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Abstract

This paper introduces the concept of pseudospectra as a generalized tool for un-
certainty quantification and propagation in structural dynamics. Different types of
pseudospectra of matrices and matrix polynomials are explained. Particular em-
phasis is given to structured pseudospectra for matrix polynomials, which offer a
deterministic way of dealing with uncertainties for structural dynamic systems. The
pseudospectra analysis is compared with the results from Monte Carlo simulations
of uncertain discrete systems. Two illustrative example problems, one with probab-
ilistic uncertainty with various types of statistical distributions and the other with
interval type of uncertainty, are studied in details. Excellent agreement is found
between the pseudospectra results and Monte Carlo simulation results.

1 Introduction

Uncertainties are unavoidable in the description of real-life engineering sys-
tems. The propagation of uncertainties through a numerical model plays a
crucial role in the analysis and design of an engineering structure. The major-
ity of aerospace structures are subjected to dynamic forces during their period
of service. For linear models of such structures, the dynamics are character-
ized by the eigenvalues and eigenvectors of the system. Therefore, when we
take into account the uncertainties of a system, it is necessary to consider ran-
dom eigenvalue problems. Extensive studies have been conducted on this topic
since the mid-sixties within the scope of probabilistic modeling. The study of



probabilistic characterization of the eigensolutions of random matrix and dif-
ferential operators is now an important research topic in the field of stochastic
structural mechanics. The studies by Boyce[l], and Scheidt and Purkert[2]
provide useful points of entry into this area of research. They also provide
a systematic account of different approaches to random eigenvalue problems.
Furthermore, several review papers, for example, by Ibrahim|3|, Benaroya and
Rehak[4], Benaroya[5], Manohar and Ibrahim[6], and Manohar and Guptal[7]
have appeared in this field. These summarize both current research as well as
the earlier works.

Uncertainties can be broadly divided into two categories. The first type is
due to the inherent variability in the system parameters; for example, heli-
copter blades manufactured from a single production line do not have exactly
the same properties. This type of uncertainty is often referred to as aleat-
oric uncertainty. If enough samples are present, it is possible to characterize
the variability using well established statistical methods and consequently
the probably density functions (pdf) of the parameters can be obtained. The
second type of uncertainty is due to the lack of knowledge regarding a system,
often referred to as epistemic uncertainty. This kind of uncertainty generally
arises in the modeling of complex systems, for example, cabin noise in heli-
copters. Due to its very nature, it is comparatively difficult to quantify or
model this type of uncertainty.

Broadly speaking, there are two approaches employed to model uncertain-
ties. The first is the probabilistic approach and the second is the possibilistic
approach. In the probabilistic approach the uncertainties associated with the
system parameters, such as Young’s modulus, mass density, Poisson’s ratio,
damping coefficients and geometric parameters are quantified using statistical
methods and propagated, for example, using the Stochastic Finite Element
Method[8,9] (SFEM). This type of approach is suitable to quantify aleatoric
uncertainties. On the other hand, epistemic uncertainties do not explicitly
depend on the system’s parameters. For example, there can be unquantified
errors associated with the equations of motion (linear or non-linear), in the
damping model (viscous or non-viscous), in the model of structural joints,
and also in the numerical methods. For example, discretisation of displace-
ment fields, truncation and roundoff errors, tolerances in the optimization of
iterative algorithms, step-sizes in the time-integration methods. A probabil-
istic approach may not always be suitable to model this type of uncertainties.
For this reason possibilistic approaches based on interval algebra [10], convex
sets [11], Fuzzy sets [12], info-gap theory [13] or generalized Dempster-Schafer
theory have been developed over the past four decades.

The goal of this paper is to quantify the variability in the eigenvalues of lin-
ear, uncertain systems where the equations of motion are governed by coupled
second-order differential equations. The eigenvalues are complex non-linear



functions of the elements of the system matrices which are uncertain in nature.
In spite of extensive research there are still no general and computation-
ally manageable tools to propagate probabilistic and possibilistic uncertainties
through such complex non-linear functions. In this paper we investigate the
possibility of using pseudospectra as an alternative tool to characterize the
variability in the eigenvalues of uncertain systems. The concept of pseudo-
spectra was popularized in the early nineties by Trefethen [14,15] as a tool for
analyzing non-normal matrices, that is, matrices with a non-orthogonal set of
eigenvectors. They have since found application in the analysis of the transient
response of systems and in sensitivity studies of eigenvalues of a linear system.
We are interested in the latter problem and will demonstrate how information
about the variability of eigenvalues in engineering systems can be obtained
from several types of pseudospectra that are found in the literature.

The outline of the paper is as follows. In Section 2 we give an overview on
various kinds of pseudospectra that have been discussed in the literature. In
Section 3 we introduce a class of structured perturbations and discuss the cor-
responding pseudospectra. As we will demonstrate by example, in Sections 4
and 5 the use of structured perturbations allows us a direct comparison of
pseudospectra with results from Monte-Carlo simulations. Specifically, in Sec-
tion 4, we demonstrate how pseudospectra can be compared with simulations
assuming several types of distributions of the system’s parameters for a system
with three degrees-of-freedom (DOF). In Section 5 we then demonstrate how
pseudospectra with respect to structured perturbations can be used to obtain
bounds for the eigenvalues of a system. Finally, in an appendix to the paper
we present an introduction to the general theory of structured pseudospectra
of matrix polynomials which unifies the several types of pseudospectra intro-
duced before. We also present an algorithm for deriving the shape matrices
needed for computing the structured pseudospectra presented in the examples.

2 Background on Pseudospectra

Pseudospectra provide a deterministic way of dealing with uncertainties in a
system. They were originally introduced by Trefethen [16] as a tool for the
treatment of non-normal matrices, i.e., matrices without a complete set of
orthogonal eigenvectors. Two recent books, Refs. [17] and [18], give excellent
overviews on pseudospectra, including many examples and historic remarks.
Other introductions to pseudospectra can be found in Refs. [14] and [15].
Furthermore, the Pseudospectra Gateway provides an extensive list of updated
references and links. It can be found at
http://web.comlab.ox.ac.uk/projects/pseudospectra.

Various definitions of pseudospectra are discussed in the literature. Below we



will introduce the most relevant ones for applications in structural mechanics.
In fact, it turns out that they can all be discussed within the unified framework
of structured pseudospectra of matriz polynomials [19]. A brief explanation of
this is provided in the Appendix of this paper.

2.1 Pseudospectra of matrices

In the simplest setting, given a matrix A € C™*" we investigate the sensitivity
of its eigenvalues under additive perturbations by considering

A(A)={A € C: X € o(A+0A) for some A € C™" with ||dA|| < €}, (1)

where we denote by o(+) the spectrum of a matrix and by || - || the (induced)
2-norm, that is, the largest singular value. The set A.(A) is called the e-
pseudospectrum (or spectral value set) [18,17] of the matrix A.

The importance of pseudospectra for investigations into the sensitivity of
eigenvalues of a system is immediate from the definition. Namely, the e-
pseudospectrum bounds all eigenvalues of the perturbed system A + 04 with
a perturbation 0A of size less than or equal e.

It is important to note that (1) is based on complex perturbation matrices.
This may seem inappropriate, since most examples occurring in applications
deal with real matrices. However, complex matrices are the natural setting
for eigenvalue problems, and consequently the algorithms for computing and
approximating pseudospectra are more powerful when complex perturbation
matrices are considered. Therefore, throughout this paper we will deal with
complex matrices. In applications, this approach will yield upper bounds for
the sensitivity of eigenvalues, since non-physical perturbation matrices are
included. However, in the examples in Section 4 we will demonstrate how
conclusions about the sensitivity of eigenvalues under real perturbations can
be drawn from the results.

Formula (1) allows one to approximate pseudospectra by computing the spec-
trum of A+ 0A with a number of randomly generated matrices dA of norm e. It
is, however, not convenient to use (1) for computing pseudospectra. Instead,
we consider the resolvent operator of A, defined by

R\ A) = (M — A7,

and observe that A is an eigenvalue of A, if R(\, A) does not exist, that is, if
(A —A) is singular. A complex number A is contained in the e-pseudospectrum
of A, if (M — A) is close to being singular. More precisely, it can be shown
[15] that



Ay ={reC: ||\ =AY > 1/e}. (2)

This formula lies at the heart of pseudospectra computations. A straightfor-
ward way of applying (2) is to evaluate the norm of the resolvent on a grid
over a region of the complex plane. Plotting the level set contours for differ-
ent e-values identifies boundaries of the pseudospectra of A. A discussion of
more refined methods for the computation of A.(A) can be found in Ref. [15].
What is more, a publicly available package EigTool [20] for the computation
of pseudospectra exists.

2.1.1 Pseudospectra of a matriz with respect to structured perturbations

In a large number of applications the matrix A has a certain structure, for ex-
ample, a block-structure or symmetry, which should be respected in the sensit-
ivity analysis. Consequently, pseudospectra with respect to certain structured
perturbations have been introduced by a number of authors. For example,
pseudospectra with respect to perturbations that are symmetric or circulant
are studied by Rump [21], see also the references therein.

Motivated by problems in control theory, pseudospectra with respect to full-
block perturbations have been introduced by Hinrichsen and co-authors [22,17].
More precisely, they consider affine perturbations of the form

A+ DSAE, (3)

with fixed shape matrices D € C"** and E € C™™ describing the perturb-
ation structure, and JA € C**! providing the perturbation matrix. Roughly
speaking, such perturbations allow one to perturb blocks in A, with D and F
describing the columns and rows to be perturbed, respectively. Pseudospectra
with respect to this class of perturbations are defined as

A(A;D,E)={X € C: X\ € 0(A+ DOAFE) for some 0A with ||dA|| < e} (4)

It has been shown in Ref. [22] that A.(A; D, E) can be computed using the
norm of the transfer function G(\) := ER(\, A)D, such that,

A(A; D, E) = {A € C: |GV > 1/e}. ()

This relationship allows one to compute A (A; D, F) via the grid approach
described above. Note that one can also use the matrices D and E to weight
perturbations of blocks in A differently.

This structured approach was recently developed further for perturbations of
single elements of the matrix A [23]. More specifically, let W = (W;;) € R™*"



denote a matrix of non-negative weights. A structured e-pseudospectrum A?(A)
of A with weights W can be defined as

AE(A):{ZE(C:Z €o (A—FZZ(;AU~€¢€JT)

i=1j=1
for some 0A = ((SAZJ) with ‘(5AZ]| < EWZ‘]‘ for all i,j}, (6)

where e; denotes the i-th unit vector, that is, the vector consisting of zeros
apart from the i-th position, where it contains a one. Hence, A(A) takes
perturbations into account that affect only those elements of A to which a
positive weight W;; > 0 is associated.

The perturbations in (6) can be rewritten in the form A + DAE, where in
contrast to (3) the perturbation matrix A = diag(A4;;) has to be a diagonal
matrix. In this way, the weights W;; can be incorporated into the matrices D
and E such that

AN(A)={r e C: e a(A+ DAE)
for some diagonal matrix A with [|A|| < €}.

A computable formula for A?(A) has been derived in Ref. [23]. As we shall

see, this formula is a special case of the results presented in Section 3.
2.2 Pseudospectra of matrix polynomials

Vibrating systems have been the motivation for defining another type of
pseudospectra. Such systems are described by second-order ordinary differ-
ential equations (ODEs) of the form

Agi + All' + AQZ’ = O, (7)

with coefficient matrices A; € C"*" (i = 0, 1,2) describing stiffness, damping,
and mass effects, respectively. Eigenvalues of the system (7) are eigenvalues
of the associated matrixz polynomial

Q(N\) = A\? + A\ + Ay, (8)

that is, solutions of det(Q(A)) = 0. Ref. [24] gives a comprehensive overview
on the properties and solution techniques of quadratic eigenvalue problems.



The sensitivity of eigenvalues of (7) in the class of second-order systems can
be studied by determining roots of

det(Q + 0Q)(A) = det ((Az + 3Ax)A* + (A1 + 641X + (Ao + 04o) ), (9)

with perturbation matrices 04; € C"*". To introduce corresponding pseudo-
spectra we let w = (wp, w1, wy) be a vector of weights and define

A(Q) = {A €T (Q+5Q)(N) =0
for some 0A; with w;||04;]| <€, i =0,...,2}.(10)

The w; allow us to weight perturbations to the coefficient matrices separately.
For example, w; = 1 corresponds to an absolute measure of the perturbations,
while w; = 1/||4;|| corresponds to a relative measure. We also allow for w; =
0o, in which case A; must not be perturbed. We call A.(Q) the weighted
pseudospectrum of ().

Weighted pseudospectra of matrix polynomials were first introduced by Tis-
seur and Higham [25], see also Ref. [26]. In those papers it has also been shown
that

2@ = {re € Q)7 > (AR /e + INfwn + 1)) T} (1)

Observe the similarity of this formula to (2). The polynomial in the inequality
in (11) can be interpreted as a weighting factor, induced by the second-order
structure. Again, formula (11) can be used for computing weighted pseudo-
spectra of (), using a grid approach as described above.

Remark 1 Pseudospectra of quadratic matrix polynomials are a special case
of pseudospectra for matriz functions F(N) = 31, Aipi(X), with p; as analytic
functions, studied in Ref. [27]. In thatl paper different possibilities for introdu-
cing a joint norm for the perturbations of the coefficient matrices A; are also
discussed.

Full-block perturbations offer an alternative way of preserving the second-
order structure of (7). Note that (7) is equivalent to the first-order system
z = Az where z = (z,4) and

0 1
—A Ay —ASTA,



In this setting, one can preserve the second-order structure by considering
perturbations that only affect the two lower blocks of A. For example, this
can be achieved by setting D = [0, I|T and E = [I, I] (the ‘I denotes the
transpose of a matrix).

A major drawback in using (12) is that the coefficient matrices A; are grouped
together, and therefore it is nearly impossible to analyze the influence of per-
turbations to elements of these matrices individually. This difficulty can be
overcome by directly considering structured perturbations of the matrix poly-
nomial. A detailed introduction is presented in Ref. [19]. In the following we
recall the most fundamental results for the case of second-order matrix poly-
nomials.

3 Pseudospectra Using Structured Perturbations

In this section, we consider quadratic matrix polynomials of the form (8), that
is,
Q(A) = AN + A1) + A, (13)

with A; € C™*™. A complex number \ is called an eigenvalue of @Q if det(Q (X)) =
0. We are interested in the behaviour of eigenvalues of () under structured
perturbations of the individual coefficient matrices A;. More specifically, we
consider perturbations

5@()\) - D2A2E2A2 + DlAlEl)\ + DOAOEO (14)

with shape matrices D; € C"**¥ and E; € CF*™ describing the structure of
the perturbations and containing possible weights. As in the case of structured
pseudospectra of single matrices the perturbation matrices A; € CFi** are
assumed to be diagonal matrices, that is,

A; = diag(d;1,6i2, - - -, Oig,)- (15)

Perturbations of the form (14) cover a large number of applications as we will
show in the examples of Sections 4 and 5.

The structured e-pseudospectrum A?(Q) of @ is then defined as

AX(Q) = {A € C: det(Q(N) +5Q(N)) = 0,

for some 0Q) of the form (14) with ||diag(Ag, A1, Ag)| < €}.(16)



Notice that ||diag(Ao, A1, Ag)|| < € is equivalent to §;; <€, 1 <j<k; 0<
1< 2.

Straightforward matrix algebra leads to a computable formula for A%(Q). Let-
ting A = diag(As, A1, Ag), one can show that

det(Q(A) +0Q(N)) =0 < det (I + G(N)A) =0,

where

E;
G\ == | B | Q)" [N*Dy ADy Dol;
Ey

here it is assumed that A is not an eigenvalue of ().

Thus, determining whether A € A?(Q)) amounts to determining the minimum
norm of a diagonal perturbation A such that det (I + G(A)A) = 0. This is
a well-known problem in robust control, where the inverse of this number
has been called the structured singular value (ssv) or p-function pa(G(XN))
[17,28,29]. More precisely, let A denote the space of complex diagonal matrices.
Then, for a matrix G, its ssv with respect to A is defined as

0, if det(/ —GA) #0forall A e A,

na(G) =
(min{||A|| : A€ A, and det(I — GA) =0})"!, else.

Remark 2 Structured singular values can be defined for arbitrary closed sub-
sets of the linear space of matrices. The concept can be seen as an extension of
the usual singular value, explicitly taking into account a structure of perturb-
ations, that is, their membership to the set of perturbation matrices A (the
ssv of a matrix w.r.t. unstructured perturbations is equal to its largest singular
value).

The arguments above show that (16) is equivalent to

AAQ)={AeC: (ua (G > 1/e}. (17)

Although we have only rewritten the original problem, we can use (17) for
computing structured pseudospectra of () by the standard grid method.

A number of computational tools are available for computing or approximating
the ssv. For example, the Robust Control Toolbox in Matlab [30] can be used



to compute the ssv of the matrix G(\) using the routine mussv. Therefore, all
that is required to compute A¥(Q) in applications is to formulate G/(\).

We also note that mussv computes both the upper and lower bounds for
the ssv, and thus for the pseudospectra. In the computations in Section 4-
4.3, the maximum difference between the values of these bounds was of the
order 10™* and thus negligible. Furthermore, the definitions presented above
and following the computations assume complex perturbations of the matrix
polynomial. A restriction to real perturbations is theoretically possible [17].
However, the approximation of the ssv is a lot worse in this case, and therefore
the computational results are not helpful.

4 Example of a Three Degree of Freedom System

The connection between pseudospectra and random eigenvalue problems will
be illustrated using simple discrete structural dynamic systems.

k6
M
k, m K, ke M Ky
AW
k m,
2 =

Fig. 1. A three degrees of freedom mass-spring-system.

The first example, taken from Ref. [31], concerns the undamped spring-mass-
system shown in Figure 1. The system is described by the second-order equa-
tion

Mi+ Kz =0 (18)

where the mass matrix M and the stiffness matrix K are given by

10



m; 0 O
M=]1 0 my 0 [,
0 0 mg
ky + ky + ke —ky —kg
K= —ky ko + Ky + ks —ks
—kg —ks ks + ks + ke

In Ref. [31] the authors deal with the uncertainty in the system by assuming
the numbers m; and k; to be random variables. Specifically, it is assumed that

m; = mz(]_ +€sz'), 1= 1,2,3

. (19)
]{?7; = ki(1+€kXi+3)a 1= 1,...,6.

Here the X, are uncorrelated Gaussian random Variable§ with zero mean and
standard deviation. Furthermore, m; =1 for ¢ =1,2,3, k; = 1fori=1,...,5
and kg = 3. The degree of uncertainty is described by

Em = 0.15, &, = 0.15. (20)

A straightforward Monte Carlo simulation indicates the behaviour and sens-
itivity of the system’s eigenvalues. The results from 2000 simulations are il-
lustrated in Figure 2. Note that in order to facilitate later comparison with
pseudospectra we assume the variables X; to be complex with normally dis-
tributed real and imaginary part. It can clearly be seen in Figure 2 that the
eigenvalues with larger imaginary part are more sensitive than the ones closer
to the real axis.

We will perform a rigorous uncertainty analysis using the several pseudospec-
tra definitions given in Sections 2 and 3. The results will be compared with
the simulation results shown in Figure 2.

The first step in our analysis is to formulate a corresponding deterministic

system. It is natural to choose this system according to the expectations m;
and k;, such that it is given by

Myi + Koz =0 (21)

where

11



R\

Fig. 2. Eigenvalues of 2000 simulations of (18) in the complex plane. The large dots
indicate the expectation for the eigenvalues.

1 0 0 5—-1-3
My=10 1 0 and Ko=| -1 3-1
0 0 1 -3-1 5

The eigenvalues A of (21) are zeros of the matrix polynomial Qg(\) = MyA? +
Ky. They are given as

{M, - Ny = {Hi, £20, £2V/2i}.
These are shown as large dots in Figure 2.
In what follows, we will first consider pseudospectra of (21) rewritten as a
first-order system. Pseudospectra with respect to both general and full-block

perturbations will be computed. We will then turn to the second-order system
and analyse weighted and structured pseudospectra.

4.1  Pseudospectra of the first-order system

Equation (18) can be written as the first-order system z = Sz, z = (z, %),
where

12



0 0 O 1 0 0

o 0 0 0 1 0

0 1 o 0 0 0 0 1
—-Ky O -5 1 3 0 0 0
1 -3 1 0 0 0

31 -5 0 0 0

We compute e-pseudospectra of S via (2). As we consider the 2-norm in the
paper, we can exploit the relationship 1/||R(\,S)|| = omin(A — S), where
Omin denotes the smallest singular value. The computation of pseudospectra
using formula (2) thus amounts to computing o, (Al — ) for values of A on
a grid over the complex plane. A given contour of value € then describes the
boundary of e-pseudospectrum of S.

Figure 3(a) shows the results of a pseudospectra computation. We perform the
computation, using Matlab, on a 200 x 200 grid. This computation took 1.9
seconds on a 2.8 GHz ZEON processor. The curves in the figure correspond
to € values of € = 1072, 10729, 10715, 10710, 107, and 1. We clearly see
a qualitative agreement with the simulation results, in that the eigenvalues
with larger imaginary part are more sensitive under perturbations. However,
it is not clear how the results can be related quantitatively to the simulations
above. In particular, since Ky and M, both enter § it is not clear which e-value
corresponds to the uncertainty measure in the simulations.

Remark 3 Another reason for the importance of unstructured pseudospectra
in the analysis of engineering systems is their use in the description of the
transient response of a system [15,18]. Since we are not concerned with this
problem in the present paper, we only remark that one can derive estimates
for the transient growth in a system from pseudospectra and recommend the
references for details.

We next compute pseudospectra of S with respect to the full-block perturba-
tion approach (3) with D = [0, I]T and E = [I, 0]. In this way, only the lower
left 3 x 3 block of § will be perturbed, and we thus preserve the second-order
structure of the problem. Moreover, we do not introduce damping, since no
perturbations to the lower-right sub-block of S are added.

Formula (5) is used for the computations and Figure 3(b) shows the results.
Again, we consider a 200 x 200 grid; computation time was 5.3 seconds. Once
more, the boundaries of pseudospectra for e = 1072, 1072, 10~%°, 107, 1075,
and 1 are shown. In contrast to the general pseudospectra we now find the
eigenvalues closest to the real axis to be more sensitive to perturbation. This
is remarkable, since the use of full-block perturbation eliminates non-physical

13
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Fig. 3. General pseudospectra of S, (a), and pseudospectra with respect to full-block
perturbations, (b), computed using (2) and (5), respectively.

perturbations. They should thus give better quantitative information. It is not
understood, however, why they do not reflect the qualitative behaviour in the
system.

4.2 Weighted pseudospectra of the second-order system

As discussed in Section 2 the main drawback in an analysis of the first-order
system is the difficulty of describing the influence of perturbations to the
matrices My and K separately. We therefore turn now to the computation of
pseudospectra of the matrix polynomial Qo(\) = MyA\? + Kj.

We first compute weighted pseudospectra using formula (11). For this it re-
mains to determine suitable weights. Obviously, w; = oo, since no damping
should be introduced to the system. The weights wy and ws are chosen accord-
ing to the distribution of the m; and k;; see (20). Recall from (20) that the m;
and kq, ..., ks are distributed with standard deviation 0.15, and kg with stand-
ard deviation 0.45. With these values we have v,,, = 0.15 and v;, = 1.2558 as
the 2-norms of the matrices of standard deviations. Consequently, we choose
wo = 1/vp and wy = 1/v,,.

As explained in Section 2 we can use (11) to compute pseudospectra by eval-
uating [|Qo(A\) |2/ (|A|?/we + 1/wg) for complex numbers A on a grid over a
region in the complex plane. Figure 4 contains e-pseudospectrum contours for
e = 107251072, 1071%, 107!, 107°®, and 1. Again, the computation is per-

14
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Fig. 4. Weighted pseudospectra of @)y, computed using (11), (a), and comparison
with the simulation results, (b).

formed on a 200 x 200 grid; computation time was 2.3 seconds. As expected
the weighted pseudospectra agree qualitatively with the ones obtained using
full-block perturbations of &, in that the eigenvalues closest to the real axis
are the most sensitive. Again, it is not clear how to explain the discrepancies
with the simulation results.

Note that we have chosen the weights wy and wy, such that the (e = 1)-contour
should correspond to the simulation results. Figure 4 (b) shows the (¢ = 1)-
contour again, together with the eigenvalues of 2000 simulations. From this, we
conclude that weighted pseudospectra do not provide satisfactory information
about the behaviour of eigenvalues in the example. In fact, while estimates
about the sensitivity of the eigenvalues closest to the real axis would be far
too conservative, the sensitivity of the eigenvalues with largest imaginary part
is not reflected accurately, such that a number of eigenvalues lie outside the
contour. (We note that the normally distributed variables m; and k; can take
arbitrarily large values and so we always have to expect some eigenvalues to
lie outside the pseudospectra contours.)

4.8 Structured pseudospectra of the second-order system

We now apply the theory presented in Section 3 to the computation of pseudo-
spectra of (21) using structured perturbations. As we will demonstrate, this
approach allows us to rigorously investigate the sensitivity of eigenvalues of
the system with respect to physical perturbations alone. More precisely, we
are interested in the eigenvalues of the perturbed system

15



(5m1 0 0
Mo+ | 0 6my 0 A2

0 0 5m3
Ok1 + 0ky + Oksg —0ky —0kg
+ KO + —(Sk4 5k2 + (5]64 + 5]{55 —(S/{JE, . (23)
—0kg —0ks Oks 4+ 0ks + Okg

This problem can be treated using the structured pseudospectra approach
(16). For this, we rewrite (23) in the form (14)

[Mo + Dy Ay Ep] N+ [Ko + D Ax Ex] . (24)

The main difficulty in this formulation is to find appropriate shape matrices
Dy i and Ej . A general method for doing this, based on a singular value
decomposition, is described in the Appendix. Application of this method to
(23) shows that

Dy =015-1, Ey =1, Ay =diag(dmy,dms,dms), (25)
1 0 0
0 1 0
1 0 0 1 0 3
0 0 1
Dgk=015-10 1 0-1 1 0|, Ex= , (26)
1 -1 0
0 0 1 0-1-3
0 1 —1
1 0 —1

Ay = diag(8ky, 6ks, ks, Oky, Oks, Okg).

Observe that we have introduced 67{;6 = dkg/3, in order to give a direct com-
parison to the random perturbations, where we note that kg = 3 results in a
threefold increase in the uncertainty eg; see (19). The elements in the second
column of Dk have been rescaled accordingly, thus reflecting the different
weight for perturbations of kg. This demonstrates how the approach allows us

16



[$2]

[$a]

S(N) 0 SN 0
= |
==
3o 0 0.6 36 0 0.6
R(N) R(A)

Fig. 5. Structured pseudospectra of @y, computed using (17), (a), and comparison
with the simulation results, (b).

to weight perturbations of individual entries in the system’s matrices differ-
ently, similar to the method introduced in Ref. [23]. Furthermore, the degree of
uncertainty is reflected in the factor 0.15 in front of the Dj; and Dg matrices.

Finally, letting

Ey
G()\) = (M())\Z + Ko)_l (DM)\2/U}2 DK/’IUO> s (27)

Ex

we use the Matlab routine mussv to compute values of pa (G(N)) for A on
a grid over the complex plane. According to (17) a contour plot then yields
the boundaries of structured e-pseudospectra. Figure 5 (a) shows the results
of this computation. We use a 200 x 200 grid on the corresponding region
in the complex plane. The computation time was 13.50 minutes. As before,
e-pseudospectra for e = 10725, 1072, 10=%, 101, 107%%, and 1 are shown. We
note that the routine mussv computes both upper and lower bounds for the
ssv, and thus for the e-values of pseudospectra contours. In this example, the
maximal difference between these bounds, on the grid used, is of the order
1074, such that they are indistinguishable.

The qualitative agreement between the e-pseudospectra and the simulation
results is evident in Figure 5. In fact, we can even compare the results quant-
itatively. Note that the matrices Dy, and Dy have been set up such that the
(e = 1)-contour again corresponds to the simulation results. In Figure 5 (b),
where this contour is shown again, the correspondence is illustrated. Each of
the eigenvalues is encircled by a pseudospectrum contour. For the eigenvalues
with large imaginary part, however, these contour almost touch each other,
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whereas contour around the eigenvalues closest to the real axis is well separ-
ated. This is reflected in the simulation results, where it is very difficult to
distinguish between perturbations of the eigenvalues at +2i and +2/2i.

We conclude that structured pseudospectra of )y provide a rigorous way of
analysing the sensitivity of eigenvalues. A disadvantage of the method is the
computational cost, which is substantially higher than with all other methods.
On the other hand, structured pseudospectra can give information for a whole
family of problems, since the different e-contours are related to different units
of uncertainty present in the system. Thus, structured pseudospectra may be
used for a solution of the inverse problem of establishing bounds of uncertainty
that are necessary for a robust stable operation of the engineering system. In
other words, they are directly related to the important concept of stability
radii [17,27).

4.4 Non-Gaussian random perturbations

We have seen that structured pseudospectra of matrix polynomials offer an
alternative method for studying the sensitivity of the eigenvalues of (18).
In this section we further illustrate the relation between pseudospectra and
random elements in the model matrices and consider several different types
of probability distributions for the parameters m; and k;. As in Section 4 we
consider complex random variables, so that the simulation results compare
better with the pseudospectra.

Let us first assume that the m; and k; are given by

_ (28)
ki - k1(1+015X1+3>, izl,...,6,

where the real and imaginary parts of the random variables X; are uniformly
distributed on [—1, 1]. The numbers m; and k; have the same values as before,
that is, k¢ = 3 and m; = k; = 1 for all other i. This setup is perfectly suited
for an analysis using pseudospectra. A major advantage of the uniform distri-
bution is that it provides bounds for the variation of elements, which can be
directly translated into weights and e-values for the pseudospectrum computa-
tions. The distributions (28) are chosen such that the structured pseudospec-
trum of )y can be compared to simulation results. Thus, for the pseudospectra
computations we employ the unperturbed matrices in (21) according to the
expectations of the m; and k;, that is, they are given by M, and K,. We also
use the same matrices Dy, Ex, Dy and E),.

In Figure 6 we show the eigenvalues of 2000 simulations of (18) with uniformly
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Be 0 0.6
R(\)

Fig. 6. Pseudospectrum contour of @)y and eigenvalues of 2000 simulations of (18)
with uniformly distributed m; and k; in the complex plane.

distributed m; and k;. Also included is the corresponding (e = 1)-contour of the
structured pseudospectrum of ()y. It is clearly shown that the pseudospectrum
can be understood as a ‘worst case’ analysis. In fact, it can be seen that it is
very unlikely to generate matrices that push eigenvalues close to the boundary
of the pseudospectrum. This effect has been observed before [22].

We finally deal with two further types of probability distribution that are
often used in structural mechanics, namely, the log-normal distribution and
the x2-distribution. Random variables that are distributed according to these
distributions take values on an infinite (positive) interval and are therefore
more suitable to model strictly positive quantities like mass and stiffness coef-
ficients. Under these distributions it is more difficult to set up an appropriate
pseudospectrum analysis. Similar to the procedure in Section 4.3 we propose
the following two steps:

e The deterministic system is constructed according to the expectation of the
elements of the system’s matrices.

e The matrices Dg and D), both describe the structure of the perturbation
and contain weights chosen according to the standard deviation of the ele-
ments.

The first step is conceptually consistent with the non-parametric uncertainty
modelling concept proposed by Soize[33,34]. We emphasize that in the second
step the relationship between the weights is more important than their ab-
solute value. In fact, for fixed matrices Dx and D), different pseudospectra
contours can be seen as being related to different standard deviations of the
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Fig. 7. Comparison between structured pseudospectrum of @)y and eigenvalues
of random matrices with elements that have a log-normal distribution (a), or a
x2-distribution (b), respectively.

distributions of elements.

We illustrate this for the log-normal and y2-distribution below. Again, we
consider the example from Section 4.3 and rescale the variables, such that the
results for the structured pseudospectrum of )y can be used.

Firstly, let X;,7 = 1,...9 be complex random variables, such that log(%(X;)) ~
N(0,1), log(3(X;)) ~ N(0,1). Then R(X;) and I(X;) have a log-normal dis-
tribution with E(R(X;)) = E(J(X;)) = e and D*(R(X;)) = D*(S(X,)) =
\/e(e — 1). Hence, the real and imaginary parts of

1 1
y_ 015 015

e(e—1) Vel

have expectation zero and variance D? = 0.152. Consequently, we set

) (29)
ki kl<1+Y;+3)7 7::17"'767

with 7m; and k; as before.

Figure 7 (a) shows the eigenvalues of 2000 simulations of (18) together with
the corresponding (e = 1)-contour of the structured pseudospectrum of Qq. It
is shown that the chosen pseudospectrum contour gives a satisfactory bound
for the position of eigenvalues of the random system (18) with log-normally
distributed m; and k;.
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Next, we consider the case where the elements of M and K have a Y-
distribution. For simplicity we consider the y2-distribution with one degree

of freedom. We let X;, i = 1,...,9 be random variables, such that \/R(X;) ~
N(0,1), and /S(X;) ~ N (0,1). Then R(X;) and I(X;) have a y*-distribution
and, furthermore, E(R(X;)) = E(3(X;)) = 1, D*(R(X;)) = D*(S(X;)) = 2.
Finally, we rescale Y; = 0.15/v/2X; — 0.15/+/2 and set

_ (30)
ki = ki(1+Yis), i=1,....6.

The eigenvalues of 2000 simulations of (18) with these distributions are shown
in Figure 7(b). The eigenvalues are slightly more spread out than in the case of
the log-normal distribution, but still the pseudospectrum bound is satisfactory.

5 Example of a Five DOF System

Finally, we study a problem from Ref. [32], which deals with the problem of
obtaining eigenvalue bounds for systems with interval type parametric uncer-
tainties. This calls for the application of structured pseudospectra.

My WA M2 WA e - ey ms

Fig. 8. A five degrees of freedom mass-spring-system.

The example, a five degrees-of-freedom mass-spring system without damping,
is shown in Figure 8. Eigenvalues of the system are solutions of Q(\) = MA?+
K =0, where

ki 4+ ks —ky 0 0 0
—ko ko+ ks —ks 0 0

M = diag(my, ..., ms), K = 0  —ks hks+ky —ky 0 |(31)
0 0 —ky ky+ks —ks
0 0 0  —ky ks

It is assumed in Ref. [32] that the parameters k; and m; are not known exactly,
but only that their values lie in the following intervals
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ky € [2000,2020], ko € [1800,1850], ks € [1600, 1630,
ks € [1400,1420], ks € [12001210]

and
my € [29,31], may € [26,28], mg € [26,28] my € [24,26], ms € [17,19].

We will compute structured pseudospectra of ) to obtain bounds for the
eigenvalues of the system. In the unperturbed system Qo(\) = MyA? + K, the
parameters m; and k; are set to the mid-points of their respective intervals.
The eigenvalues of the unperturbed system are then given by

AP = 42.4832i, \f = £6.63914, \f = +10.1768i, AT = +12.8682i,
i = +14.8128i.

The differences in the variation of the parameters m; and k; are included in
the matrices D;, such that the problem above is equivalent to

(M0+DMAMEM)>\2+(K0+DKAKEK) =0, (32)

with
DM:EM:[, AM:diag((Sml,...,émg,),

and
10-25 0 0 O 1 0 0 0 0
0 26—-15 0 O -1 1 0 0 0

Dy = 0 0 15-10 0|, Ex= 0-1 1 0 0],

0O 0 0 10-5 0O 0—-1 1 0
0O 0 0 0 5 0 0 0-1 1

AK = dlag(ékl, Ce ,5k5),
where we need |dm,|, |0k;] < 1foralli=1,...,5.

Hence, the structured (e = 1)-pseudospectrum contour of Qo should give us the
bounds of m; and k; above. Pseudospectra of Qo are shown in Figure 9 (a), with
the (e = 1)-contour highlighted as the fat contour. Since the pseudospectra
are symmetric with respect to the real axis we only plot pseudospectra in the
upper half of the complex plane.
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Fig. 9. Structured pseudospectra of the matrix polynomial Q)g in the upper half
of the complex plane (a), and a plot of the function g, introduced in the text
(b). Bounds for the eigenvalues of @) are obtained by determining points for which

g(A\) =1.

To derive the bounds for the eigenvalues, we have to consider where the
(e = 1)-pseudospectrum intersects the imaginary axis. Note that for real m;
and k; satisfying the bounds above the matrices M and K in (31) are sym-
metric and positive definite. Thus, the system always has purely imaginary
eigenvalues [24], and we conclude that the regions of pseudospectra away from
the imaginary axis in Figure 9 (a) correspond to physically irrelevant complex
perturbations of My and K.

A graphical solution for identifying how to compute the bounds is shown in
Figure 9(b), where we plot g(A) := 1/ua(G(X)) for A € iR, purely imaginary.
By formula (17) the bounds for the variation of eigenvalues are given by points
A € iR, for which g(\) = 1; this line is shown as dashed in Figure 9(b).
The results are summarized in Table 1, and Table 2 lists the bounds derived
in Ref. [32] for comparison. We see that both methods yield very similar
results. Our method gives improved lower bounds, whereas the method used
in Ref. [32] yields sharper upper bounds for the variation of the eigenvalues of
the system.

6 Conclusions

In this paper we have shown that pseudospectra can be used for investigating
eigenvalue problems subject to uncertainty. Using both established and re-
cently developed techniques, we have compared results from different types of
pseudospectra computations with results from Monte Carlo simulations of ei-
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FEigenvalue Lower Bound Upper Bound
A1 2.428i 2.5651
Ao 6.489: 6.81114
A3 9.9474 10.430:
Aq 12.5744 13.185¢
A5 14.477i 15.170¢

Table 1
Bounds for the eigenvalues of (31), computed using structured pseudospectra of the
matrix polynomial.

Eigenvalue Lower Bound Upper Bound
A1 2.4201 2.5501
A2 6.4831¢ 6.8057
A3 9.942; 10.4251¢
Aq 12.572i 13.182¢
A5 14.4744 15.169¢

Table 2
Bounds for the eigenvalues of (31) using an eigenvalue inclusion principle [32].

genvalue problems subject to different types of probabilistic and interval type,
parametric uncertainties.

Two spring-mass systems modeled by second-order ODEs were investigated
in detail. The first considered probabilistic uncertainties on the entries of the
governing system matrices. The computed pseudospectra were shown to agree
with the results obtained from Monte Carlo simulation with differing degrees
of accuracy. Specifically, unstructured pseudospectra of the problem rewritten
as a first-order system were shown to agree qualitatively with the simulation.
However, two related concepts of pseudospectra, namely, full-block perturba-
tions of the first-order system and weighted pseudospectra of the matrix poly-
nomial, did not produce satisfactory results. A novel technique to compute
structured pseudospectra of the full second-order system was proposed. The
computed pseudospectra were shown to agree both qualitatively and quantit-
atively with the simulation results for normally distributed random variables.
Similar agreements were also observed for systems with uniform distribution,
log-normal distribution and a x? distribution.

In the second example, a spring-mass system in which the entries of the gov-
erning matrices had interval type uncertainties was considered. In this case,
we again computed structured pseudospectra of the associated full second-
order system using our novel techniques. The pseudospectra computations
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were used to provide bounds on the eigenvalues under the interval uncertain-
ties. These bounds were shown to be in good agreement with results obtained
via established interval algebra based methods.

The studies reported in this paper show the generality of pseudospectra tools
for investigating eigenvalue problems with various types of uncertainties. The
techniques proposed here need not be restricted to the second-order systems.
The theory of structured pseudospectra is generalized for general matrix func-
tions and can be applied to a wide range of problems such as higher-order
matrix polynomials, systems modeled by delay differential equations and dif-
ferential algebraic equations. Furthermore, these pseudospectra tools may be
applied to a system with Fuzzy variables since a Fuzzy variable can be con-
sidered as a parameterized interval variable. The computation of pseudospec-
tra is an accessible and computationally efficient tool for analyzing the (robust)
stability of all of these systems, where, in some cases, even the computation
of the spectra is not a trivial task.

Appendix

Here we give a brief outline of how the different types of pseudospectra intro-
duced in Sections 2 and 3 can be seen as special cases of the general theory
of structured pseudospectra developed in Ref. [19]. We also discuss how the
matrices D; and F;, describing the structure of the perturbation, can be de-
rived in applications.

6.1 A general framework

For all types of pseudospectra defined in this paper, the corresponding com-
putable formulae can be derived by applying the following algorithm:

Step 1 Define F': C — C™", F(\) =", A;p;()\), as the characteristic matrix
of the nominal system (typically F(A\) = A — A or F(\) = A M2 + A\ +
Ao).

Step 2 Express the structured perturbations on the system as additive uncer-
tainty on the characteristic matrix of the form

IF(N) = zf:si IL; Ti qi(N), (33)

=1

where II; € CF*ki k> 1, denote the underlying unstructured perturba-
tions; S; € C™**: T, € CF*™ are appropriate constant shape matrices; and
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q; : C — C are entire functions, in such a way that the e-pseudospectrum
under consideration can be defined as

A(F):={A e C:det(F(\) +dF(\)) =0, for some 6F of the
form (33) with |[TL;|| <e€, i=1,...,f}. (34)

Step 3 The general formula is

T
: _ 1
AN(F)={A€C: pa S FO)T ST (A - Sy gp (V)] o
Ty
(35)
where pa(+) is the structured singular value corresponding to the uncer-

tainty set
A = {diag(ILy, ..., Tly) : Il € CF, 1< < £}

In the special case S; = T; = I, i = 1,...f, expression (35) can be
simplified to

f
A (F) = {A eC: |[FN7 (;\qm) > 1}.

€
A more general uncertainty structure and corresponding computable formulae

can be found in Ref. [19].

Examples

e Pseudospectra (3)-(4). Applying the algorithm with

FO\)=A—M, 6F(\) =D A E .
N
S1 11 Ty
results in (5) as pa(-) = || - || if A is unstructured.

e Pseudospectra (8)-(10). Formula (11) is obtained through the algorithm
where F'(\) = G(\) and

SF(N) = 64202 + 6 A\ + 0 A,
A2 A 1
= W2 5142 — | +wq 5141 — | +wy 5140 () .
~—— Wo ~—— w1 — \ Wy

II; —— Il —— II3
a1(A) q2(X) a3(A)
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e Pseudospectra (13)-(16). With F(A) = Q(\) and

5F(/\) = DQAQEQ)\Q + DlAlEl)\ + DoAQEO

=X DY) oy B X2 4S5 DY by BYA+ 5, DF 6oy B,
Sj Hj Tj qj()‘)

where ng ) denotes the j-the column of D; and Ei(j ) the j-th row of E;, the
algorithm results in formula (17).

6.2 Computation of the shape matrices

The use of structured pseudospectra in applications requires to set up appro-
priate shape matrices. In the following we describe a general way how to do
this.

Let F(A) = X", A;pi(\) denote the unperturbed characteristic matrix of the
system and let us assume that the coefficient matrices of the perturbed system,
A;, depend on a number of uncertain parameters 0;;, say

A, = A, +Z€U i

with matrices F;; determining where the parameters enter the original matrix.
Moreover, assume that the matrices F;; have rank one. Assume that, as in
Section 4, we wish to investigate the possible positions of the eigenvalues
when |6;;] <e€, Vi,j.

Since Pj; has rank one its (reduced) singular value decomposition (svd) [17]
yields

P u”vz],

where u;; and v;; are vectors. Hence, the perturbation of A; can be written as

AZ' -+ Z GijPij = Az + Zuijeijvfj
J J

and we have
Z Aipi(\ ) + Z Z uij Oij vipi(N),

where the additive perturbation of F' has the form (33), as required above.
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Moreover, we alternatively have

*
) )

A + Z 0;; P = A; + [uintiz - - . wy
J

which is of the general form used in Section 3.

Remark 4 The assumption that all matrices P;; have rank one has been mo-
tivated by the examples in Section 4 and 5. In general, this will be too re-
strictive, and the above approach needs to be generalized. The svd then leads
to considering diagonal matrices with repeated scalar blocks as perturbation
matrices. A discussion of this more general perturbation structure can be found

in Ref. [19].

An example

We finally demonstrate the algorithm using the example studied in Section 4.
First note that the problem can be written as

100
My+6mi | 000 | +...[ N

000

100 1-10
+|Kog+0kiloo0o | +...+0ks| =1 10| +...
000 0 00

An svd for each of the matrices then shows that this is equivalent to
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1 0 0
Mo+ [0 6mi[100]+ | 1| dma[010]+ |0 dms[0 0 1]| A2
0 0 1

1 0 0
+ | Ko+ |0]|6k[100]+ [ 1] k2[010]+ |0 0ks[00 1]
0 0 1

1 0 3
+ | =1 |0ks1 =10/ 4| 1|0ks[01 —1]+ | 0|0kg[L 0 —1]
0 ~1 -3

Note that we have used the rescaled version 6Ak6 instead of 0kg again. From this
representation the matrices Dy yr and E p in (25),(26) can be immediately

read off.
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