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Abstract
In the case of low immersion high-speed milling, the ratio of time spent

cutting to not cutting can be considered as a small parameter. In this
case the classical regenerative vibration model of machine tool vibrations
reduces to a simpli�ed discrete mathematical model. The corresponding
stability charts contain stability boundaries related to period doubling and
Neimark-Sacker bifurcations. The subcriticality of both types of bifurca-
tions is proved in this paper. Further, global period-2 orbits are found
and analyzed. In connection with these orbits, the existence of chaotic
motion is demonstrated for realistic high-speed milling parameters.

High-speed milling is one of the most e�cient cutting processes used
in industry. In the process of optimizing this technology, it is a chal-
lenging task to understand its special dynamical properties. Although
this �eld has a vast literature (e.g. [2, 1, 15, 4, 3, 10]), very little is
known about the nonlinear dynamics of high-speed milling processes.
In this paper we investigate a nonlinear discrete time model, whose
linear counterpart was constructed �rst by Davies et al. [4]. This
nonlinear model is simple enough to have closed form results, which
qualitatively describe complicated phenomena found by simulations
in a delay equation model of the process [3, 11]. Particularly, the
stability analysis in Davies et al.[4] shows that the �xed point of the
model can lose its stability in two ways: either by a Neimark-Sacker
bifurcation or by a period doubling bifurcation. Here we prove that
both bifurcations are subcritical. We also investigate another period-
2 motion. This second period-2 motion corresponds to the tool cut-
ting only every second period. Similarly, this motion can also bifur-
cate in the two ways mentioned above. In the case when the unstable

∗PACS: 05.45.-a
†Department of Applied Mechanics, Budapest University of Technology and Economics,

P.O. Box 91, H-1521, Budapest, Hungary, e-mail: szalai@mm.bme.hu
‡Department of Applied Mechanics, Budapest University of Technology and Economics,

P.O. Box 91, H-1521, Budapest, Hungary, e-mail: stepan@mm.bme.hu
§Department of Engineering Mathematics, University of Bristol, BS8 1TR, Bristol, United

Kingdom, e-mail: s.j.hogan@bristol.ac.uk

1



�xed point coexists with an unstable period two orbit chaos can arise,
which is shown to be generic to the system.

1 Introduction
High-speed milling is a very common machining process in industry. It is spe-
cially used in the automotive and aerospace industry, due to its precision and
e�ectiveness. It is particularly e�cient at removing signi�cant amount of ma-
terial from a workpiece. In the case study by Halley et al. [9] it is shown that
manufacturing of large, sculptured and thin walled parts, where 80-90% of the
material is removed by cutting, can be more economical than producing a large
number of simple parts. The reason for this is that the assembly and storage
of parts can be heavily simpli�ed compared to the traditional procedure and at
the same time the cost of machining may be kept at a reasonable level using
high-speed milling.

In milling processes cutting is done by a rotating tool, which has edges to
remove material by inducing mainly shear stress in the workpiece. In general,
the cutting tool can have very complicated geometry in order to obtain special
surfaces or can be very large if the workpiece is intended to be cut in one turn.
In contrast to general milling, high-speed milling has speci�c properties such as
small tool diameter, low number of milling teeth (2, 3 or 4), and high cutting
speed. Also, if the immersion is low the above features lead to so-called highly
interrupted cutting. This means that, most of the time, none of the cutting
edges is in contact with the workpiece, while cutting occurs during those short
time-intervals only when one of the teeth hits the workpiece. Actually, the
ratio of time spent cutting to not cutting may be less than 10%, so it can be
considered as a small parameter.

Stability of machining processes was �rst studied by Tlusty [23] and Tobias
[24], who showed that the so-called regenerative e�ect, where the force acting
on the tool mainly depends on the di�erence of the current and a delayed tool
position, plays an essential role in the dynamics of cutting. This observation
generally yields delay equation models of tool motion and results the appear-
ance of the lobe structure in stability charts. While constant speed turning
processes are described by automonous delay equations, milling is time periodic
and therefore its stability analysis is more involved. In the case of large or full
immersion, these time-periodic equations may be analysed by harmonic balance
techniques, which reduce the in�nite dimensional problem to �nite dimensions.
As Davies et al. [4] pointed out, this is not a viable approach in case of the
highly interrupted cutting due to high order harmonics content of impact like
dynamics. They introduced a new and more simple model, which describes
cutting as an impact that still involvesthe delay e�ect. Also, they gave exper-
imental veri�cation of the model. The nonlinear model we will analyse in this
paper is the simplest way of incorporating the nonlinear cutting force function
described by the three-quarter rule [23] into the linear model of Davies et al.
[4].
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Figure 1: Scheme of high-spee milling. Feed is provided by the workpiece ve-
locity v0, cutting speed is provided by the (rotating) tool.

Early results on nonlinear dynamics of turning processes [18] show that cut-
ting just below the stability boundary is sensitive to perturbations, so that stable
cutting can suddenly turn into chatter. An analytical investigation of Stépán
and Kalmár-Nagy[19] (see also Kalmár-Nagy et al. [12]) has revealed that this
phenomenon is related to a subcritical Hopf bifurcation in the delay equation
model. In the case of milling there are two ways of losing stability, which are the
classical Hopf-type (Neimark-Sacker) and period doubling bifurcation, which is
analysed by several authors including Insperger et al. [10], Bayly et al. [3].
The nonlinear dynamics is mostly studied by simulation (for an overview see
Balachandran [2]), but in several cases subcriticality is not observed due to
linear cutting force functions. However these simulations [2] together with ex-
periments [14] show that the loss of stability by period doubling yields a sudden
transition to stable period-2 vibrations or chaotic motion, which indicate that
the bifurcation is most likely subcritical. Hence, there is a need for a nonlinear
cutting force function.

The outline of the paper is as follows. In the section 2 we introduce the non-
linear governing equation of the process, which will be simpli�ed to a discrete
system in section 3. Section 4 contains basic stability information [4] adapted
to our nonlinear model. In section 5 the period doubling and Neimark-Sacker
bifurcations occuring at the stability boundaries are analysed and their sub-
criticality is proved. Existence, stability and bifurcations of a �global� period-2
orbits are discussed in section 6. Finally, chaos is demonstrated for parame-
ters, where the steady state motion and the added period-2 motions are both
unstable.

2 Mechanical model
We use the simplest possible mechanical model of the process. The tool is
modeled as a 1 degree of freedom (DOF) oscillator with undamped natural
(angular) frequency ωn =

√
c/m, relative damping factor ζ = k/(2mωn), and
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Figure 2: Mechanical model. Note the di�erence from the model in Fig. 1: the
feed is provided by the tool while the cutting speed is provided by the motion
of the (rotating) workpiece.

damped natural frequency ωd = ωn

√
1− ζ2, where c is the sti�ness and k

denotes the damping factor. The tool rotates with the constant angular speed
Ω and has z number of edges. In the case of low immersion high-speed milling,
the tool cuts only during a small fragment of the cutting period, so in Fig. 1,
the workpiece is considered to be thin in the cutting direction and cutting can
be approximated as an impact.

Consequently the motion of the tool can be separated into two parts. As it
can be seen in Fig. 2, the tool oscillates freely for time period τ1 = τ − τ2 and
then cuts the workpiece for time period τ2. The tool starts the free vibration at
time instants tj = t0 + jτ , j ∈ Z, enters the workpiece at t−j+1 = tj+1 − τ2 and
�nishes cutting at tj+1 when it starts free-�ight, again. For the entire dynamics,
we have the equation of motion

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) =

g(t)
m

Fc(h(t)), (1)

where
g(t) =

{
0 if ∃ j ∈ Z : tj 6 t < t−j+1

1 if ∃ j ∈ Z : t−j+1 6 t < tj+1
.

The cutting force Fc, in general, may depend on many factors of the process
like cutting speed, lubrication, etc.. In our model, we consider its dependence
merely on geometrical data, namely on the constant chip width w and on the
time-varying chip thickness h(t) in the form of the empirical three-quarter rule
[23]

Fc(h(t)) = Kw(h(t))3/4, (2)
where K is an experimentally determined parameter. The chip thickness is
computed from the current and a delayed tool tip position, i.e.,

h(t) = h0 + x(t− τ)− x(t),
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where h0 = v0τ is the feed for a cutting period (see Fig. 1).
Introducing the dimensionless time t̂ = ωnt, the governing equation (1)

becomes

ẍ(t̂) + 2ζẋ(t̂) + x(t̂) = g(t̂)
Kw

mω2
n

(h0 + x(t̂− τ̂)− x(t̂))3/4.

In what follows by abuse of notation we drop the hat from the dimensionless
time variables t̂, τ̂ , τ̂1, τ̂2. For the free-�ight period (g(t) ≡ 0) we have

ẍ(t) + 2ζẋ(t) + x(t) = 0 t−j 6 t < tj ,

which can be solved and arranged in discrete form:
(

x(t−j+1)
ẋ(t−j+1)

)
= A

(
x(tj)
ẋ(tj)

)
. (3)

When the time period of cutting is very short, i.e., τ2 → 0 then the time period
τ1 of the free-�ight can be approximated by the tooth-pass period τ . In this way
the coe�cient matrix A constructed from the linear solution of the free-�ight
assumes the form

A =


 e−ζτ

(
cos(ω̂dτ) + ζ

ω̂d
sin (ω̂dτ)

)
e−ζτ

ω̂d
sin (ω̂dτ)

− e−ζτ

ω̂d
sin (ω̂dτ) e−ζτ

(
cos(ω̂dτ)− ζ

ω̂d
sin (ω̂dτ)

)

 ,

(4)
where the dimensionless damped natural frequency is

ω̂d = ωd/ωn =
√

1− ζ2.

For the cutting period τ2 → 0, we neglect all the forces (spring, damping) except
the cutting force, and assume that the position of the tool does not change much
during the impact

ẍ(t) ≈ Kw

mω2
n

(h0 + x(tj)− x(t−j+1))
3/4, t−j+1 6 t < tj+1.

Integrating the above formula on [t−j+1, tj+1] we �nd

ẋ(tj+1) = ẋ(t−j+1) + τ2
Kw

mω2
n

(h0 + x(tj)− x(t−j+1))
3/4. (5)

Putting together equations (3) and (5) yields

x(tj+1) = A11x(tj) + A12ẋ(tj)

ẋ(tj+1) = A21x(tj) + A22ẋ(tj) +
Kwτ2

mω2
n

(h0 + (1−A11)x(tj)−A12ẋ(tj))
3/4

,

where Aij denote the corresponding elements of A in (4).
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3 Nonlinear discrete map
In the previous section, we constructed the equations mapping the state of
system from cutting period to subsequent cutting period. We rephrase it with
the state variables xj = x(tj) and vj = ẋ(tj), so the map becomes

(
xj+1

vj+1

)
= A

(
xj

vj

)
+

(
0

Kwτ2
mω2

n
(h0 + (1−A11)xj −A12vj)

3/4

)
. (6)

This map has a �xed point
(

xe

ve

)
=

Kwτ2h
3/4
0

mω2
n(1 + det A− trA)

(
A12

1−A11

)
(7)

that corresponds to stationary cutting, which is a period-1 motion with period
τ . Linearizing around this �xed point, we get the local dynamics
(

xj+1

vj+1

)
=

(
xe

ve

)
+B

(
xj

vj

)
, B =

(
A11 A12

A21 + ŵ(1−A11) A22 − ŵA12

)
,

(8)
where the dimensionless chip width

ŵ =
3

4h
1/4
0

Kτ2

mω2
n

w

is assumed later as the bifurcation parameter. Note, that in the limiting case of
τ2 → 0 and τ1 → τ , the original chip width w tends to in�nity at �nite ŵ, which
means that the extremely (highly) interrupted cutting could theoretically take
place with in�nite chip width.

4 Stability chart
This section summarizes the linear stability results of [4]. In our model (6)
only �ip or Neimark-Sacker bifurcation can occur. For the �ip case we have a
characteristic multiplier at −1, that is

det(B(ŵf
cr) + I) = 0.

This equation can be solved for ŵ in the form

ŵf
cr =

detA + trA + 1
2A12

= ω̂d
cos(ω̂dτ) + cosh(ζτ)

sin(ω̂dτ)
. (9)

For the Neimark-Sacker case we have

det B(ŵns
cr ) = 1,
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Figure 3: Stability chart. Grey regions are stable, continuous lines denote
period doubling boundaries while dashed lines correspond to Neimark-Sacker
bifurcation

because B is real and its complex eigenvalues are conjugate pairs. Solving this
equation for ŵ yields

ŵns
cr =

det A− 1
A12

= −2ω̂d
sinh(ζτ)
sin(ω̂dτ)

. (10)

The results are shown in Figure 3. This so-called stability chart is con-
structed in the plane of the most important technological parameters. One of
these is the cutting speed represented by the product zΩ̂ = 2π/τ of the number
z of cutting edges and dimensionless angular speed Ω̂, while the other parameter
is the dimensionless chip width ŵ.

5 Local bifurcations
In this section, we show that bifurcations occuring at stability boundaries (9)
and (10) are both subcritical. In order to do this, we use standard techniques of
local bifurcation theory, which can be found, for example, in [8]. To apply these
techniques, we need the Taylor expansion of this map (6) at its �xed point (7).
This requires the expansion of the cutting force function Fc in (2) at theoretical
chip thickness h0 with respect to the chip thickness variation ∆h

Fc(h0 + ∆h) ≈ Kwh
3/4
0 +

3Kw

4h
1/4
0

∆h− 3Kw

32h
5/4
0

(∆h)2 +
5Kw

128h
9/4
0

(∆h)3

or with the dimensionless chip width ŵ

Fc(h0 + ∆h)
τ2

mω2
n

≈ 4ŵ

3
h0 + ŵ∆h− ŵ

8h0
(∆h)2 +

5ŵ

96h2
0

(∆h)3.
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In what follows, we consider ŵ as the bifurcation parameter, thus the system
around the �xed point is now approximated by

(
xj+1

vj+1

)
=

(
xe

ve

)
+ B(ŵ)

(
xj

vj

)
+

(
0

ŵ
∑

q+r=2,3 bqrx
q
jv

r
j

)
, (11)

where

b20 = − (1−A11)2

8h0
, b11 =

(1−A11)A12

4h0
, b02 = −A2

12

8h0
,

b30 =
5(1−A11)3

96h2
0

, b21 = −5(1−A11)2A12

32h2
0

,

b12 =
5(1−A11)A2

12

32h2
0

, b03 = −5A3
12

96h2
0

.

5.1 Flip bifurcation
Crossing the stability boundaries at (9) a �ip bifurcation occurs. At the stability
boundaries the critical eigenvalue is

λ1(ŵf
cr) = −1

and the linear part of the system (11) can be written as

T−1B(ŵf
cr)T =

( −1 0
0 λ2

)
,

where T is a transformation matrix and contains the eigenvectors s1,2 of B(ŵf
cr),

i.e.,

T := (s1, s2) =

(
1 1

−ζ − −ω̂d(eζτ+cos(ω̂dτ))
sin(ω̂dτ) −ζ + −ω̂d sinh(ζτ)

sin(ω̂dτ)

)

and
λ2(ŵf

cr) = e−ζτ (cos(ω̂dτ) + sinh(ζτ)) . (12)
We do a local analysis in the neighborhood of X f

cr = ((xe, ve), ŵf
cr) ∈ R2 × R.

We consider the following perturbation of the system (11) around X f
cr in the

coordinate system of the eigenvectors of B(ŵf
cr)

(
ξj+1

ηj+1

)
=

( −1 + af∆ŵ 0
0 C22

)(
ξj

ηj

)
+

( ∑
q+r=2,3 cqrξ

q
j ηr

j∑
q+r=2,3 dqrξ

q
j ηr

j

)
, (13)

where af is the derivative of λ1(ŵ) at ŵf
cr

af =
∂λ1

∂ŵ

∣∣∣∣
ŵf

cr

= − 2
ω̂d

sin(ω̂dτ)
cos(ω̂dτ) + cosh(ζτ) + 2 sinh(ζτ)

< 0
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and the nonlinear coe�cients cqr, dqr are computed from bqr with the help of
the transformation matrix T .

From the center manifold theorem we know that there exists an invariant
manifold containing X f

cr that is tangent to the eigenvector corresponding to the
critical eigenvalue −1. In the present case, the center manifold is attracting
since |λ2| < 1 in (12) and its graph can be written in the power series [20]

ξ 7→ col(ξ, h(ξ)), h(ξ) = h2ξ
2 + . . . , h2 =

d20

1− λ2
.

The projection of (13) into the center manifold gives the scalar nonlinear map

ξj+1 = (−1 + af∆ŵ)ξj + c20ξ
2
j + (c30 +

c11d20

1− λ2
)ξ3

j + · · · . (14)

We seek period-2 orbits that arise in the neighborhood of the �xed point, there-
fore consider the second iterate of (14) having the form

ξj+2 = (1− 2af∆ŵ)ξj − 2δξ3
j + · · · , (15)

where
δ = c2

20 + c30 +
c11d20

1− λ2
.

The period-2 points on the center manifold can be found as the �xed point of
(15), namely

ξ1,2 = ±
√
−af∆ŵ

δ
.

Thus, the sense of the �ip bifurcation is determined by the sign of δ. A tedious
algebraic calculation yields

δ = − 5
12h2

0

cosh(ζτ) + cos(ω̂dτ)
cosh(ζτ) + 2 sinh(ζτ) + cos(ω̂dτ)

< 0,

which shows that the arising bifurcation is always subcritical. Unstable period-2
motions exist around the stable �xed point near the stability boundary.

The simulation in Fig. 4 shows the saddle type period-2 motion represented
by (ξ1, h(ξ1)) and (ξ2, h(ξ2)). The basin of attraction of the stable �xed point
(xe, ve) is approximated by the two straight lines parallel to s2. Starting an
iteration at (x0, v0) from between these parallel lines it converges to the �xed
point. It can be seen that the rate of the convergence in the coordinate direction
η is very fast, while in the orientation reversing direction ξ is very slow since
the corresponding multiplier is slightly greater than −1.

5.2 Neimark-Sacker bifurcation
Along the stability boundaries (10), a Neimark-Sacker (also called secondary
Hopf) bifurcation occurs, which can be related to the Hopf bifurcation of turning
processes. At this type of bifurcation quasiperiodic orbits arise, which are living
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Figure 4: Simulation and analytical results for eq. (6) (ŵ = 0.827, zΩ̂ = 0.78)

on an invariant closed curve about the �xed point in the case of a discrete system,
or on an invariant 2 dimensional torus in the case of a vector �eld. The sense of
the bifurcation, i.e. whether stable or unstable motion arise, can be calculated
using the normal form reduction [8]. For the sake of simplicity we use complex
transformation here. With the help of the complex eigenvectors s1,2 belonging
to the critical eigenvalues of B(ŵns

cr )

λ1,2 = e±iφ, φ = cos−1 trB
2

,

we construct the complex transformation matrix T = (s1, s2) in the form

T =

(
1 1

−ζ − ω̂d cot(ω̂dτ) + ω̂deζτ+iφ

sin(ω̂dτ) −ζ − ω̂d cot(ω̂dτ) + ω̂deζτ−iφ

sin(ω̂dτ)

)
.

Similar to the �ip case, the following approximation of the system (11) can be
derived at Xns

cr = ((xe, ve), ŵns
cr ) ∈ R2×R in the coordinate system of the above

critical eigenvectors of B(ŵns
cr )

(
zj+1

zj+1

)
= (1 + ans∆ŵ)

(
eiφ 0
0 e−iφ

)(
zj

zj

)
+

( ∑
q+r=2,3 cqrz

q
j zr

j∑
q+r=2,3 dqrz

q
j zr

j

)
,

(16)
where

ans =
∂|λ1,2|

∂ŵ

∣∣∣∣
ŵns

cr

=
∂

∂ŵ

√
detB(ŵns

cr ) = − 1
2ω̂d

e−ζτ sin(ω̂dτ) > 0.

We can transform out all 2nd degree terms from (16), but for the 3rd degree
terms we have the resonance related to λ1 = λ2

1λ2 and λ2 = λ1λ
2
2. Thus the

normal form yields
(

zj+1

z̄j+1

)
=

(
eiφ 0
0 e−iφ

)(
zj

z̄j

)
+

(
e21z

2
j z̄j

f12zj z̄
2
j

)
, (17)
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where

e21 = f12 = 2
c20c11

1− eiφ
+

c11c11

1− e−iφ
+

c11c20

e2iφ − eiφ
+ 2

c02c02

e2iφ − e−iφ
+ c21.

By multiplying the two coordinates of (17) and using |z|2 = zz̄ we transform
(17) into

|z|2 7→ (1 + ans∆ŵ)2|z|2 + 2(1 + ans∆ŵ)δ|z|4 + e21f12|z|6,

where
δ =

1
2
(e21e

−iφ + f12e
iφ) = Re(e21e

−iφ).

Neglecting the 6th degree term the solution for the radius |z| of the invariant
circle assumes the form

|z| =
√
−2ans∆ŵ + (ans)2∆ŵ2

2(1 + ans∆ŵ)δ
≈

√
−ans∆ŵ

δ
.

This circle in the discrete space of (xj , vj) corresponds to a quasiperiodic oscil-
lation of our original mechanical structure during the milling process.

After a long algebraic calculation we obtain

δ =
e−5ζτ

(
4e4ζτ − 3e2ζτ − 1

)
(cosh(ζτ)− cos(ω̂dτ))

32h2
0

> 0.

Since δ is always positive, we can conclude that the Neimark-Sacker bifurcation
is subcritical, too. The consequence for the machining process is similar to the
�ip case: the basin of attraction of the stationary cutting is inside of an invariant
ellipse in the phase space. Thus, if we perturb the system such that we leave the
basin of attraction, the system starts large amplitude (initially quasiperiodic)
vibrations. This is called chatter.

The dotted simulations in Fig. 5 diverge from the invariant ellipse (continu-
ous line) and its approximated counterpart (dashed line), which represents the
unstable quasiperiodic oscillation. We used the inverse map in the simulation
to visualize this invariant unstable ellipse.

6 Period two motion with `�y-overs'
In the previous sections we have shown that there is only one �xed point (sta-
tionary cutting) of the system and if it undergoes a period doubling bifurcation,
the resulting orbits may reach the boundary, where the actual chip thickness h
becomes negative, the tool misses the workpiece and the cutting force vanishes
(see Fig. 2). Hence, we suspect that the corresponding orbits continue beyond
this boundary. In order to �nd these orbits we must modify the governing equa-
tions in a way that the tool �ies over the workpiece in every second period. The
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Figure 5: Simulation showing the computed (dashed line) and true repelling
invariant manifold. (ŵ = 0.503, zΩ̂ = 0.55)

equation for this motion will contain 2 times longer free-�ights and impacts with
the workpiece with double feed (2h0). Thus, the governing equations become

(
xj+2

vj+2

)
= A+

(
xj

vj

)
+

(
0

Kwτ2
mω2

n

(
2h0 + (1−A+

11)xj −A+
12vj

)3/4

)
, (18)

where A+ = A2 and A+
ij are the elements of A+. Note, that A+ can be obtained

from A in (4) if 2τ is substituted instead of τ . This equation has a unique �xed
point, again, but this time it physically corresponds to a period-2 motion

(
x+

e

v+
e

)
=

Kwτ2(2h0)3/4

mω2
n(1 + det A+ − trA+)

(
A+

12

1−A+
11

)
.

As explained above, this period-2 motion exists if the tool does not hit the
workpiece after the �rst period of free-�ight. This condition can be checked by
the following equation based on the argument of the nonlinear term in (6)

0 > h(t−j+1) = h0 + (1−A11)x+
e −A12v

+
e =

h0 +
Kwτ2

mω2
n

(2h0)3/4

(
(1−A11)A+

12 − (1−A+
11)A12

1 + det A+ − trA+

)
. (19)

After substituting the matrix elements and the dimensionless parameters we are
left with

ŵ >
3ω̂d

27/4

cos(ω̂dτ) + cosh(ζτ)
sin(ω̂dτ)

. (20)

Because of the similarity of the governing equations (6) and (18) the stability
boundaries of (x+

e , v+
e ) can be obtained from the same calculation just by chang-

ing the matrix A to A+ and h0 to 2h0. With the dimensionless parameters this
calculation gives the stability boundaries of the period-2 motion in the form

ŵf+
cr = 21/4 detA+ + trA+ + 1

2A+
12

= 21/4ωd
cos(2ωdτ1) + cosh(2ζτ1)

sin(2ωdτ1)
(21)
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Figure 6: Global period-2 motions and their stability

and
ŵns+

cr = 21/4 det A+ − 1
A+

12

= −27/4ωd
sinh(2ζτ1)
sin(2ωdτ1)

. (22)

A characteristic region of the corresponding stability chart is shown in Fig. 6.
The stationary cutting (xe, ve) exists for all the parameters, it is stable below
the continuous line representing a �ip lobe of the stability chart in Fig. 3, and it
is unstable above it. The period-2 motion (x+

e , v+
e ) exists above the dashed line

according to formula (20). In the light gray region only the stationary cutting
exists and it is stable. The dash-dotted line �ns� refers to a stability boundary
(22) of the period-2 motion, where Neimark-Sacker bifurcation occurs, while the
dash-dotted line �f� refers to the other stability limit (21) where the period-2
motion undergoes another �ip bifurcation. Thus, the dark gray region represents
parameters, where stable period-2 motion exists, while in the white regions the
outer period-2 motion is unstable.

To represent the above explained properties of the stability chart in Fig. 6,
bifurcation diagrams are drawn for the parameter cases a), b), c) in Fig. 7. The
unstable period doubling branches are computed using AUTO [5] that followed
our analytic predictions perfectly. These computations also show that the inner
and outer period-2 orbits are connected through a degenerate fold bifurcation,
which means that orbits does not change smoothly by varying parameters and
their characteristic multipliers are not even continous.

7 Chaotic oscillation
As we have seen in the bifurcation diagrams in Fig. 7, there are parameter
regions where chaotic motions arise in the system. In this section, we investigate
the simplest chaotic case, where both the �xed point and the outer period-2 orbit
are unstable for case c) and ŵ > ŵf

cr. Both of the corresponding periodic points
((xe, ve), (x+

e , v+
e )) are saddle-like, each has an unstable orientation reversing

subspace as well as a stable orientation preserving subspace. Unfortunately, the
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Figure 7: Bifurcation diagrams for cases a), b), c) in Fig. 6. The outer period-
2 solution is stable and undergoes a Neimark-Sacker bifurcation (a) or a �ip
bifurcation (b). The period-2 solution is unstable, which induces chaotic motions
around it (c).
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Figure 8: The chaotic map (zΩ̂ = 0.459, ŵ = 1.64); a) simulation with invariant
manifolds and how cutting force varies perpendicular to the switching line; b)
horizontal and vertical slabs (see in the text).

local invariant manifolds are not to be extended to global manifolds because of
the piecewise structure of the system, consequently, we have just global invariant
sets, which are the union of images (preimages) of the local unstable (stable)
manifold of the periodic points.

In Fig. 8.a the phase plane is presented for ŵ = 1.64. P1 = (xe, ve) is the
�xed point representing stationary cutting, P2 = (x+

e , v+
e ) refers to the period-2

motion. The invariant manifolds W s,u
P1,2

of these saddle points were computed
using the software dstool module of J. England et al. [6]. The two parts of
the dynamics are separated by the switching line h(t−j+1) = 0 in (19), where
the cutting force Fc is nonsmooth. The cutting force characteristic of Fig. 2 is
projected onto this plane to visualize the locations of the switching line and the
�xed point P1, where the chip thickness is 0 and h0, respectively. The �gure
also shows simulation of a chaotic iteration. Below the switching line, we iterate
equation (6), above that, (18). Since (18) describes every second τ -period, we
use matrix A to produce the system's state in the middle of the period-2 free-
�ight. These additional iterated points show up among other points in the lower
part of the �gure, below W s

P1
.

Demonstrating the proof of chaos, we use a geometric method in [25, 17]. In
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fact, our system is conjugate to a modi�ed version of Smale's horseshoe map.
The construction of the map can be seen in Fig. 8.b. Let the map f be de�ned
on this phase plane by (18) above the switching line and by every second iterate
of (6) otherwise. Point A is de�ned as the intersection of Wu

P2
and the switching

line, then B := f(A), C := f(B), D := f(C). Note A is part of both dynamics
and as the entire switching line will be mapped by (18) and by that second
iterate of (6) to the same place. Further, let E be the intersection of Wu

P1
and

the switching line. According to numerical results, the stable manifolds W s
P1,2

do not intersect the switching line between A and E. Choose a horizontal slab
H1 along the stable manifold W s

P2
from P2 until Wu

P1
to satisfy the following

conditions. For a suitable integer k > 1, fk−1(H1) must lie above the switching
line such that it contains B and a point between P2 and A on Wu

P2
. Then

V1 := fk(H1) contains C and fully intersects H1. The thickness of V1 can be
adjusted by an appropriate choice of k together with the vertical size of H1. The
other slab H0 is chosen to lie along Wu

P2
from point A to point C and be thick

enough to be fully intersected by V1. Now we can observe that V0 := f(H0)
fully intersects H1, if D is underneath W s

P2
. In this case we have topological

conjugacy with the schematic inset of Fig. 8.b.
The calculated manifolds and the iterated sets do indeed satisfy the above

condition, so we can describe the dynamics by means of the horseshoe structure
of the inset, that is, by means of the left shift on the space of in�nite sequences
of two symbols equipped with the transition matrix

(
0 1
1 1

)
.

This matrix is irreducible [25, 13], so the motion of the system is indeed chaotic.

8 Conclusion
The non-linear analysis of highly interrupted low immersion milling shows that
both the period doubling and the Neimark-Sacker bifurcations are subcritical,
similar to the Hopf bifurcation results of Stépán and Kalmár Nagy [19] obtained
for regenerative machine tool vibrations in case of turning. The approximate
amplitudes of the unstable period-2 and quasiperiodic vibrations were also deter-
mined in closed form. These give useful estimations for the domain of attraction
of stable stationary cutting in case of high-speed milling.

Also, the existence and the stability of another, global (outer) period-2 oscil-
lation was shown and determined. In those parameter domains of cutting speed
and chip width, where both the local and the global period two oscillations as
well as the stationary cutting are unstable, the existence of chaotic oscillations
was shown. The analytical predictions were supported and also con�rmed by
numerical simulations.

Although our model is very simple the results are qualitatively the same
in the case of non-in�nitesimal cutting time as found by simulations [2] and
experiments [14]. The recent work of Stépán et al. [21] shows also that period
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doubling bifurcations in the delay equation model are subcritical and outer
period-2 orbits are connected to the unstable orbits through a fold bifurcation.
A detailed analysis of period-2 orbits can be found in a forthcoming paper by
the authors [22]. The demonstration of chaotic motion can be more di�cult in
the delay equation model because of the in�nite dimensional phase space. In
this case, instead of our purely geometric method of constructing the chaotic
attractor one could compute 1 dimensional unstable manifolds of periodic orbits
to obtain some information of the structure of chaotic attractor (for a guiding
example see Green et al. [7]). The present and forthcoming analyses build
the bridge to the experimental observations referring to chaos in manufacturing
processes collected by Moon in [16].
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invariant manifold. (ŵ = 0.503, zΩ̂ = 0.55) . . . . . . . . . . . . 12
6 Global period-2 motions and their stability . . . . . . . . . . . . 13
7 Bifurcation diagrams for cases a), b), c) in Fig. 6. The outer

period-2 solution is stable and undergoes a Neimark-Sacker bi-
furcation (a) or a �ip bifurcation (b). The period-2 solution is
unstable, which induces chaotic motions around it (c). . . . . . . 14

8 The chaotic map (zΩ̂ = 0.459, ŵ = 1.64); a) simulation with
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