W from (13) is given by

2K

Wj = LYi.Pj(i)
i=l

(16)
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Figure 3: Parallel Correction Set-up

let
Q=z0w

Then

Qi,j = Zi.Wj

=
2](

~~l+l' LYIPj(l)
1=1

(17)

This operation is computationally identical to zero-
forcing (multiply and sum) and can be performed fully
in parallel. However if performed serially, the opera-
tion count is given by

Cl = (2K + l)M + 2KA (18)

Substituting in (11) from (15), (17) we have

~:-1-- ~-:-~- Qi,j
I,) I,) 1 + w[(+l

(19)

Denoting the operation count by C'2

C2 = lA + IS + ID (20)

The total cost of a single correction is then

C3 = Cl + C2

= (2K + l)M + (2E + l)A + IS + 1D(21)

Clearly most of Cl is the overhead cost incurred for
anyone row or column correction. We now define
an algorithm for parallel implementation of a row or
column correction (as before we consider the general
case exduding the edge blocks). Let a Processing Unit
PUl perform an operation of the form

'lK

L Yj,Pj
j=l

where P is a column of P. By using N K degree
parallelism at this stage the serial operation count is
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Table 1: Single Row/Column Correction
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Figure 4: Single Cell Correction

2I{M + 2K A. The single cell correction which follows
is identical to that in equations (17),(19) and the op-
erations involved are IM + lA + IS + ID. Varying
degrees of parallelism can be used at this stage de-
pending on ergonomic restrictions, cost and/or state
of the art ASIC technology. A fully parallel version
would involve all cells being computed simultaneously.
The total serial operation count for a row/column cor-
rection is then identical to (21). vVenote that there is
no specific need to locate all cells performing (19) on
the same d~vice. Full parallelism is hence feasible by
dividing the row or column space over several identi-
cal IC's. Configurations for reduced parallelism would
be to perform cell corrections to rows corresponding
to the multi-paths of the same user, all operation for a
single user or rows/columns in a single block, sequen-
tially. Let f{ = SJI where S is the number of users
and '.11 the multi-paths being combined. We first tab-
ulate the operations for a single row correction (Table
1). Clearly we haw to repeat the operation discussed
above 2N times. 'Ve must however bear in mind the
reduced operation count for the edge blocks. The two
edge corrections have a total of 3K non-zero elements.
'Ve tabulate the total operation count in Table 2.
The correction algorithm given below is for the fully
parallel cell computation. When an interval of the
form [1 :::;j :::;.IV] appears after a statement, that
statement is assumed to be executed simultaneously

Table 2: Total Matrix Correction

..

for all indices in that interval. The mathematical ex-
pression being executed is enclosed in {.}. We assume
the correction applies to the kth user/path.

Correction Algorithm
BEGIN

Setup row (v), column (u) correction vectors

FOR x =rows (r), columns (c) DO
Setupv u from r (c) correction vectors

FOR (i=lSTEP i, UNTIL N)
IF(i NEQ 1) AND (i NEQ N)

Set P to 2K rows of R- I

start: «i - 2)JI: + k)tJ. x (r/c)
ELSE

IF (i EQ 1)
Set P to (K + k - 1) x (r/c) 's of R-1

start: «(i-1)JI:+k)th x (r/c)
ELSE

Set P to (2K - k) x (r/c) 's of R-1

start :«i -1)]( + k)th x (r/c)
Set z to «i - l)K + k)th ,x (c/r)

Compute Wj; [1:::; j :::;N K]

{
~K

}2::;=1 Vj.pj

Compute Qp,q ; [1:::; p, q :::;N K]
{zp.Wq}

Compute Correction .6.p,q; [1:::; p, q :::;N K]
Qp.. '

I+W(i-l)K+k

Apply Correction to R;:~; [1:::;p, q :::;N K]
R;,~ ---+ R;:~ - .6.p,q

END

The statement regarding the triangular structure of
the matrices R( -1), R( 1) relies on the users being or-
dered according to their delays. Clearly the condition
ceases to hold if the timing of an user changes to such
an extent as to change its position in the delay ta-
ble. It is clear that the above corrections will have to
be performed many times over (repeated swapping of
users) so as to arrive at a new system matrix corre-
sponding to the modified delay table. From this point

. of view it is beneficial in the long term to remove the
restriction on delay-ordering. R remains block tridi-

Table 3: Correction without Delay Ordering
agonal, however R( -1) and R(I) have to be treated as
being full matrices. We hence have a contiguous block

Table 4: Matrix Inversion
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Degree of Operation Count
Parallelism M,A S,D
Fully Parallel 2K + 1 1
Multi-Paths 2K+M M
User Op's 2K + N M NM
Serial Cell Op's 21\ + N" K" N"K"

. Fully Serial (N"L + 2N)K NK

Degree of Operation Co'unt
Parallelism M,A S,D
Fully Parallel 2K(2N - 1) + 2N 2N

Iulti-Paths 21\(2N - 1) + 2NM 2NM

User Op's 21{(2N - 1) + 2N" M 2N"M

Serial Cell Op's 2K(2N - 1) + N;j K" 2N;jJ("

Fully Serial (2N - 1)2NK' + N3 K"L 2N3J("L

Degree of Operation Count
Parallelism M,A S,D
Fully Parallel 2K(3N - 2) + 2N 2N
Multi-Paths 2K(3N - 2) + 2NM 2NM
User Op's 2K(3N - 2) + 2N M 2N"LM

Serial Cell Op's 2K(3N - 2) + N;j K 2N3K"L

Fully Serial (3N - 2)2NK + N;jK 2N3K"L

Degree of Operation Count
Parallelism M,A S,D
Fully Parallel 2J("L(N + 1) + NK NK
User Op's 2J("(N + 1) + N" K" M N"K"M

Serial Cell Op's 2K(N + 1) + N;jK;j N;jK;j

Fully Serial 2NJ(3(N + 1) + N3 K3 N3K3
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Table 5: 1Iatrix Correction - Synchronous

of 3f'; potentially non-zero elements in the correction
\"Cctors. The two 'edge block' vectors have a total of
;5f'; elements in the correction vector. The modified
operation count is given in Table 3. The system is
now completely flexible to changes in timing. A mod-
erate number of new users can be accommodated by
maintaining unused 'slots' in the correlation matrices,
and 'correcting' them to accommodate the new user.
.-\ user leaving the system creates a vacant slot, but
does not initiate a correction. An attractive feature
of the algorithm is that once in place, the hardware

. architecture described can be used to compute the
matrix in\"Crse in the first instance, or to periodically
recompute the matrix to avoid the build up of inac-
curacy due to continuous correction. \Ve start with
R = R-1 = I. N K row corrections are applied to R
so as to arrive at the desired partial correlation ma-
trix. The operation count for an N K matrix inversion
is given in Table 4.

3.2 Synchronous DS-CDMA

In the case of Synchronous DS-CDMA the algorithm
collapses to the original Sherman-Morrison Formula.
Clearly only R(O) exists and hence only one row op-
eration and one column operation are required. The
correction vectors are now complete (potentially no
zero elements), but have only K elements. J{ degree
parallelism can be used to compute w. The vector z is
a column of R(O) and equations (8),(9),(10), (15),(17)
and (19) hold as before. The cell computations can
be performed fully in parallel with only J{2 processing
units. The operation count is summarised in Table 5.
Clearly the algorithm provides a very fast method of
updating the inwrse matrix in the synchronous case.
Extending the architecture as before to compute the
matrix inverse, the operation count is tabulated in
Table 6.

4 Conclusions

'Ye have proposed a coefficient correction algorithm
for finite sequence length decorrelators. The algo-
rit hm is suitable foi' implementation on a fully par-
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Table 6: Matrix Inversion - Synchronous

allel ASIC. Competing solutions to the decorrelator
ha~e significantly larger per-iteration cost. The com-
putational overhead of the decorrelator lies in the re-
computation of the linear system ,>olution, which is
performed off-line on an occasional basis. We have
proposed a solution to this problem which avoids
re-computation. Processing requirements have been
evaluated (data transmission overhead has not been
considered at this stage) which identify the decorrela-
tor as a potentially attractive centralised solution to
the Near-Far problem.
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