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Abstract. The saddle-node Hopf bifurcation (SNH) is a generic codimension-

two bifurcation of equilibria of vector fields in dimension at least three. It has

been identified as an organizing centre in numerous vector field models arising in

applications. We consider here the case that there is a global reinjection mechanism,

because the centre manifold of the zero eigenvalue returns to a neighbourhood of

the equilibrium. Such a SNH bifurcation with global reinjection occurs naturally in

applications, most notably in models of semiconductor lasers.

We construct a three-dimensional model vector field that allows us to study

the possible dynamics near a SNH bifurcation with global reinjection. This model

follows on from our earlier results on a planar (averaged) vector field model, and

it allows us to find periodic and homoclinic orbits with global excursions out of

and back into a neighbourhood of the SNH point. Specifically, we use numerical

continuation techniques to find a two-parameter bifurcation diagram for a well known

and complicated case of a SNH bifurcation that involves the break-up of an invariant

sphere. As a particular feature we find a concrete example of a phenomena that was

studied theoretically by Rademacher: a curve of homoclinic orbits that accumulates

on a segment in parameter space while the homoclinic orbit itself approaches a saddle

periodic orbit.

AMS classification scheme numbers: 37G10 37G15 34C14 34C37 34C60
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1. Introduction

A saddle-node Hopf (SNH) bifurcation is one of the basic codimension-two bifurcations

of equilibria of vector fields. As the name indicates, it is a simultaneous saddle-node and

Hopf bifurcation, characterized by the fact that the linearization about the equilibrium

has one real zero and a pair of purely imaginary complex conjugate eigenvalues. The

SNH bifurcation has a three-dimensional center manifold — it is generically expected

in any vector field of dimension at least three when two parameters can be varied

independently. Indeed the SNH bifurcation is one of the ‘classic’ codimension-two

bifurcations. It has been found as an organising center in numerous applications (for

example, in [3, 16, 20, 21, 26, 27, 24, 28, 30, 32]) and is discussed in standard textbooks

on bifurcation theory, such as [9, 12, 19]. It is well known that complicated dynamics,

for example, curves of Shil’nikov homoclinic orbits to saddle foci [4, 6, 11, 13], can be

found in a local neighbourhood of a SNH point.

We are interested here in the situation that the SNH point comes with a global

reinjection mechanism. This is motivated by the discovery of periodic and homoclinic

orbits that feature global excursions out of and back into a neighbourhood of a SNH

point. Our direct motivating example is a semiconductor laser with optical injection,

which has a global reinjection mechanism that corresponds to a phase slip of the laser

with respect to the injected light [30]. Periodic orbits that combine phase jumps with

dynamics near a SNH point have been discussed in [18, 26, 30, 32]. However, such global

reinjection orbits near a SNH bifurcation have also been found in dynamo theory [3] and,

more abstractly, in a vector field approximation of a three-dimensional diffeomorphism

with a region of weak resonance [28, Chapter 4.3.2].

In [15] we constructed and studied the Z2-symmetric planar model vector field for

a SNH point with global reinjection

ẋ = ν1x − ax sin ϕ − x3

ϕ̇ = ν2 + sx2 + 2 cos ϕ + cx4 .
(1)

Here x corresponds to the radial component associated with the Hopf bifurcation and

reinjection is represented by the 2π-translationally symmetric variable ϕ. Owing to the

symmetries, the planar model vector field is in fact a vector field on the half cylinder

R
≥0 × S

1. Importantly, the circle S
1 = {x = 0} is invariant. In (1) a SNH point

reduces to a saddle-node pitchfork (SNP) point. Reference [15] presents four different

cases, A–D (depending on the higher-order coefficients a, s and c), of two-parameter

unfoldings in the (ν1, ν2)-plane. In particular, we found periodic, homoclinic and families

of heteroclinic orbits that wind around the half cylinder.

In this paper we consider bifurcations of periodic and homoclinic orbits near a SNH

bifurcation with global reinjection in the full three-dimensional setting. Specifically, we

concentrate on such orbits that involve one or more global excursions. The analysis of the

SNP bifurcation in the planar model (1) is an important first step for understanding the

dynamics. However, when one ‘translates’ the planar dynamics to the three-dimensional

situation of a generic SNH bifurcation, one needs to add the azimuthal term and break
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Figure 1. Neighbourhood of interest around a SNH point (of type III) with global

reinjection of model vector field (2) in (x, y, ϕ)-space (a), and its embedding (6) in

(u, v, w)-space (b).

the invariance of the invariant circle [12, 19]. As we will see, this breaking of the normal

form symmetry has dramatic consequences for the full three-dimensional dynamics.

The key ingredient of our study is the construction (see section 2) of a three-

dimensional model vector field, namely

ż = (ν1 + ωi)z − (α + βi)z sin ϕ − z|z|2 + (d + fi)(2 cos ϕ + ν2)
2

ϕ̇ = ν2 + s|z|2 + 2 cos ϕ + c|z|4 .
(2)

This system models a generic situation and allows us to study in detail the dynamics

in a tubular neighbourhood of a SNH point with global reinjection; see figure 1. In

particular, the two parameters d and f break the invariant circle S
1 = {z = 0} that

exists for d = f = 0. For simplicity we set the azimuthal frequency to ω = 1 and β = 0,

so that α plays the same role as the coefficient a in (1).

There are two different classes of SNH points, depending on the way the centre

manifold of the saddle-node Hopf bifurcation returns to the SNH point after the global

excursion [15, figure 1]. The three types II(a), II(b) and IV(b) of SNH points (in

the notation of [12]) occur on a generic invariant circle (even when the normal form

symmetry is broken). For these types of SNH points the dynamics is effectively described

already by the planar model (1). We concentrate here on the more interesting types

I, III and IV(a), where the centre manifold of the saddle-node at the SNH point does

not form an invariant circle. These three types of SNH points require a four-parameter

unfolding in (ν1, ν2, d, f)-space, which is a highly nontrivial task.

We do not attempt a full unfolding here, but rather we perform a detailed study of

the bifurcation diagram in the (ν1, ν2)-plane (for suitable d 6= 0 and f 6= 0 ) of the most

interesting type III. The (local) SNH bifurcation of type III involves the break-up of

an invariant sphere (in the normal form) [12, 19] and has been found as the organising

centre in numerous applications; see, for example, [15, 17] for references. We consider

here the dynamics in the full three-dimensional phase space that is associated with

the unfolding of type A of the planar model (1) in [15], which contains a SNH point

of type III. Specifically, we study the bifurcations of periodic and homoclinic orbits
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with global excursions and reinjection. To this end we use numerical continuation

with AUTO/HomCont [10] and homoclinic branch switching [22] to reveal an intriguing

structure of homoclinic orbits with zero, one or more global excursions outside of and

back into a neighborbood of the SNH point. As part of the unfolding of type A we also

encounter a SNH bifurcation of type I, but we do not investigate it further because it

does not involve any global reinjection orbits.

As a particular feature we find homoclinic orbits that accumulate on a saddle

periodic orbit of the system. At the same time the curve in parameter space of the

respective homoclinic bifurcation accumulates on a segment. This phenomenon was

studied theoretically in [23], and we present here a concrete example of the associated

bifurcation structure. We find good agreement with the theory, including the theoretical

scaling law of the accumulation process. Our results show that the phenomena in [23]

can be expected near SNH points with global reinjection.

This paper is organized as follows. In section 2 we provide background information

on the construction of the model vector field (2), and in section 3 we present its local

bifurcations. Section 4 is concerned with the global bifurcation structure. We start

in section 4.1 with homoclinic orbits that do not leave a neighbourhood of the SNH

point. Section 4.2 treats homoclinic orbits with one global reinjection and section 4.3

multi-reinjection homoclinic orbits. The accumulation phenomenon of homoclinic orbits

is the topic of section 5. Finally, in section 6 we conclude and point out open problems.

2. Derivation of the model vector field

The planar model vector field (1) was constructed in [15] by starting from the unfolding

of a (local) SNH point [12, 19] in cylindrical co-ordinates and leaving off the azimuthal

term describing the rotation due to the Hopf bifurcation. This gives a Z2-symmetric

planar vector field approximation, whose four-jet [17] has the form

ẋ = µ1x − axy − x3

ẏ = µ2 + sx2 − y2 + bx4 .
(3)

Global reinjection is then introduced by replacing y in (3) with the 2π-periodic variable

ϕ. A convenient choice of trigonometric terms gives the Z2-symmetric planar model (1).

System (1) has two SNP points on the invariant circle S
1 = {x = 0}, namely SNP+

at (x, ϕ) = (0, 0) and SNP− at (x, ϕ) = (0, π) for (ν1, ν2) = (0,±2). The bifurcation

diagram in the (ν1, ν2)-plane of (1) connects SNP+ and SNP−. Locally near these

codimension-two bifurcation points one retrieves the local bifurcation structure of a

SNP point; which case one is dealing with depends on the higher order coefficients a,

s, and c. Importantly, the points SNP+ and SNP− differ in the sign of s, so that the

unfoldings of the planar model (1) are closely related to the unfolding in [17] of the

codimension-three degenerate SNP bifurcation given by s = 0 in (3).

In order to construct the three-dimensional vector field model (2) we consider the

normal form near a local SNH point that includes the azimuthal term. It is best written
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in terms of a complex variable z ∈ C [19], and has the four-jet

ż = (ν1 + ωi)z − (α + βi)zy − z|z|2

ẏ = ν2 + s|z|2 − y2 + b|z|4.
(4)

Global reinjection is then again introduced by replacing y in (3) with the 2π-periodic

variable ϕ. The same convenient choice of trigonometric terms as in [15] gives the vector

field

ż = (ν1 + ωi)z − (α + βi)z sin ϕ − z|z|2

ϕ̇ = ν2 + s|z|2 + 2 cos ϕ + c|z|4.
(5)

We remark that (5) can be obtained from (1) formally by replacing x by z, x2 by

|z|2, ν1 by ν1 + ωi, and a by α + βi. System (5) is a vector field on the cylinder

C × S
1. Importantly, due to the normal form construction the circle S

1 = {z = 0}

is invariant. This means that (5) only describes the dynamics near a SNH point with

global reinjection in the non-generic case that there is an extra symmetry that forces

this invariance; for an example of such a system see [3].

The final step in our construction is, hence, the addition of terms that break the

invariance of S
1 in (5). This can be done in many ways, but a particularly convenient

choice is to add the term (d+fi)(2 cos ϕ+ν2)
2 to the equation for ż, which gives (2). The

factor (2 cos ϕ+ ν2)
2 vanishes exactly when ϕ̇|z=0 = 0, which ensures that the equilibria

of the model (2) occur for z = 0. In other words, while the invariant circle is broken,

these equilibria are at the same positions as in (5). This greatly simplifies the analysis,

as well as setting up of numerical computations of homoclinic orbits.

By setting z = x + iy, system (2) can be written as

ẋ = ν1x − ωy − (αx − βy) sin ϕ − (x2 + y2)x + d(2 cos ϕ + ν2)
2

ẏ = ν1y + ωx − (αy + βx) sin ϕ − (x2 + y2)y + f(2 cos ϕ + ν2)
2

ϕ̇ = ν2 + s(x2 + y2) + 2 cos ϕ + c(x2 + y2)2

(6)

which is the form we use in the analysis and for numerical calculations.

It is convenient to represent global periodic and homoclinic orbits of (2) in R
3, so

that it is immediately clear how they close up. This can be achieved by mapping the

ϕ-axis onto a circle with sufficiently large radius R. We use the transformation

u = (R + x) cos ϕ

v = (R + x) sin ϕ

w = y

(7)

where we use R = 2, which ensures that the image of a sufficiently large tubular

neighbourhood of the reinjection loop does not self-intersect; see figure 1.
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3. Local bifurcation analysis

Due to the choice of the term that breaks the invariance of the circle S
1 = {z = 0},

system (2) has the same structure of local bifurcations as the planar system (1).

Lemma 1. For any values of d and f the vector field model (2) has the following local

bifurcations:

(i) two lines, given by ν2 = ±2, of saddle-node bifurcations S0. At S0 two equilibria,

denoted a and b, with z = 0 are born that exist for |ν2| < 2;

(ii) an ellipse of Hopf bifurcations H given by
(ν1

α

)2

+
(ν2

2

)2

= 1;

(iii) the curves S0 and H are tangent at two SNH points, namely SNH + at (z, ϕ) = (0, 0)

and SNH− at (z, ϕ) = (0, π). At SNH + the sign of the coefficient s of the planar

four-jet normal form (3) is positive and at SNH− it is negative.

Proof. There are two equilibria of (2) for z = 0 whose ϕ-values are given by ν2 =

−2 cos ϕ. In other words, these equilibria exists for |ν2| < 2, and for ν2 = ±2 there

is only a single equilibrium at ϕ = 0 and ϕ = π, respectively. At the equilibria the

Jacobian of (6) is given by






ν1 − α sin ϕ −ω + β sin ϕ 0

ω − β sin ϕ ν1 − α sin ϕ 0

0 0 −2 sin ϕ







with characteristic equation

((ν1 − α − λ)2 + (ω − β sin ϕ)2)(−2 sin ϕ − λ) = 0 .

The eigenvalues are given by

λ1 = − 2 sin ϕ = ±2

√

1 −
ν2

2

2

and

λ2,3 = ± i(ω − β sin ϕ) − ν1 + α sin ϕ .

We conclude that for ν2 = ±2 indeed λ1 = 0, which proves part (i).

Furthermore, λ2,3 is a pair of purely imaginary eigenvalues if and only if

sin ϕ =
ν1

α
,

which, with ν2 = −2 cos ϕ, gives part (ii).

Combining (i) and (ii) gives the location of SNH + and SNH−. The sign of s in the

planar four-jet normal form (3) follows from [15, Lemma 2], because by construction the

points SNH + and SNH− reduce to the points SNP+ and SNP− of (1). This completes

part (iii).
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4. Analysis of global bifurcations

For the planar model vector field (1) it is possible to determine analytically saddle-node

bifurcation curves of equilibria off the invariant circle. In the three-dimensional model

(2) this bifurcation corresponds to a saddle-node bifurcation of periodic orbits. Hence,

the respective curves Sl of (2) cannot be found analytically, but only by numerical

continuation. See already figure 2(a) for the arrangement of the curves S0, H and Sl,

which form the basic structure of the bifurcation diagram of (2).

Throughout we use the software AUTO/HomCont [10] to find and follow curves

of global bifurcations. AUTO is a numerical bifurcation analysis package, which uses

pseudo-arclength continuation in combination with the solution of two-point boundary

value problems with Gauss-Legendre collocation. The periodic and homoclinic orbits

under consideration in this paper are discretized with a total of NTST×NCOL points,

where NTST is the number of basic mesh points and NCOL is the number of so-called

Gauss collocation points per mesh interval. We keep NCOL=4 fixed and vary NTST

between 100 and 700 depending on the complexity of the orbit.

From now on we restrict our attention to the unfolding of type A of [15], which

contains a SNH point of type III (in the notation of [12]) as the point SNH−, and a

SNH point of type I as the point SNH +. To this end we set α = −1, s = −1 and c = 0

in (2); recall that ω = 1 and β = 0. We found that it is important to have both d 6= 0

and f 6= 0 to break the invariance of the circle S
1 = {z = 0} and to avoid the case

d = f (and possibly other ratios). Since we are not attempting an unfolding in d and

f we set f = πd and consider the bifurcation diagram in the (ν1, ν2)-plane for different

values of d. We remark that there is a trade-off in choosing d. If d is too small then

all bifurcation curves and orbits are very close to each other and hard to compute and

distinguish. However, if d is too large then one may encounter bifurcations that are not

directly due to the SNH bifurcation with global reinjection. We found that the value of

d = 0.01 is suitable from this point of view.

As was explained in the introduction, our main interest is in finding the bifurcation

structure of global reinjection homoclinic orbits. Throughout this paper we distinguish

by superscripts, a and b, between curves h of orbits that are homoclinic to either of

the two different saddle foci. Furthermore, superscripts indicate the number of global

excursions that occur along the homoclinic orbit.

4.1. Local part of the bifurcation diagram

Figure 2 shows the part of the bifurcation diagram that is as is expected from unfolding

A of the planar vector field model (1) in [15]. First of all, there are the curves S0 and

H that meet at the points SNH + and SNH− as described by Lemma 1. Shown are

also the curves Sl of saddle-node of limit cycle bifurcations, which end at the curve H

in degenerate Hopf bifurcation points. Emerging from the point SNH− is a curve T of

torus (Neimark-Sacker) bifurcations. It ends on Sl in a 1:1 resonance point (also called

Bogdanov-Takens bifurcation of the return map) [2, 5]. It is known from the literature
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ha
0

? Sl
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0

?

H
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Figure 2. Bifurcation diagram in the (ν1, ν2)-plane for d = 0.01 (a) and two

enlargements (b) and (c). Shown are saddle-node bifurcation curves S0, Hopf

bifurcation curve H, saddle-node bifurcation of limit cycle curves Sl, torus bifurcation

curve T , and homoclinic bifurcation curves ha
0

and hb
0
.

(for case III of a SNH bifurcation [12, 19]) that there is a curve C of heteroclinic

bifurcations between the two saddles in the planar normal form; see also [17]. In the full

three-dimensional situation this single curve splits up into four curves: a pair ha
0 and hb

0



Global reinjection orbits near a saddle-node Hopf bifurcation 9

(a)
u

v

w

a

-2 -1  0  1  2
-2

-1
 0

 1
 2-1

-0.5

 0

 0.5

 1

(b)
u

v

w

b

-2 -1  0  1  2
-2

-1
 0

 1
 2-1

-0.5

 0

 0.5

 1

Figure 3. Homoclinic orbits of types ha
0

(a) and hb
0

(b) for d = 0.01 in (u, v, w)-space

of (7); the dashed curve is the circle S
1 = {z = 0}.

of homoclinic orbits of the saddle foci a and b, respectively, and a pair of heteroclinic

orbits (which we do not investigate in this paper). These homoclinic orbits stay inside

the neighbourhood of the SNH point, that is, do not involve a global excursion. Phase

portraits of homoclinic orbits of type ha
0 and hb

0 are shown in figure 3. Notice that

both homoclinic orbits of type ha
0 and hb

0 have a section that follows closely the circle

S
1 = {z = 0} (dashed curve). This is because the parameter d = 0.01 that breaks the

invariance of S
1 is still quite small.

Note that general theory (see for instance [19, Ch 8.5]) predicts that the torus

bifurcating from T only exists for nearby parameter values. The torus is destroyed if we

move away from the curve. This occurs in a complex sequence of events that involves

Arnol’d resonance tongues that emerge from point of rational rotation numbers on T .

The Arnol’d tongues are beyond the scope of this paper and not shown in figure 2.

As is clear from the subsequent enlargement in figure 2(b) and (c), the curves ha
0

and hb
0 oscillate around each other, a phenomenon near a SNH point that has been

studied in [6]. One-parameter continuation in ν1 or ν2 from a point on the curve ha
0

shows that the bifurcating periodic orbit undergoes several saddle-node bifurcations (Sl

is one of them) and then disappears in a homoclinic bifurcation at curve hb
0.

Figure 2(c) shows clearly that the curve hb
0 oscillates wildly around the curve ha

0,

which is almost a straight line away from SNH−. The curve ha
0 ends at a homoclinic

Hopf bifurcation point on the curve H, where the equilibrium a ceases to be a saddle

focus. The equilibrium b does not undergo a Hopf bifurcation along H, but as the curve

hb
0 gets closer to the Hopf bifurcation curve H the homoclinic orbit makes more and

more loops near the point a; a few such loops are already visible in Fig. 3(b). As this

happens the curve appears to accumulate on a line segment. During this accumulation

process it becomes incresingly difficult to continue hb
0 numerically, and we were not able

to continue the curve hb
0 further than shown. However, it seems plausible that this orbit,

similar to the one that is discussed in more detail in section 5, accumulates on the saddle

periodic orbit that bifurcates to the right hand side of curve H from equilibrium a.
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Figure 4. Bifurcation diagram in the (ν1, ν2)-plane near SNH− for d=0.01 with curves

ha
1

and hb
1

of homoclinic orbits with one global excursion. Panel (b) shows how the

curves ha
1

and hb
1

terminate.

4.2. Homoclinic orbits with one global excursion

Figure 4 shows the bifurcation diagram for d = 0.01 near SNH−, but now with two

extra curves ha
1 and hb

1 of homoclinic orbits that make one global excursion. Figure 5(a)

and (b) are phase portraits of homoclinic orbits of type ha
1 and hb

1 for this value of

d = 0.01. Notice how the global excursion follows the (dashed) circle S
1. These new

types of homoclinic orbits were found with the homotopy technique of HomCont and

then continued in the (ν1, ν2)-plane.

The curve ha
1 starts at the saddle-node bifurcation curve S0 at a codimension-two

non-central saddle-node homoclinic point to the left of SNH−. Here, a non-central

homoclinic point is a codimension-two bifurcation where the homoclinic orbit does

not both depart from and return to one of the center manifolds of the saddle-node

equilibrium it is connected to; see also [19]. It runs roughly parallel with ha
0 and also

ends at the Hopf bifurcation curve H when the saddle focus a bifurcates. The curve

hb
1 starts at a codimension-two non-central saddle-node homoclinic point to the right
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Figure 5. Homoclinic orbits of types ha
1

(a) and hb
1

(b) for d = 0.01, and ha
1

(c) and hb
1

(d) for d = 0.001 in (u, v, w)-space of (7); the dashed curve is the circle S
1 = {z = 0}.

of SNH−. It folds back and, close to the curve H, starts to oscillate and appears to

accumulate on a line segment; see Figure 4(b). As was the case for hb
0, the homoclinic

orbit hb
1 accumulates on a saddle periodic orbit in the process; see section 5 for details

of this phenomenon.

When one looks at figure 4 one notices that the curves ha
1 and hb

1 start and end

quite ‘far away’ from the point SNH−. The question arises whether ha
1 and hb

1 are an

integral part of the unfolding of the SNH bifurcation with global reinjection. To show

that this is indeed the case we consider what happens to the bifurcation diagram in the

limit of invariant S
1, that is, for d → 0. Figure 6 gives an impression of the convergence

process by showing the bifurcation diagram for the 10 times smaller value of d = 0.001.

By comparing figure 4(a) and figure 6(a) one notices the following. The local part

of the bifurcation diagram, namely the curves S0, H and Sl, remain unchanged; see

Lemma 1. Furthermore, the curves ha
0 and hb

0 are much closer together; see figure 6(b).

Indeed, it is known that for d → 0 both ha
0 and hb

0 converge to a single curve C of a

heteroclinic connection of the planar vector field model [6, 17].

Importantly, also the curves ha
1 and hb

1 move much closer to the ‘central structure’

of the bifurcation diagram. For example, unlike before, the curve hb
1 now intersects the

curves ha
0 and hb

0 in several places; see figure 6(b). Furthermore, for decreasing d the

global excursion of ha
1 and hb

1 follow the circle S
1 more closely, as is clearly visible in

figure 5(c) and (d), which depict these homoclinic orbits for d = 0.001. We remark that
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Figure 6. Bifurcation diagram in the (ν1, ν2)-plane near SNH− for d=0.001; compare

with figure 4. The insets (b) and (d) show details of how the curves hb
0

and hb
1

end.

Since ha
0

and hb
0

are extremely close to each other, the curves in inset (b) are plotted

relative to the curve ha
0

which, hence, appears as a straight line.

global reinjection homoclinic bifurcations appear to be very sensitive to breaking the

invariance of S
1. Therefore, we need to work with quite small values of d, which makes

the numerical continuation of such homoclinic orbits quite challenging. Overall, figure 6

is numerical evidence that both ha
1 and hb

1 also approach the curve C of a heteroclinic

connection of the planar vector field model (1).

4.3. Multiple-excursion homoclinic orbits

Homoclinic orbits may have not just one but multiple global excursions. To find

and follow such orbits numerically we use the homoclinic branch switching technique

described in [22], which is available with AUTO/HomCont [10]. We modified the branch

switching algorithm so that it works in the covering space and recognizes the periodicity

of the variable ϕ. To maintain accuracy, the more global excursions the orbit makes the

more mesh points NTST we use in the AUTO computations.

Figure 7 shows the relevant part of the bifurcation diagram with homoclinic
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Figure 7. Bifurcation diagram in the (ν1, ν2)-plane near SNH− for d=0.01 near the

curves ha
2
, hb

2
, ha

3
and hb

3
. Panel (b) is an enlargement near the end points of these

curves, panel (c) shows how ha
2

and ha
3

end on H, and panel (d) shows hb
2

and hb
3

near

hb
1
.

bifurcation curves ha
2, hb

2, ha
3 and hb

3 added; compare with figure 4. Phase portraits

of the homoclinic orbits of types ha
2, hb

2, ha
3 and hb

3 are shown in figure 8(a)–(d), where

one can clearly identify the different homoclinic orbits in terms of the number of global

excursions along the (dashed) circle S
1. The overview in figure 7(a) shows that the

curves of homoclinic orbits of equilibrium a all lie very close to the curves ha
1. The

curves ha
2 and ha

3 start and end at homoclinic Hopf bifurcations on the curve H; see

figure 7(c). They follow ha
1 closely towards smaller values of ν1 and then turn around

back to H in a fold (with respect to ν1). In other words, unlike the curve ha
1, the curves

ha
2 and ha

3 do not reach the saddle-node curve S0. The curves hb
2 and hb

3 appear to start

in some accumulation process near the Hopf curve H, follow hb
1 towards lower values of

ν2 and then turn around in a fold (with respect to ν2) back to the same region where

they end in another accumulation process; see figure 7(b) Hence, they also do not reach

the saddle-node curve S0; see figure 7(d).

Since it is very difficult to determine the exact nature of hb
2 and hb

3 from the
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Figure 8. Homoclinic orbits of types ha
2

(a), hb
2

(b), ha
3

(c), hb
3

(d), ha
4

(e), and hb
4

(f)

for d = 0.01 in (u, v, w)-space of (7); the dashed curve is the circle S
1 = {z = 0}.

enlargements in figure 7, we show in figure 9 plots of the curves hb
2 and hb

3 relative to

the curve hb
1. This means that we plot the distance in ν1 to the curve hb

1, which appears

as the (dotted) straight vertical line in figure 9(a). The curve hb
2 is the solid curve in

figure 9. It seems to start and end in an accumulation process, but panels (a) and (b)

of figure 9 together reveal that it is actually a single closed curve. The curve hb
2 starts

to oscillate (both on the left and on the right) as part of an accumulation process as we

have seen for the curve hb
1 in figure 4 and figure 6. However, the accumulation process

is not complete and the two oscillations ‘join up’. The phase portrait in Figure 9(c)

of hb
2 at the marked ‘connection point’ shows that the homoclinic orbit makes a finite,

maximal number of loops around a saddle periodic orbit.

Figure 9(a) shows that there are actually two (dashed) separate curves of homoclinic

orbits of type hb
3, both hugging the curve hb

2. The lower left curve hb
3 is a simple,
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Figure 9. The curves hb
2

and hb
3

plotted relative to the curve hb
1
; compare with

figure 7. Panels (b) is an enlargement of oscillations of the curve hb
2
, panel (c) shows

the homoclinic orbit of type hb
2

in between these oscillations, and panel (d) is an

enlargement of oscillations of the curve hb
3
.

banana-shaped curve — the respective homoclinic orbit does not interact with a saddle

periodic orbit. However, the upper right curve appears to show an accumulation process.

Figure 9(d) is a magnification in the relevant region of the (ν1, ν2)-plane. The situation

looks somewhat similar to that in figure 9(b), but the two ends of the curve h3 do

not close up. Instead, they accumulate on two different segments. We stress that the

numerical continuation was done very carefully to ensure that the difference between

figure 9(b) and figure 9(d) is genuine.

It is possible with our branch switching method to find homoclinic orbits with even

more global excursions. As an example, figure 8(e)–(f) shows homoclinic orbit of type

ha
4 and hb

4. The respective curves are not included in figure 7 because, as we have

checked, the respective homoclinic bifurcation curves are even closer to the curves in

figure 7 of homoclinic bifurcations with up to three global excursions. Furthermore,

the continuation of homoclinic orbits with more than three global excursions becomes

increasingly challenging. In fact, computing the curves ha
0/h

b
0 up to ha

3/h
b
3 reliably

already required great numerical accuracy and a careful representation of the data.



Global reinjection orbits near a saddle-node Hopf bifurcation 16

5. Accumulation process of homoclinic bifurcation curves

In our investigation of the bifurcation diagram of (2) we have found that curves of

homoclinic bifurcations of equilibrium b typically end by accumulating on a segment.

At the same time, the homoclinic orbit itself approaches a saddle periodic orbit Γ.

This codimension-one phenomenon, which we call a codimension-one Equilibrium to a

Periodic orbit (EtoP) heteroclinic cycle bifurcation, has been studied theoretically in [23]

from an abstract bifurcation theory point of view. The phenomenon is of codimension

one because one of the connections of the EtoP cycle is of codimension zero (a generic

intersection between the two-dimensional unstable manifold W u(b) of the equilibrium

b and the two-dimensional stable manifold W s(Γ) of the periodic orbit Γ), while the

other connection is of codimension one (the one-dimensional stable manifold W s(b) lies

in the two-dimensional unstable manifold W u(Γ)). Our investigation suggests, but this

is not proved here or in [23], that this bifurcation occurs in two-dimensional parameter

(ν1, ν2)-plane along a codimension-one curve segment, which starts and ends at points

where an extra codimension-one bifurcation takes place. Namely, at the end points

we expect a codimension-one heteroclinic tangency between W u(b) and W s(Γ), which

bounds the region where the codimension-zero heteroclinic connection of the EtoP cycle

from b to Γ exists. We remark that [23] is mainly concerned with the analysis of a more

complicated codimension-two EtoP cycle bifurcation in a four-dimensional phase space.

The figures presented here are the first examples of what a codimension-one EtoP

cycle bifurcation actually looks like in a concrete system. In this section we discuss

in more detail the ‘cleanest’ example. Figure 10 shows the EtoP cycle bifurcation in

which the curve hb
1 for d = 0.01 in figure 4 ends. A magnification near the accumulation

process of hb
1 is shown figure 10(a). The maxima and the minima (with respect to

ν2) of hb
1 converge to separate points. Consequently, the ω-limit set of hb

1 is a curve

segment that is bounded by the limits of the maxima and minima. In the accumulation

process of the parameter curve hb
1, the corresponding homoclinic orbit accumulates on a

saddle periodic orbit (which bifurcates from the equilibrium a along the curve H). Two

examples of such homoclinic orbits are shown in figure 10(c) and (d) in phase space and

as time profiles. While it is difficult to see this in phase space, the time profile clearly

shows that from maximum to maximum the orbit hb
1 surrounds the periodic orbit one

more time before leaving its neighbourhood along its unstable manifold; note also the

(exponential) decay of the maxima and minima of the time traces in figure 10(c2) and

(d2).

The theory in [23] predicts that the accumulation process involves curves of saddle-

node bifurcations of limit cycles, and we indeed found many of them by following periodic

orbits that bifurcate from hb
1. Figure 10(b) shows an example of such a curve, labelled

Sl . The curve Sl has several cusp bifurcation points, so that it ‘surrounds’ the region

where the accumulation of hb
1 occurs. We found that this is the typical structure of

saddle-node bifurcation of limit cycles curves that are associated with the accumulation

process. Figure 10(e) shows the saddle-node periodic orbit in phase space and as a time
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Figure 10. The curve hb
1

accumulates on a line segment (a) while the homoclinic

orbit itself accumulates on a saddle-periodic orbit; panels (c) and (d) show homoclinic

orbits of type hb
1

in (u, v, w)-space (left) and time profile (right) as computed with

AUTO/HomCont. Panel (b) shows a nearby saddle-node bifurcation curve of limit

cycles Sl , and panel (e) is an example of a saddle-node periodic orbit.
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i dist(i) dist(i)/dist(i − 1)

1 0.0119280257

2 0.0049877450 0.418153

3 0.0022378597 0.448671

4 0.0010476684 0.468156

5 0.0005055581 0.48255

6 0.0002461077 0.48680

7 0.0001219180 0.49538

Table 1. Distances dist(i) between the ith and the (i−1)st maximum of the curve hb
1

for d = 0.01 and their ratios; the point marked (c) in figure 10(a) is the first maximum.

As predicted by theory [23], the ratio approaches the stable Floquet multiplier 0.498061

of the saddle periodic orbit on which the homoclinic orbit accumulates.

profile. Note that the one larger maximum corresponds to the global excursion around

the (dashed) circle S
1.

We end this section by considering the scaling of the accumulation process of the

curve hb
1 onto its ω-limit set. According to [23], in the codimension-two case consecutive

maxima (or minima) converge to their limit with a rate given by the stable eigenvalue

of the saddle periodic orbit Γ of the EtoP cycle. Preliminary theoretical investigations‡

suggest that the same is true for the codimension-one case. The Floquet multipliers

of Γ, as determined with AUTO, are 0.4980612, 1 and 636.037. Table 1 contains data

of the distances dist(i) between the ith and the (i − 1)st maximum of the curve hb
1 in

figure 10(a), where maximum (c) is that for i = 1. The numbers dist(i) were determined

as the Euclidean distances between fold points (LP) detected by AUTO/HomCont during

continuation of the curve hb
1. To resolve this curve we used the fairly high value of

NTST= 400 mesh points to account for the complexity of the homoclinic orbit as it

approaches the saddle periodic orbit Γ. In this way, we were able to determine the first

six ratios dist(i)/dist(i − 1) in the last column of table 1. The ratios indeed converge

within numerical accuracy to the stable Floquet multiplier 0.498061.

6. Discussion and conclusions

We constructed a three-dimensional model vector field of a saddle-node Hopf bifurcation

with global reinjection. Starting from what is known about a planar vector field

approximation, we considered the two-parameter bifurcation diagram for the well-known

case of a SNH point of type III. Of special interest are bifurcations of periodic and

homoclinic orbits orbits that make one or more global excursions out of and back

into a neighbourhood of the SNH point. We used AUTO/HomCont and a specialized

homoclinic branch switching method to actually find and follow such multi-excursion

homoclinic orbits. This revealed an intricate bifurcation structure that must be expected

‡ by A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman; and J.D.M. Rademacher; to be published.
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near SNH point (of type III) with global reinjection. Due to the global nature of

the problem, the model vector field cannot be expected to yield a generic unfolding.

However, similar to the results in [15], small parameter changes will only affect global

bifurcations outside a neighbourhood of the type III SNH point. For example, the curve

ha
0 may terminate using a different global mechanism than a homoclinic Hopf bifurcation.

In other words, we expect the global reinjection homoclinic orbits to be rather robust.

From an abstract point of view one would expect to find even more types of global

reinjection orbits when the invariant sphere, the (local) connection inside the sphere,

and the global connection (excursion) along S
1 outside the sphere are broken. An open

problem is the construction of homoclinic orbits that combine global excursions with

‘local excursions’. Starting points for constructing numerical starting data for such

orbits may be crossing points of the curves ha
0 and hb

1 (as found in figure 4), where the

system has both types of homoclinic orbits. However, this is numerically a very difficult

problem since we found these crossing points only very close to the limit when the circle

S
1 is invariant.

As a particular feature of the bifurcation diagram we found a codimension-one

EtoP cycle bifurcation — an accumulation phenomenon where a homoclinic orbit

accumulates on a saddle periodic orbit. Our results show that this bifurcation, which

was studied theoretically in [23], occurs naturally in the unfolding of a SNH point (of

type III) with global reinjection. In our model vector field we found good agreement

with the theory, including the scaling of the accumulation process. We remark that

accumulating homoclinic orbits have also been found in slow-fast vector field models

from cell dynamics; see for instance [25]. However, due to the slow-fast nature, the

analysis and even the computation of homoclinic orbits, let alone scaling laws, is much

more difficult in the slow-fast context. The vector field model presented here does not

suffer from these difficulties.

An interesting question for further research is how two separate EtoP cycle

bifurcations may start to interact. This question is motivated by two examples that

we found — one where two such bifurcations are very close together, and one where the

accumulation of the global homoclinic orbit on a saddle periodic orbit appears to be

‘incomplete’. It seems that, upon the variation of an additional parameter, these two

cases can be transformed into each other by (an infinite number of) transitions through

saddle singularities in the surface of homoclinic orbits. This conjecture is inspired by

similar bifurcation scenarios that were recently found near extrema of curves of T-point

and double-homoclinic bifurcations [1, 29].

While the model vector field is not (and cannot be) an unfolding of this global

bifurcation, multi-excursion orbits must be expected in applications that feature SNH

points with global reinjection. For example, in a semiconductor laser with optical

injection a global excursion corresponds to a phase slip between the laser and the injected

optical field. It is an interesting topic for future research to identify multi-excursion (or

multi-phase slip) periodic and homoclinic orbits is this laser system. Of special interest

will be the relationship of multi-excursion homoclinic orbits with a complex bifurcation
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structure that gives rise to multi-pulse excitability [29, 31].
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