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BIFURCATION ANALYSIS OF A SEMICONDUCTOR LASER WITH

FILTERED OPTICAL FEEDBACK

HARTMUT ERZGRÄBER∗, BERND KRAUSKOPF† , AND DAAN LENSTRA‡

Abstract. We study the dynamics and bifurcations of a semiconductor laser with delayed
filtered feedback, where a part of the output of the laser re-enters after spectral filtering. This type
of coherent optical feedback is more challenging than the case of conventional optical feedabck from
a simple mirror, but it provides additional control over the output of the semiconductor laser by
means of choosing the filter detuning and the filter width. This laser system can be modelled by a
system of delay differential equations with a single fixed delay, which is due to the travel time of the
light outside the laser.

In this paper we present a bifurcation analysis of the filtered feedback laser. We first consider
the basic continuous wave states, known as the external filtered modes (EFMs), and determine their
stability regions in the parameter plane of feedback strength versus feedback phase. The EFMs are
born in saddle-node bifurcations and become unstable in Hopf bifurcations. We show that for small
filter detuning there is a single region of stable EFMs, which splits up into two separate regions when
the filter is detuned.

We then concentrate on the periodic orbits that emanate from Hopf bifurcations. Depending on
the feedback strength and the feedback phase two types of oscillations can be found. First, there are
undamped relaxation oscillations, which are typical for semiconductor laser systems. Secondly, there
are oscillations with a period related to the delay time, which have the remarkable property that the
laser frequency oscillates while the laser intensity is almost constant. These frequency oscillations are
only possible due to the interaction of the laser with the filter. We determine the stability regions in
the parameter plane of feedback strength versus feedback phase of the different types of oscillations.
In particular, we find that stable frequency oscillations are dominant for nonzero values of the filter
detuning.

Key words. Semiconductor laser, delayed feedback, optical filtering, delay differential equation,
bifurcation analysis

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Semiconductor lasers are very efficient sources of coherent
light that are used in countless technical applications — most notably in optical data
storage and optical communications systems. A single-mode semiconductor laser on
its own is mathematically a damped nonlinear oscillator. An important source of
nonlinearity is a strong coupling between the light intensity and the output frequency.
Furthermore, due to the high efficiency of the semiconductor material, the reflectivity
of the mirrors of semiconductor lasers is very low (only about 30 %). Therefore, this
type of laser is very susceptible to external influences: external light can enter easily
and disturb the delicate balance inside the laser; see, for example, [19, 21] as an entry
point to the extensive literature on semicondutor laser dynamics.

From a dynamical systems point of view, semiconductor laser systems are very
attractive because they show an intriguing variety of complicated dynamics. Further-
more, it is known that their description, by relatively simple mathematical models, is
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in very good agreement with experimental measurements [32].

In applications it is impossible to completely isolate a laser from external light.
Therefore, one has to find ways to minimize or control the effects of external optical
perturbations. Furthermore, one often wants to control the output characteristics of
the laser, for example, to ensure constant intensity output at a desired frequency. On
the other hand, there is the possibility to make use of chaotic dynamics of SLs, for
example, as a chaotic carrier wave for secure communication or to produce highly
efficient incoherent light sources.

Different schemes have been proposed for controlling the dynamics of semicon-
ductor lasers, including optical injection of light from a second laser [32], and different
types of optical feedback [19]. The simplest optical feedback scheme is conventional
optical feedback (COF), where the laser receives feedback from a normal mirror. How-
ever, other types of feedback are also possible, including optical feedback from two
different mirrors [28], incoherent feedback [7], phase-conjugate feedback (PCF) [1, 10],
and optoelectronic feedback [25].

In this paper we consider a semiconductor laser subject to filtered optical feedback
(FOF) where the reflected light is spectrally filtered before it re-enters the laser. This
coherent optical feedback system, which is known as the FOF laser, has recently
been the subject of a number of experimental and theoretical studies. As in any
optical feedback system, important parameters are the delay time and the feedback
rate. Moreover, for coherent feedback, there is also a feedback phase that controls
the phase of the incident light. The interest in the FOF laser is due to the fact that
filtering of the reflected light allows additional control over the behavior of the laser
by means of choosing the filter detuning (the difference between the central filter
frequency and the free-running laser frequency) and the filter width.

A particular motivation for the bifurcation analysis performed here was the discov-
ery by Fischer et. al. [9] of a new type of oscillations. These, the so-called frequency
oscillations (FOs), which are characterized by oscillations of the optical frequency of
the laser while its intensity remains practically constant. Mathematically this means
that the dynamics of the laser takes place in a very small neighborhood of a cylinder in
phase space. The existence of FOs is remarkable for several reasons. First, pure FOs
are ‘unusual’ for semiconductor lasers due to the strong amplitude-phase coupling in
these lasers. Second, the period of the FOs is on the order of the delay time of the FOF
system, while one would normally expect the undamping of the characteristic relaxa-
tion oscillations (ROs) to be the first instability to be encountered in semiconductor
lasers. Note that ROs are a well-known feature of laser dynamics. Specifically, they
are a periodic exchange of energy between the optical field (the number of photons)
and the population inversion (the number of electron-hole pairs) of the laser. They
have a characteristic frequency that depends on the laser and its operating conditions
and is in the order of GHz [33].

We present here a detailed bifurcation study, where we identify the stability re-
gions of the basic solutions of the FOF laser, the external filtered modes or EFMs,
and of the different types of bifurcating oscillations, ROs and FOs. We present this
information in the plane of feedback strength versus feedback phase, for different val-
ues of the filter detuning. This amounts to a study of a physically relevant part of a
three-dimensional parameter space.

Laser systems involving optical feedback, such as the FOF laser considered here,
are quite challenging to analyse because they need to be modelled by delay differ-
ential equations (DDEs), which feature an infinite-dimensional phase space. In this
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Fig. 2.1. FOF laser set-up with a Fabry-Pérot filter in a loop with optical isolators (ISO).

work we use numerical continuation software for DDEs, namely the packages DDE-
BIFTOOL [4] and PDDE-CONT [30], to find and follow EFMs and periodic orbits
(corresponding to FOs and ROs) and to determine their stability and bifurcations.

We finish this introduction with a brief review of other work on the FOF laser.
Experimental studies in comparison with results from numerical integration of the
governing rate equations can be found in [8, 34, 35]. As was mentioned, FOs were
first found in an experiment reported in [9]. An initial investigation of their stability
in comparison with experimental data can be found in [6]. An analytical treatment of
the EFMs is presented in [12]. The connection between FOF and optical injection is
the subject of [5, 17], while [18] considers different limits of the FOF laser equations.
A reduced model for weak FOF is derived, analysed and compared with the full model
in [27]. All of these papers consider the case of a filter with a single maximum in its
reflectivity (as a function of the frequency). A filter with a minimum at its center
frequency is the subject of [31], where continuous wave solutions and bifurcating
periodic orbits are determined in a rate equation model.

This paper is organized as follows. In Section 2 we present details of the FOF
laser and, in particular, the governing DDE model. Section 3 presents the stability
regions of the EFMs, which includes a detailed analysis of how the stability region
splits into two parts when the filter is detuned. In Section 4 we characterize ROs and
FOs and determine their stability regions in the plane of feedback strength versus
feedback for different values of the detuning. Finally, we summarize and point to
future work in Section 6.

2. The FOF laser system. There are a number of ways to set up a frequency
selective element in optics [16], including Michealson Interferometers, optical gratings,
or Fabry-Pérot cavities. Figure 2.1 shows a looped set-up that has been used in
experiments [8]. A fraction of the laser’s emission travels through a Fabry-Pérot filter
before the light is fed back into the laser. Optical isolators ensure that there are no
unwanted reflections.

The FOF laser can be modelled by rate equations for the complex optical field E
of the laser, the (real) population inversion N of the laser, and the complex optical
field F of the filter. In dimensionless form these equations can be written as

dE

dt
= (1 + iα)N(t)E(t) + κF (t, τ) ,(2.1)

T
dN

dt
= P − N(t) − (1 + 2N(t))|E(t)|2 ,(2.2)

dF

dt
= ΛE(t − τ)e−iCp + (i∆ − Λ)F (t) .(2.3)

Here the material properties of the laser are given by the linewidth enhancement
factor α and the electron life-time T , while P is the pump rate.
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The laser is coupled to the filter in Eq. (2.1) via the coupling term κF (t, τ), where
κ is the feedback rate and τ is the delay time that arises from the finite propagation
time of the light in the external feedback loop. Equation (2.3) for the complex envelope
F of the filter field is derived by assuming a single Lorentzian approximation for the
Fabry-Pérot filter; see, for example, [11, 26] for details. The feedback phase Cp in
Eq. (2.3) measures the exact phase relationship between the laser and the filter fields,
whereas ∆ is the detuning between the filter center frequency ΩF and the solitary
frequency Ω0 of the laser, that is,

Cp = Ω0τ , ∆ = ΩF − Ω0 .(2.4)

Finally, the parameter Λ is the filter width (half-width at half-maximum).
Throughout this paper, we fix some of the parameters at the physically realistic

values α = 5.0, T = 100, P = 3.5, τ = 500 and Λ = 0.007. The parameters κ and Cp

are our main bifurcation parameters, that is, we consider the bifurcation diagram in
the (κ,Cp)-plane. Furthermore, we study how the bifurcation diagram changes with
the filter detuning ∆.

Mathematically, Eqs. (2.1)–(2.3) are a system of DDEs with a single fixed delay
τ . As such, they have as phase-space the infinite-dimensional space of continuous
functions over the delay interval [−τ, 0] with values in (five-dimensional) (E,N,F )-
space. This infinite-dimensionality of the system makes its analysis quite challenging.
Nevertheless, stability and bifurcation theory for DDEs with fixed delays is well de-
veloped [2, 15]. Furthermore, numerical bifurcation tools are now becoming available
that allow one to find and follow equilibria and periodic solutions and some of their
bifurcations; see the review [19].

As is common for optical feedback systems (with the exception of phase conjug-
ation) [23], Eqs. (2.1)–(2.3) have an S1-symmetry, given by any rotation of both E
and F :

(E,F,N) → (Eeib, F eib, N) .(2.5)

In other words, solutions are not isolated, which must be taken into account in the
numerical continuation; see [14, 19]. Furthermore, there is the trivial 2π-translational
symmetry

(E,F,N,Cp) → (E,F,N,Cp + 2π) ,(2.6)

in the feedback phase Cp. We already remark that it is convenient to represent
bifurcation diagrams on the covering space R of Cp, that is, over several 2π-intervals.

3. External filtered modes. The external filtered modes are the basic solu-
tions of Eqs. (2.1)–(2.3) that correspond to a constant-intensity output of the laser.
They are conceptially the same as the external cavity modes of the COF laser [11, 29].
Mathematically, the EFMs are group orbits of the S1-symmetry (2.5 of the form

(E(t), N(t), F (t)) = (Ese
iωst, Ns, Fse

iωst+iφ) .(3.1)

Here ωs is a fixed frequency, Es ≥ 0 and Fs ≥ 0 are fixed (real) values of the field
amplitude of the laser field and the filtered field, Ns is a fixed level of inversion, and
φ is a fixed phase shift between the laser field and the filtered field. In other words,
the system outputs light with frequency ωs and constant intensity Is = E2

s .
An analytical study of the EFMs and their dependence on the filter detuning

∆ and filter width Λ has been performed in [11]. Depending on the values of these



LASER WITH FILTERED OPTICAL FEEDBACK 5

.

.

−0.03 0 0.03

−0.005

0

0.005

ωs

Ns

Fig. 3.1. EFM-component in the (ωs, Ns)-projection for a small negative detuning of ∆ =
−0.007. Individual EFMs for Cp = π are plotted as circles (◦). The EFMs trace out the underlying
curve or EFM-component as Cp is decreased, as is indicated by the arrows; see also the accompanying
animation ekl a1.gif. Stable parts of the EFM-component are plotted green and unstable parts red.
EFMs are born and destroyed in saddle-node bifurcations (+); Hopf bifurcations (∗) bound the stable
parts.

parameters the ECMs lie on one or two closed curves in the (ωs, Ns)-projection, which
are known as EFM-components. The number of EFM-components can be derived
from a fourth-degree polynomial. We remark that stability properties of EFMs were
not considered in [11].

In this paper we perform a bifurcation analysis of EFMs, determine how their
stability depends on parameters, find stability boundaries, in particular, Hopf bifurc-
ations, and study the stability of bifurcating periodic orbits. To this end, we use
numerical continuation, namely the software package DDE-BIFTOOL [4], to analyse
the full DDE (2.1)–(2.3). Some stability curves of peridic orbits are computed with
the package PDDE-CONT [30].

Figure 3.1 shows EFMs on a single EFM-component in the (ωs, Ns)-projection
(for Cp = π). This projection is popular in the laser physics literature, even though
neither ωs nor Ns are parameters of the system. As Cp is decreased, the EFMs
trace out the closed curve — the EFM-component — as is indicated by the arrows.
The EFM-component has a ‘bulge’ around the center frequency of the filter, which is
detuned slightly, in negative the negative direction with respect to the solitary laser
frequency. EFMs are born in pairs in saddle-node (+) bifurcations in the low-inversion
region, move along the EFM-component and then disappear in a second saddle-node
in the high-inversion region. When Cp is decreased by 2π, each EFM has moved
to the position of its right neighbor and the initial picture is recovered; see also the
accompanying animation ekl a1.gif.

Figure 3.1 also contains the stability information of the EFMs, namely they are
stable along the green parts and unstable along the red parts of the EFM-component.
The stability regions are bounded by Hopf bifurcations (∗), which may lead either to
stable relaxation oscillations or frequency oscillations as will be discussed in Section 4.
Note that there are additional Hopf bifurcations of already unstable EFMs, which we
did not plot in order to to keep the figure simple. Figure 3.1 already indicates that
there are values of Cp for which more than one EFM is stable.

To bring out this point better, Fig. 3.2 shows the EFMs in the (κ,Ns)-projection
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Fig. 3.2. The EFMs in the (κ, Ns)-projection for six different values of Cp as indicated in
the panels, and for a small negative detuning of ∆ = −0.007; same conventions for stability and
bifurcations as in Fig. 3.1. In addition, lines of saddle-node bifurcations (light blue) and Hopf
bifurcations (light red) are plotted. As Cp is changed each bifurcation follows its respective curve;
see also the accompanying animation ekl a2.gif.

for six different values of the feedback phase Cp. In other words, we now plot actual
branches of EFMs as a function of the parameter κ. For small feedback rates, close to
zero, only one EFM exists, which is actually (the continuation of) the stable solitary
laser mode. As κ is increased, new EFMs are born in pairs in saddle-node bifurcations.
One of these EFMs may be stable (green parts of the curve). As the feedback rate
κ is increased further, stable EFMs destabilize in Hopf bifurcations. The different
panels of Figure 3.2 show the EFM structure for six different values of Cp over one
cycle of 2π. As a function of Cp the branches of EFMs move until the same situation
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Fig. 3.3. Two-parameter bifurcation diagram in the (κ, Cp)-plane for a small nonzero detuning
of ∆ = −0.007. Saddle-node bidurcation curves (S) are blue, Hopf bifurcation curves (H) are red,
and regions of stable EFMs are green. Codimension-two Bogdanov-Takens (BT) and saddle-node
Hopf points (SH) are indicated by dots. Panel (a) shows the bifurcation diagram in the covering
space (over several 2π intervals of Cp), while panel (b) shows it on a fundamental 2π-interval of
Cp. Different shades of green indicated regions of different numbers of simultaneously stable EFMs.

is regained after Cp has been changed over 2π. During this cyclic process, the saddle-
node bifurcations trace out the light blue curve and the Hopf bifurcations the light
red curves, respectively; see also the accompanying animation ekl a2.gif. Note that
tracing out all EFMs branches over an interval of 2π in Cp is equivalent to tracing
out a single EFM branch over several intervals of 2π in the covering space.

3.1. Stability regions of the external filtered modes. The stability in-
formation of EFMs for ∆ = −0.007 is presented in Figure 3.3 as a two-parameter
bifurcation diagram in the (κ,Cp)-plane. In panel (a) the bifurcation diagram is
shown in the covering space of Cp over several cycles of 2π. The green stability
region of EFMs is bounded by saddle-node bifurcations (blue curves) and by Hopf
bifurcations (red curves). At codimension-two Bogdanov-Takens (BT) and saddle-
node (SH) Hopf bifurcation points the nature of the stability boundary changes from
saddle-node to Hopf bifurcation. At the Bogdanov-Takens point the Hopf curve ends
and the frequency of the associated periodic orbit goes to zero. On the other hand, at
the saddle-node Hopf point the saddle-node and Hopf curves are tangent and change
from supercritical to subcritical; the frequency of the accociated periodic orbits is fi-
nite. We refer to [13, 24] for background reading on bifurcation theory. The stability
boundary is formed to the right by a total of four different Hopf bifurcation curves,
which intersect at double-Hopf bifurcation points.

The bifurcation diagram shown in Figure 3.3(a) is only one of infinitely many
copies under the 2π translation symmetry of Cp. To reveal the considerable degree
of multistability of EFMs that was already apparent from Fig. 3.2, we show in Fig-
ure 3.3(b) the stability regions of all EFMs over a fundamental 2π-interval of Cp.
(Note that the top and bottom of panel (b) can be glued together to obtain a bi-
furcation diagram on the half-cylinder S1 × R

+.) While panel (b) clearly shows the
multistability of the system; a representation of the bifurcation diagram in the cover-
ing space as in panel (a) is more convenient for distinguishing bifurcation curves that
make up the stability boundary.
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Fig. 3.4. One-parameter bifurcation diagrams showing branches of EFMs as a function of ∆
for fixed κ = 0.02. Panel (a) shows the Ns-values and panel (b) the ωs-values of the EFMs; stable
parts are green and unstable parts are red.

3.2. Dependence of EFM stability on the detuning. We now consider what
effect the influence of the detuning ∆ has on the stability of the EFMs. We start with
the one-parameter bifurcation diagram in Fig 3.4, where the Ns- and ωs-values of the
EFMs are shown as a function of ∆ for fixed κ = 0.02. The EFM originating from the
solitary laser solution exists for all values of ∆ and forms a single branch. For large
positive and negative detunings (when there is effectively no feedback any more) it
apprwoaches Ns = 0 and ωs = 0, respectively. Around zero ∆ additional EFMs exist
on isolas (closed curves) that are bounded by saddle-node bifurcations. For each fixed
∆ there are finitely many EFMs that lie either on a single EFM component (as in
Fig 3.1) on on two separate EFM-components; compare [11].

We now discuss global aspects that a change of the detuning ∆ has on stability of
EFM stability regions. Representative bifurcation diagrams in the (κ,Cp) are shown
in Figs. 3.5 and 3.6; see also the accompanying animation ekl a3.gif. Specific details
of transitions through codimension-three points are discussed in Sec 3.3.

Figure 3.5 shows bifurcation diagram in the (κ,Cp)-plane for eight different values
of positive detuning from ∆ = 0 to ∆ = 0.0735. In the individual panels only those
Hopf bifurcation curves are shown that form part of the EFM stability boundary
and those that become relevant as the detuning changes. For ∆ = 0 in panel (a)
the EFM stability region is almost symmetric, which indicates only a weak influence
(on the EFM structure) of the phase-amplitude coupling expressed by the parameter
α. Note that the boundary changes from a saddle-node bifurcation curve to a Hopf
bifurcation curve at two saddle-node Hopf points. With increasing ∆ the overall shape
of the stability region changes and becomes less symmetrical. Already for ∆ = 0.007
in panel (b) the Hopf curve forming the lower boudary of the EFM stability region
ends in a Bogdanov-Takens point, as was discussed above. The nature of this change
from a saddle-node Hopf to a Bogdanov-Takens point is discussed in more detail in
Sec 3.3.

Increasing ∆, the stability region deforms further until, at ∆ ≈ 0.014, it splits
into two parts; see Fig. 3.5(d). This transition is due to a transition through a
codimension-three degenerate saddle-node Hopf bifurcation, as is discussed in more
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colored as in Fig. 3.3.
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detail in Sec 3.3. For even higher values of ∆ the EFM stability region consists of two
parts; see panels (e)–(h). It is known that there is a boundary curve in the (Λ,∆)-
plane inside of which one finds two distinct EFM-components. Furthermore, this
curve scales linearly with the feedback rate κ [11]. The two separate EFM stability
regions have different physical meanings, one corresponds to operation of the laser
around its solitary frequency and the other to operation around the filter frequency.
Note that, irrespective of their stability, EFMs exist in the whole area bounded by
the saddle-node curves.

However, for small κ stable EFMs are only possible around the solitary laser
frequency (around Cp = −2π in panels (e)–(h)). For higher values of κ also EFMs
around the center frequency of the filter may also be stable. These form an ‘island’ of
stable EFMs. Further increasing ∆ separates the two stability regions. Specifically,
the island of EFMs located around the center frequency of the filter moves down
in the (κ,Cp)-plane and simultaneously becomes smaller in size; see panels (e)–(h).
physically, the filter center is on the blue side of the laser, that is, it has a higher
frequency than the laser. However, feedback causes a red-shift of the instantaneous
laser frequency. Eventually, when ∆ is too large the laser is unable to support EFMs
located around the center frequency of the filter, which means mathematically that
the island actually shrinks down to a point and disappears. On the other hand, the
stability region round the solitary laser frequency extends with increasing ∆ to higher
feedback rates κ, because the system now operates at the tail of the filter where the
effective feedback rate is smaller. As a consequence, instabilities, such as the Hopf
bifurcations bounding the stability region to the right, arise only for quite high levels
of feedback κ.

We find a similar global transition in Fig. 3.6 where we decrease the detuning ∆
from zero. In the individual panels of Fig. 3.6 the detuning has the same modulus as
in the respective panels of Fig. 3.5 (only the sign has changed). This allows one to
study the difference between positive and negative detuning. The effect of decreasing
the detuning is qualitatively the same. In particular, the EFM region splits into two
separate regions where the ‘island’ located around the center frequency of the filter
is now at the top of the figure. Furthermore, the region of stable EFMs centered
around the solitary laser frequency extends to higher values of κ with decreasing ∆.
However, there are quite significant quantitative differences between Figs. 3.5 and 3.6.
In particular, the separate island of stable EFMs around the center frequency of the
filter is notably larger for negative detunings. This is due to the filter being on the
red side of the laser. In combination with the red-shift of the solitary laser frequency
caused by the feedback this leads to a large region of stability of these EFMs.

3.3. Transitions through codimension-three bifurcations. The boundary
of the stable EFM regions is formed by either saddle-node bifurcation curves or by
Hopf bifurcation curves. The switch-over points from one type of boundary to the
other are codimension-two bifurcation points, namely either a Bodganov-Takens (BT)
bifurcation or a saddle-node Hopf (SH) point. As was already mentioned in the
previous section, we find that the BT point appears as ‘switch-over’ point only for
sufficiently large ∆. The transition from an SH point to a BT switch-over point
involves codimension-three bifurcations as is shown in Fig. 3.7. Panel (a) shows a
situation as in Fig. 3.5(a), where the switch-over from saddle-node to Hopf bifurcation
is due to a saddle-node Hopf point. Notice a second Hopf bifurcation curve that
passes close to the saddle-node curve. The inset shows the frequency of the periodic
orbit along this curve. As ∆ is increased, the second Hopf curve becomes tangent
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Fig. 3.7. Enlarged views of bifurcation diagrams in the (κ, Cp)-plane near the creation of two
Bogdanov-Takens (BT) points. The insets of each panel shows the frequency of the periodic orbits
along branches of Hopf bifurcations, which goes to zero at the Bogdanov-Takens points.

to the saddle-node curve at a degenerate Bogdanov-Takens point [3], after which it
splits up and ends at two newly created BT points. That these points are indeed
Bogdanov-Takens points is evidenced by the inset, which shows that the frequency of
the respective periodic orbits goes to zero at the BT points as is demanded by theory.
As ∆ is increased further, one BT point moves to the right and out of the region
of consideration, while the other BT point moves to the left. It eventually passes
through the point SH at another codimension-three bifurcation, namely a Bogdanov-
Takens-Hopf bifurcation where there is a semi-simple double eigenvalue and a pair
of complex eigenvalues with zero real part. To our knowledge this bifurcation with
a center manifold of dimension four has not been unfolded in the literature. In the
present situation the BT point ‘moves through’ the SH point, so that it forms the
switch-over point from now on; see Fig. 3.5(c).

The second transition involving codimension-three bifurcations that we discuss
here in detail concerns the mechanism in which the single region of EFM stability
splits up into two separate regions. Enlarged views near this splitting are shown in
Fig. 3.8. In panel (a) there is still a narrow channel connecting the two parts of the
EFM stability region. As ∆ is increased, a saddle-node curve and a Hopf curve become
tangent at a degenerate saddle-node Hopf point DSH [22]; see panel (b). When ∆
is increased further, two codimension-two saddle-node Hopf points are created, each
of which is now a switch-over point; see panel (c). This creates two separate EFM
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stability regions, one around the solitary laser frequency and one around the center
frequency of the filter. Physically this corresponds to a level of detuning that is so
large that the system cannot support ‘mixed’ EFMs with frequencies in between the
solitary laser frequency and the center frequency of the filter any longer.

When ∆ is increased further we find a transition through a saddle in the surface
of Hopf bifurcations in (κ,Cp,∆)-space. This manifests itself here as a change in how
four branches of Hopf bifurcations connect; see the transition shown in Fig. 3.8(d)
and (e). SPecifically, two Hopf curves approach each other, connect in a different
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Fig. 4.1. Panel (a) shows the two-parameter bifurcation diagram in the (κ, Cp)-plane for ∆ = 0
with different stability regions, namely, of EFMs (green), of ROs (orange), and of FOs (cyan and
purple); boundaries are formed by saddle-node (S), Hopf (H), saddle-node of limit cycles (SL), and
torus (T) bifurcations; shown are also 1:1-resonance and degenerate Hopf (DH) points. The black
dots labeled (b), (c) and (d) are the parameter values of the time series in panels (b)–(d), which
show the laser intensity Il, the laser frequency ωL (in units of 109), the filter intensity IF , and the
filter frequency ωF (in units of 109). Case (b) shows ROs, and (c) and (d) show two examples of
FOs.

way and then separate again. As a result, the two SH points now lie on two different
(unconnected) Hopf bifurcation curves. This ‘completes’ the splitting of the EFM
stability islands that was discussed in the previous section.

4. Different types of oscillations. In laser systems with delayed feedback one
can identity different characteristic time scales. From the physical point of view, one
expects these time scales to show up as frequency components in the dynamics. In
the FOF laser at least two time scales can be identified, one related to the solitary
laser and a second related to the delay time.

A typical type of oscillation that one expects in any laser system are the so-called
relaxation oscillations or ROs — a periodic exchange of energy between the optical
field and the population inversion. In a solitary laser they are damped, but can be
excited by a perturbation after which the laser relaxes down to constant output, hence,
the name relaxation oscillation. They are fast oscillations. In the solitary laser their

frequency is given by ωRO =
√

2P
T

, where P is the pump rate and T the photon life

time.
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Since we are dealing with a laser with optical feedback, one also expects to find
oscillations with a frequency of ωFO ≈ 2π/τ where τ is the delay time. In other
words, the time it takes for one external roundtrip of the light. These type of external
roundtrip oscillations have been found experimentally in the FOF laser. Surprisingly,
they have the feature that oscillations occur only in the laser frequency while the laser
intensity remains practically constant [9]. This type of frequency oscillations or FOs
are ‘untypical’ for semiconductor lasers, which are characterized by a strong coupling
between amplitude and phase of the electric field (as expressed by large values of the
parameter α, typically well above 1). In other words, one would expect any frequency
oscillation to be accompanied by intensity oscialltions of a similar amplitude.

In this section we perform a detailed bifurcation analysis of the periodic orbits
that are born when the EFMs become unstable in Hopf bifurcations. We determine
which type of oscillations, ROs and FOs, appear where and determine their stability.
In particular, we show that FOs are stable in large, experimentally accessible regions
of the (κ,Cp)-plane. In fact, they are the dominamt type of oscillations for moderate
levels of detunining ∆.

Figure 4.1(a) shows the bifurcation diagram in the (κ,Cp)-plane for ∆ = 0. As
expected, the Hopf bifurcations bounding the EFM stability region give rise to oscil-
lations, which are stable in the colored regions. There is a region (orange) of stable
ROs, which can be accessed simply by following the solitary laser solution (around
Cp = 0) towards higher levels of feedback strength κ. The region of stable ROs is
bounded to the right by torus bifurcation curves. Furthermore, there are two regions
(cyan and purple) of stable FOs in Fig. 4.1(a). We note that the two regions of FOs
are almost mirror images of each other under reflection around the central frequency
of the filter. This indicates that the amplitude-phase coupling (the parameter α) has
only a small influence; see also [27]. However, note that the stability region of ROs is
actually quite asymmetrical in Fig. 4.1(a). Another important feature is that stable
FOs occur for much lower levels of κ than ROs.

The FO stability regions are bounded to the right by torus and saddle-node
of limit cycle bifurcations. The torus curves emerge from double Hopf points and
meet the SL curves at 1:1 resonance points. These regions have been determined by
computing many one-parameter cross sections for fixed Cp and continuing with DDE-
BIFTOOL the respective solutions in κ; see also Section 5. In fact, the horizontal
colored lines in Fig. 4.1 are actual branches of stable periodic orbits. The codimension-
one bifurcation curves of periodic orbits, T and SL, were found as bifurcation points
on the one-parameter branches and continued directly with PDDE-CONT [30].

Figure 4.1 also shows examples of oscillations in the three different stability re-
gions. In each case we show time series of the laser intensity Il, the laser frequency ωL,
the filter intensity IF , and the filter frequency ωF . Panels (b) shows a typical example
of ROs where both the laser intensity Il and the laser frequency ωL oscillate. For the
(typical) laser parameters considered here the ROs have a physical RO frequency of
4.21 GHz. Note that ROs hardly show any dynamics of the filter — it remains more
or less passive.

Figure 4.1 (c) and (d) are examples of FOs, which are clearly external roundtrip
oscillations with a frequency on the order of 1/τ , that is, they are much slower than
ROs (note the different scale on the time axis). Furthermore, the laser intensity is
almost constant for FOs (certainly compared to ROs). However, we find dynamics in
the filter field — both in the filter intensity IF and the filter frequency ωF . In other
words, the filter effectively compensates for the intensity dynamics that one would
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normally expect in a semiconductor laser. The difference between the FOs shown in
Fig. 4.1(c) and (d) is the phase relationship between the laser frequency ωL and the
feedback intensity IF . For the FOs shown in panel (c), from the upper (purple) FO
stability region of panel (a), ωL and IF are almost in phase. This is in accordance
with the fact that they oscillate around the left flank of the filter, where an increase
of the frequency ωL results in increased transmission of the intensity IF . For the FO
shown in panel (d), from the lower (cyan) FO region of panel (a), on the other hand,
ωL and IF are almost in anti-phase. This time the oscillations are around the right
flank of the filter, so that IF decreases as ωL increases.

4.1. Dependence of RO and FO stability on the detuning. The strong
influence of the detuning ∆ on the EFM stability regions that was discussed in Sec-
tion 3.2 is mirrored by a strong influence on the stability regions of ROs and FOs.

Figure 4.2 shows the bifurcation diagram in the (κ,Cp)-plane for three positive
values of ∆. As the detuning is increased, the RO stability region (orange) becomes
smaller and moves towards lower values of Cp, but overall does not change very much.
Notice that ROs appear only when EFMs located around the central frequency of
the filter become unstable. The influence on the FO stability regions of changing ∆
is much more dramatic. The lower (cyan) FO stability region decreases significantly
in size and then disappears entirely; see Fig. 4.2(b) and (c). On the other hand,
the upper (purple) FO stability region grows substantially in size; see panel (b). For
larger values of ∆ this FO stability region occupies a substantial area between the
two separate EFM stability regions; see panel (c). It is bounded in the ‘EFM stability
gap’ by a curve SL of saddle-node bifurcations of limit cycles on the left. Its right
boundary also becomes much more complicated. For sufficiently large ∆ we find that
FOs may become unstable in period-doubling bifurcations, so that we find regions of
stable period-doubled FOs.

Throughout the whole region the approximate in-phase relationship between ωL

and IF is preserved. This is because the stable FO region never extends to the other
side of the filter flank. However, in Fig. 4.2(b), new oscillations become stable and
coexist with the upper stable FO region. There is a small region around (κ,Cp) =
(0.01, 1) where faster FOs are stable, they feature a period TFO ≈ τ/2. This region
becomes larger for even larger detuning; see Fig. 4.2(c). Initially, for ∆ = 0.014 in
Fig. 4.2(b), these fast FOs are created in super-critical Hopf bifurcations of EFMs.
They destabilize in torus bifurcations T as Cp is decreased and in sub-critical period-
doubling bifurcations (P) as κ is increased. For larger detuning, ∆ = 0.0315 in
Fig. 4.2(c), there are already two regions of fast FOs. The upper one features a
period of TFO ≈ τ/4 and undergoes a torus bifurcation for increasing κ. The lower one
features a period of TFO ≈ τ/2, undergoes a sub-critical period doubling bifurcation
and connects to the large FO region. This will be discussed in more detail in Section 5.

Figure 4.3 shows the bifurcation diagram in the (κ,Cp)-plane for three differ-
ent values of negative detuning. (Compare also with Fig. 5.1(a) and Fig. 4.2(a)
and (b).) Again we find a large region of stable ROs around the filter center. Similar
to Fig. 5.1(a), there are still two regions of stable FOs; in the upper (purple) region
there is an in-phase relationship between ωL and IF (left flank of the filter profile),
while in the lower (cyan) region there is an anti-phase relationship between ωL and IF

(right flank of the filter). However, when ∆ is decreased, the (purple) region of stable
in-phase FOs increases in size, whereas the (cyan) region of stable anti-phase FOs
becomes smaller and then disappears; see Fig. 4.3(b) and (c). As a result, the regions
of stable anti-phase FOs extend over a large area in the (κ,Cp)-plane, between the
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Fig. 4.2. Two-parameter bifurcation diagram in the (κ, Cp)-plane for increasing detuning ∆ as
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regions of stable EFMs. As is the case for positive ∆, this large FO stability region
is characterized by the appearance of period-doubled solutions. In terms of the EFM
and FO stability regions, the panels of Fig. 4.3 for negative ∆ are almost reflected
images of those in Fig. 4.2 positive ∆. This again highlights the weak influence of the
amplitude-phase coupling parameter α on these dynamics.
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5. Beyond stable frequency oscillations. Evidence of possible period-doublings
of FOs has been found experimentally [6], and our bifurcation analysis shows that re-
gions of stable period-doubled FOs do exist for sufficiently large detuning ∆. We now
consider this transition of FOs in more detail. Figure 5.1(a1) shows a one-parameter
bifurcation diagram, where we plot branches of EFMs and FOs as a function of κ
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(∆, Cp) = (0.0315,−2.26π). As is clear from the enlargement in panel (a2), there is a region of
stable period-doubled FOs after the first period-doubling bifurcations (P) of a period-doubling cascade.
Labels (b) and (c) indicate points on the FO branch for which time series and phase portraits are
shown in panels (b) and (c).

for fixed (∆, Cp) = (0.0315,−2.26π). Figure 5.1(a2) is an enlarged view around a
period-doubling cascade of FOs. The appearance of stable period-doubled FOs is ac-
tually not so straightforward. A stable EFM undergoes a Hopf bifurcation H, from
which a branch of FOs emerges with a period of around τ/2. This branch of periodic
orbits then undergoes a subcritical period-doubling bifurcation P. (Note that, after
further bifurcations, this branch connects to a second Hopf bifurcation on a different
EFM branch.) The initially unstable period-doubled periodic orbit stabilizes in a
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saddle-node of limit cycle bifurcation SL. The period of these stable FOs is now ap-
proximately τ , and this part of the branch lies in the (purple) FO stability region in
Fig. 4.2(c). This branch destabilizes in another period-doubling bifurcation P, which
is the first in a cascade of supercritical period-doublings.

Figure 5.1(b1)–(b4) shows time series and Fig. 5.1(b5) the corresponding traject-
ory in the (IL, N)-plane for the point on the main stable FO branch; labeled (b) in
panel (a2). As is typical for FOs, the laser intensity IL is almost constant. Note the
small scale of the x-axis in Fig. 5.1(b5). The inversion N of the laser is directly related
to the laser frequency ωL. Figure 5.1(c1)–(c4) are time series and Fig. 5.1(c5) is a
trajectory in the (IL, N)-plane for a point on the stable period-doubled FO branch;
labeled (c) in panel (a2). The time series look quite similar to the ones in Fig. 5.1(b)
and, in particular, the intensity IL is still virtually constant. However, as is most
prominent in the frequency dynamics of the laser, it can be seen that any two con-
secutive dips of ωL are no longer identical. Indeed the period of oscillations is now
about twice what it was before in panels (b). Also the phase portrait in Fig. 5.1(c5)
shows that the periodic orbit has period-doubled.

We now discuss another way in which FOs can become unstable. This is related
to the question of whether it is possible to have a ‘mixing’ of features of FOs and
of ROs. One would expect to find such mixed types of oscillation near the double-
Hopf points, that is, where the boundaries of the stability regions of FOs and ROs
come together. Figure 5.2 shows an example of a stable FO (an external roundtrip
oscillation of period about τ) that shows small oscillations with the typical and much
faster RO frequency. Panel (a) is a one-parameter bifurcation diagram, where we
plot branches of EFMs and FOs as a function of κ for fixed (∆, Cp) = (0.0315,−4π).
The inset shows the period of the periodic orbit along the FO branch. Starting
from a Hopf bifurcation H, of an unstable EFM around (κ, ||N ||) ≈ (0.009, 0.0041), a
branch of unstable FO emerges. After undergoing several saddle-node of limit cycle
bifurcations SL it eventually becomes stable. The stable part of the FO branch is
almost horizontal until, for a higher feedback rate around κ = 0.0225, the norm ||N ||
increases dramatically. This is a smooth transition and not a bifurcation, even though
it looks very sudden in this projection. (Note that the FO period does not show such
a sudden change.)

To explain the increase of the norm ||N || we note a Hopf bifurcation on the
lower part of the EFM branch in Fig. 5.2(a), which gives rise to unstable ROs. The
corresponding EFM of saddle type is, therefore, characterized by leading complex
conjugate unstable eigenvalues whose imaginary parts are close to the RO frequency
(which is very typical in semiconductor laser systems). The idea is that, when it comes
near this EFM, that the FO ‘picks up’ the additional RO frequency that soon renders
the FO branch unstable in a torus bifurcation T. Consequently, these oscillations of
increasing amplitude make a substantial and increasing contribution to the norm ||N ||
along the FO branch, which leads to its increase.

To illustrate this further, Fig. 5.2(b) shows time series of the FOs for parameter
values identified by the black dot close to the torus bifurcation T in panel (a). Note
again that the power is still almost constant, but additional fast oscillations are clearly
seen in the frequency ωL of the laser. That these are indeed on the scale of the ROs
is demonstrated by the gray time series in panels (b). These are for parameter values
identified by the black dot on the RO curve in panel (a). Moreover, the FO time
series are split up into blue, red and black parts to highlight different sections of the
trajectory. During the blue interval a fast oscillation is building up, which decays
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Fig. 5.2. Panel (a) shows a one-parameter bifurcation diagram in the parameter κ for fixed
(∆, Cp) = (0.0315,−4π). The inset shows the period TFO along the branch of FOs, which are stable
between in saddle-node of limit cycle (SL) and a torus (T) bifurcation. Panels (b) shows time series
of the stable periodic orbit for κ = 0.0226 (black dot in panel (a) near the end of the FO stability
region). Along the blue part there is a build-up and along red part a decay of fast oscillations, and
the black part is a global excursion; for comparison an unstable relaxation oscillation (that appears
for slightly higher κ) is shown as the gray time series in panels (b). Panel (c) shows the trajectory
in the (F, N)-space and its projection on the F -plane; the dashed line in panel (c) indicates the
unstable EFM. Panel (d) shows the projection on the (IL, N)-plane. The diamond is the unstable
EFM and the gray circle is the trajectory of the unstable ROs.

again during the red interval. The build-up rate is noticeably slower than the decay
rate. During the black interval the trajectory makes a large excursion in phase space.

The FO periodic orbit is shown in Fig. 5.2(c) in the (F,N)-space and in the
projection onto the F -plane, and in Fig. 5.2(d) in the projection onto the (IL, N)-
plane. The dotted circle in panel (c) indicates the position of the unstable EFM. (We
remark that we fixed the phase of the periodic orbit, but still show the entire S1 group
orbit of the EFM for convenience.) Panel (c) shows that the change from build-up
to decay of fast oscillations occurs when the trajectory is closest to the dotted circle
representing the saddle EFM. This can be seen even better in the (IL, N)-projection
of Fig. 5.2(d). Now the EFM is indicated by a diamond and the orbit of the close-by
unstable RO is shown in gray. The arrow indicates the direction along the periodic
orbit.

A possible interpretation of the overall FO dynamics is the following. During the
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Fig. 6.1. Two-parameter bifurcation diagram in the (κ, Cp)-plane for ∆ = −0.007, where all
stability regions of EFMs, ROs and FOs are shown on a fundamental 2π-interval of Cp; compare
with Figs. 3.3(a) and 4.1(a). The image summarizes the large amount of multistability of the FOF
laser; the multistability of EFMs is indicated by different shades of green, that of of RO by different
shades of orange, and that of FO by different shades of blue.

blue build-up of oscillations the trajectory also comes closer to the saddle EFM. After
its closest approach to the EFM the trajectory leaves again, but with a faster rate.
This indicates that this motion is along certain directions on the stable and unstable
manifolds of the EFM that are characterised by complex conjugate eigenvalues. The
frequency of the oscillations remains practically constant and of the order of the ROs,
which is arguably because the EFM is close to a Hopf bifurcation of an also unstable
RO. The black part of the trajectory is a large excursion in phase space that leads
to a reinjection into the vicinity of the EFM. It seems that the FO periodic orbit is
close to a heteroclinic connection with the EFM, but such details of the dynamics are
beyond the scope of this paper. Nevertheless, Fig. 5.2 is a clear example that mixed
FO/RO dynamics can be found in the FOF laser system.

6. Summary and outlook. We have investigated the bifurcation structure of a
semiconductor laser with filtered optical feedback (FOF) as a function of three main
parameters, namely the feedback rate κ, the feedback phase Cp, and the detuning
∆ between the solitary laser frequency and the center frequency of the filter. The
emphasis here was on stable external filtered modes and bifurcating stable oscillations,
which can either be relaxation oscillations or frequency oscillation. This stability
information was presented by two-parameter bifurcation diagrams in the (κ,Cp)-plane
for different, representative values of ∆. Depending on the value of ∆, we found a
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single or two separate large regions of stable EFMs. Our results show clearly that
the feedback phase Cp is a key parameter in the FOF laser. In other words, both the
magnitude and the phase of the complex feedback parameter κeiCp must be considered
to reveal a comprehensive picture of the dynamics.

It is convenient to represent the results in the covering space of Cp, that is,
over several 2π-periods of Cp. In this way, one can follow a particular solution, for
example, the solitary laser solution for κ = 0, to the different stability boundaries.
This agrees with the physical point of view because it corresponds to what one does in
an experiment: one follows a known solution in parameters. Note that the feedback
strength κ and the feedback phase Cp can be changed independently and ‘on-line’ in
an experiment. In fact, the bifurcation diagrams in Figs. 4.2 and 4.3 form the basis for
ongoing measurements of the FOF laser with the goal of characterizing experimentally
the stability boundaries of the regions of stable ROs and FOs.

Our theoretical study produced specific results concerning these two types of
oscillations, which will inform the experiments. Stable ROs are generally found near
the center frequency of the filter. Physically, the effective instantaneous feedback is
highest around the center frequency of the filter, irrespective of the detuning ∆. In
fact, the size and the shape of the stable RO region does change with ∆. Frequency
oscillations, on the other hand, are substantially different — the interaction between
the laser and the filter is vital for their existence. We find (for ∆ close to zero) two
separate regions of stable FOs, namely, in-phase and anti-phase dynamics between
laser and filter, which occur at the two opposite flanks of the filter profile. All FOs
have in common that the laser intensity is almost constant. For larger detunings ∆
we find a single large region of stable FOs in between the two separate EFM stability
regions. Importantly, FOs can be found already for quite low values of κ.

The presentation of bifurcation diagrams in the covering space is very convenient
for orientation purposes, especially in an experiment. However, it does not convey
the strong multistability of the FOF laser. We finish by giving an idea of the overall
complexity of the FOF laser system in Fig. 6.1, where all stability regions of EFMs,
ROs and FOs are shown on a fundamental 2π-interval of Cp. Effectively, every dy-
namical state can coexist with any other one in some region of the (κ,Cp)-plane.
Figure 6.1 also demonstrates the advantage of bifurcation analysis of DDEs with nu-
merical continuation tools over numerical simulation. By tracking individual solutions
in the relevant parameters we were able to detect multistability reliably. By contrast,
it would be very difficult to ensure that all simultanous attractors are found with
numerical simulation.

Laser systems with delay have been a class of motivating testbed examples for
the recent development of computational tools for DDEs [20]. The bifurcation study
presented here is much in this spirit in that it demonstrates the state-of-the-art of
numerical continuation techniques for DDEs arising in applications. We hope that
numerical methods of bifurcation analysis will find use in other areas of application
where delays are important, such as control theory, ecological systems and network
dynamics, to name just a few.
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