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Abstract. We describe an algorithm for computing the value function for “all source, single desti-
nation” discrete-time nonlinear optimal control problems together with approximations of associated
globally optimal control strategies. The method is based on a set oriented approach for the dis-
cretization of the problem in combination with graph-theoretic techniques. The central idea is that a
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1. Introduction

The idea to solve optimal control problems by searching for shortest paths is immediately

clear for specific classes of control problems. For example, consider the problem of moving a

particle from a given position to a desired destination, subject to a cost function that is directly

related to the arclength of the path followed, or let the cost function be simply time itself so that

the shortest path is defined as the fastest path. In this paper we investigate how to rephrase

more general optimal control problems in terms of finding a shortest path. The main idea

is to consider a discrete-time version of the model which is translated into a graph-theoretic

description. The problem then becomes that of finding a path of minimal length from the initial

state to the final state in a directed weighted graph. We show how to construct a finite graph

so that standard shortest path algorithms from graph theory (like Dijkstra’s algorithm [5]) can

immediately be applied in order to solve the problem. The advantage of these techniques is

that the approximate optimal cost and approximate optimal trajectories for all possible initial

points are calculated simultaneously.

We emphasize that it is possible to use this graph-theoretic approach when the state space

is Rd, that is, it contains an uncountable number of points. Via a multilevel discretization of

phase space one can efficiently derive finite directed weighted graphs that serve as coarse models

for the evolution of the underlying control system. On each of these graphs an application of a

shortest path algorithm yields an approximation to the (optimal) value function of the problem

and to corresponding nearly optimal trajectories.

There have been few attempts to exploit the efficiency of graph-theoretic tools in the context

of optimal control. Especially in robotic navigation, the idea of finding shortest paths is used

for spaces with stationary or moving obstacles. Here, the emphasis is on finding just one rather

than the optimal path. Brooks and Lozano-Pérez [1] present a subdivision algorithm for finding

such collision-free paths. The essence of their work lies in constructing an appropriate partition

of the configuration space and finding a string of connected cells. This construction can be

extremely complicated due to the geometry of the obstacles and of the moving object. The
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aim is to find one path, and the constructed graph, with cells as vertices and edges indicating

neighboring cells, is not complete.

More recently, Tsitsiklis [18] described a graph-theoretic approach to a problem of finding an

optimal trajectory; see also [13]. The moving object is viewed as a particle and any obstacles

are stationary. The aim is to minimize the trajectory until it reaches the boundary of a pre-

specified subset of Rd, at which a terminal cost is incurred. Hence, if this boundary is one

particular point, namely the desired destination, the problem is similar to what is considered

in this paper. Obstacles are avoided by imposing an infinite terminal cost at the boundaries

surrounding them, where it is assumed that the obstacles admit a finite description. The

construction of the associated finite graph is based on a rather ad-hoc discretization and the

method is, unfortunately, restricted to problems where the cost function does not explicitly

depend on the control.

Standard approaches to the solution of problems of the type considered in this paper include

(adaptive) finite difference schemes for the solution of the (discrete) Hamilton-Jacobi-Bellmann

equation, see e.g. the work of Falcone [6] and Grüne [8]. More recently, Sethian and Vladimirsky

introduced so called ordered upwind methods that yield efficient non-iterative schemes.

In this paper, we consider the problem of finding an optimal path from any initial condition

to a prescribed final destination subject to an arbitrary continuous nonnegative cost function –

in particular, the cost function may also depend on the control. We describe how to construct

a finite directed weighted graph based on a very natural discretization of the problem, and use

standard shortest path algorithms in order to find the solution. The computed shortest path

yields a pseudo-trajectory of the underlying discrete-time control system, which should then be

employed as an initial guess for standard (local) solvers in order to find a true trajectory of the

underlying system. We do not yet consider the presence of obstacles, but are confident that the

algorithm can be modified by removing vertices associated with the obstacles from the graph.

A more detailed outline of the paper is as follows: we start with a description of the discrete-

time optimal control problem under consideration in Section 2. Section 3 contains the main
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algorithm together with a statement about its convergence. In Section 4 we outline the imple-

mentational aspects of our approach. Finally in Section 5 we illustrate the performance of the

method by two numerical examples: a single and a double inverted pendulum.

2. Problem formulation

Consider the discrete-time control system

xk+1 = f(xk, uk), k = 0, 1, . . . , (1)

with f : X × U → R
d continuous. Here, X ⊂ Rd is a particular (compact) region of interest,

and the set U ⊂ R
m of admissible controls is compact. We assume that the origin of the

uncontrolled system is a fixed point, that is, f(0, 0) = 0. Our goal is, starting at some point

x ∈ X, to impose controls u = (u0, u1, . . .) ∈ UN such that the trajectory (xk(x,u))k∈N, defined

as

x0(x,u) = x and xk+1(x,u) = f(xk(x,u), uk), k = 0, 1, . . .

remains in X for all k ≥ 0 and satisfies xk(x,u) → 0 as k → ∞ — if possible. Evidently,

there may be x ∈ X for which there is no control u ∈ U such that f(x, u) ∈ X or for which

no “stabilizing” control sequence u exists. At each step of this iteration process we incur an

instantaneous (nonnegative) cost q(x, u), where

q : X × U → [0,∞)

is continuous and satisfies q(0, 0) = 0. In addition to stabilizing our system we aim to minimize

the total cost

J(x,u) =
∞∑
k=0

q(xk(x,u), uk) ∈ [0,∞]

that we accumulate along a trajectory. To this end, for every x, we let

U(x) = {u ∈ UN : xk(x,u)→ 0 as k →∞}

be the set of stabilizing control sequences for x. The set S of all x ∈ X for which U(x) is

nonempty is called the stabilizable subset.
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Our goal is to compute an approximation of the (optimal) value function

V (x) = inf
u∈U(x)

J(x,u).

We let inf ∅ = ∞, i.e. we set V (x) = ∞ for x with U(x) = ∅, that is, for x 6∈ S. It turns

out that our computed approximation is always finite for x ∈ S. As part of the computation,

we obtain an approximation for the stabilizable subset S and also an approximate optimizing

sequence u = u(x) for every x ∈ S.

The linear-quadratic case

Although the method proposed in this paper works for general (nonlinear) control systems

and cost functions (we only assume both of them to be continuous) we briefly recall the classic

setting of linear-quadratic problems at this point:

In general, it is not possible to find the value function V analytically. Only for the class

of so-called linear-quadratic (LQ) optimal control problems V can be found explicitly. LQ

problems are of the form

xk+1 = Axk +Buk, k = 0, 1, . . . ,

with associated cost function

q(x, u) = xTQx+ uTRu,

where A ∈ Rd×d, B ∈ Rd×r, Q ∈ Rd×d, and R ∈ Rr×r. The pair (A,B) must be stabilizable,

that is, a matrix F ∈ Rr×d exists such that A+BF has all its eigenvalues inside the unit circle.

Furthermore, Q must be positive definite and R positive semi-definite.

For this class of problems the value function is V (x) = x∗Px, where P ∈ Rd×d is the unique

positive definite matrix that satisfies the discrete-time algebraic Riccati equation

P + ATPB(BTPB +R)−1BTPA− ATPA−Q = 0.

The optimal controls are then obtained by the feedback law

u = −(BTPB +R)−1BTPAx.

We refer to [16] for more details.
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3. Computing the value function

Bellman’s principle of optimality (see e.g. [16]) states that for all x such that V (x) is finite

we have the following recursive relation

V (x) = inf
u∈U
{q(x, u) + V (f(x, u))} . (2)

Hence, if we would know the value of V in a neighbourhood of the origin, then we could extend

this known domain to a larger neighbourhood using the above with V as the “cost-to-go.” This

construction is reminiscent of algorithms for computing shortest paths in graph theory.

3.1. Graph-theoretic approach

We can represent the evolution of Equation (1) as a directed graph

G = (X,E), E = {(x, f(x, u)) | x ∈ X, f(x, u) ∈ X, u ∈ U},

with infinitely many nodes x ∈ X and infinitely many edges e ∈ E. The cost q of the evolution

is represented as a weight on the edges. Each edge e = (x, f(x, u)) carries the weight w(e) =

q(x, u) ≥ 0. Then, roughly speaking, for all x the value function V (x) is the infimum over the

length of all paths connecting x to 0 in the graph G.

In order to obtain an algorithm for the computation of V we are going to approximate G

by a finite graph. This is the reason for restricting ourselves to a bounded subset X ⊂ Rd and

why we can only consider controlled trajectories that remain in X. To this end we consider a

partition P of X, that is, a finite collection of compact subsets Pi ⊂ X with ∪iPi = X, and

m(Pi∩Pj) = 0 (where m denotes Lebesgue measure). We can now define a finite approximation

to G, namely the graph

GP = (P , EP), EP = {(Pi, Pj) ∈ P × P | f(Pi, U) ∩ Pj 6= ∅},

where the edge e = (Pi, Pj) carries the weight

w(e) = min
x∈Pi,u∈U

{q(x, u) | f(x, u) ∈ Pj}.
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Note that, due to the compactness of Pi, Pj and U , and the continuity of f and q, we indeed

have a minimum here. Of course determining EP together with the weights w(e), e ∈ EP , is

the crucial computational part of the whole approach. We refer to Section 4 for a description

of how these computations can be carried out in an efficient way. Let us emphasize again that

GP is a graph with finitely many nodes.

We use GP to find an approximation of the value function V . For any x ∈ X there is a

subset P (x) ∈ P containing x. The approximation for V (x) will be the length of the shortest

path from a node P (x) to a node P (0) ∈ P that contains the origin. The length of a path

is determined as follows. Let p = (e1, . . . , em), ek ∈ EP , be a path in GP . The length of p is

defined as

w(p) =
m∑
k=1

w(ek).

We say that a path p = p(x) = (e1, . . . , em), ek ∈ EP in GP connects x to 0, if e1 = (P (x), P1)

and em = (Pm−1, P (0)) for some sets P1, Pm−1 ∈ P . If no such path exists then x is not

stabilizable (in fact, none of the points in P (x) is) and V (x) =∞. For all x ∈ X we approximate

V (x) by

VP(x) = min{w(p(x)) | p(x) connects x to 0}, (3)

where, again, we set min ∅ = ∞. One should realize that an edge e = (Pi, Pj) exists as soon

as the image of the set Pi for some control u ∈ U intersects the set Pj. Note that for a given

path p(x) = (e1, . . . , em), ei = (Pi−1, Pi) there need not exist a trajectory (xk(x,u))k∈N such

that xk(x,u) ∈ Pk for k = 0, . . . ,m. This means that the value of VP(x) may be less than

that of V (x), or we may find a path p(x) connecting x to 0 for some x ∈ X that is in fact not

stabilizable. More formally we have the following property for VP :

Proposition 3.1. For every partition P, VP is a lower bound on V .

Proof. The statement obviously holds for x ∈ X with V (x) =∞. Hence, consider x ∈ X with

V (x) <∞. It suffices to show that, for arbitrary ε > 0, there is a path p(x) in GP connecting

x to 0 such that w(p(x)) ≤ J(x,u), where u = (u0, u1, . . .) ∈ U(x) is a sequence of controls

such that J(x,u) < V (x) + ε.
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Let p(x) be a path in GP that is defined by following the trajectory (xk(x,u))k∈N, namely

p(x) = (e1, . . . , em), ek = (P (xk−1), P (xk)), k = 1, . . . ,m,

where m is such that xm ∈ P (0). The length of this path is

w(p(x)) =
m∑
k=1

w(ek) =
m∑
k=1

min
x∈P (xk−1),u∈U

{q(x, u) | f(x, u) ∈ P (xk)}

≤
m∑
k=1

q(xk−1, uk−1) ≤
∞∑
k=1

q(xk−1, uk−1) = J(x,u).

�

Note that there are three factors that make w(p(x)) smaller than V (x): (i) The finiteness of

the number of edges m, (ii) the computation of the weights w(ek) by minimizing q, (iii) the fact

that the shortest path p(x) may actually pass through a different set of partition elements than

a (near) optimal trajectory. All these are a direct result of the definition of GP and depend

on the choice of the partition P . However, in order to deal with (i), one could redefine VP by

adding a final cost for xm ∈ P(0). For example, this final cost function could be defined as the

optimal cost to steer xm to the origin using the linearized equations

xk+1 = Axk +Buk, A = Dxf(0, 0), B = Duf(0, 0)

and quadratic cost

x∗Qx+ u∗Ru, Q = D2
xq(0, 0), R = D2

uq(0, 0).

As explained in Section 2, the value function of this linear-quadratic problem is known explicitly.

Moreover, in a neighborhood of the origin, this indeed leads to a good approximation of V .

Our results hold as long as the final cost on P(0) is a lower bound for V .

3.2. Convergence of VP to V

We are now going to establish a statement about the convergence of VP to V as the diameter

of P , defined as diam(P) := maxi diam(Pi), goes to zero. To this end let (P(`))`∈N be a sequence

of nested partitions of X with diam(P(`)) → 0 as ` → ∞. By “nested” we mean that for all



TITLE WILL BE SET BY THE PUBLISHER 9

` and every P
(`+1)
i ∈ P(`+1) there is a P

(`)
i ∈ P(`) with P

(`+1)
i ⊂ P

(`)
i . We have the following

observation:

Proposition 3.2. For x ∈ X and ` ∈ N let p(`) = p(`)(x) be a path in GP(`) with minimal

length achieving VP(`)(x) (see (3)). Then the sequence (w(p(`)))`∈N is monotonically increasing,

that is, for all `,

w(p(`+1)) ≥ w(p(`)).

Proof. Suppose that for some ` there would be minimizing paths p(`)(x) in GP(`) and p(`+1)(x)

in GP(`+1) such that w(p(`+1)(x)) < w(p(`)(x)). Using p(`+1)(x) we are going to construct a path

p̃(`)(x) in GP(`) with w(p̃(`)(x)) < w(p(`)(x)), contradicting the minimality of p(`)(x).

Let p(`+1)(x) = (e
(`+1)
1 , . . . , e

(`+1)
m(`+1)), with e

(`+1)
k = (P

(`+1)
k−1 , P

(`+1)
k ) ∈ E(`+1)

P . Hence, f(P
(`+1)
k−1 , U)∩

P
(`+1)
k 6= ∅, for all k = 1, . . . ,m(`+1). Since the partitions P(`) are nested, there are sets P̃

(`)
k ∈

P(`) such that P
(`+1)
k ⊂ P̃

(`)
k for k = 0, . . . ,m(` + 1). This means that f(P̃

(`)
k−1, U) ∩ P̃ (`)

k 6= ∅,

and thus ẽ
(`)
k = (P̃

(`)
k−1, P̃

(`)
k ) is an edge in E

(`)
P . Therefore, p̃(`)(x) = (ẽ

(`)
1 , . . . , ẽ

(`)
m(`+1)) is a path.

Furthermore, for all k = 1, . . . ,m(`+ 1),

w(ẽ
(`)
k ) = min

x∈P̃ (`)
k−1,u∈U

{q(x, u) | f(x, u) ∈ P̃ (`)
k }

≤ min
x∈P (`+1)

k−1 ,u∈U
{q(x, u) | f(x, u) ∈ P (`+1)

k } = w(e
(`+1)
k ).

This yields w(p̃(`)(x)) ≤ w(p(`+1)(x)) < w(p(`)(x)). �

So far we have shown that for every x ∈ X we have a monotonically increasing sequence

(w(p(`)(x)))`∈N, which is bounded by V (x) due to Proposition 3.1. The following theorem

states that the limit is indeed V (x).

Theorem 3.3. The approximations VP(`) converge pointwise to the value function V as `→∞,

that is, for every x ∈ X

VP(`)(x)→ V (x) as `→∞.

The essential problem in proving this theorem lies in the fact that a minimizing path p(`)(x) =

(e
(`)
0 , . . . , e

(`)
m(`)) does not necessarily imply the existence of a control sequence u and a trajectory
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(xk(x,u))k∈N such that xk(x,u) ∈ P (`)
k for all k = 0, . . . ,m(`). Therefore, let us first show that

such a control sequence indeed exists in the limit as `→∞.

In order to do so, we wish to work with paths p(`)(x) = (e
(`)
0 , e

(`)
1 , . . .) consisting of infinitely

many edges. Note that f(0, 0) = 0, so for every ` ∈ N there is an edge o(`) = (P (`)(0), P (`)(0)).

Furthermore, since q(0, 0) = 0, its weight is w(o(`)) = 0. So formally, we can extend the path

p(`)(x) by appending the arc o(`) infinitely many times, i.e.

p(`)(x) = (e
(`)
k )k∈N := (e

(`)
1 , . . . , e

(`)
m(`), o

(`), o(`), . . .),

while the length of p(`)(x) remains the same.

Let us now fix x ∈ X and consider the infinite sequence of minimizing paths p(`)(x) =

(e
(`)
1 , e

(`)
2 , . . .) inGP(`) with ` ∈ N. Here, e

(`)
k = o(`) for k > m(`) and e

(`)
k = (P

(`)
k−1, P

(`)
k ) otherwise.

We shall construct an optimal control strategy u = (u0, u1, . . .) ∈ U(x) and the associated

optimal trajectory (xk(x,u))k∈N such that p(`)(x) indeed corresponds to this trajectory in the

limit as `→∞. Note that, by definition, x0 = x ∈ P (`)
0 , for all ` ∈ N.

Let us start by constructing the next point x1 of the desired trajectory (xk(x,u))k∈N together

with a corresponding control u0. For every ` choose a point x
(`)
1 ∈ P

(`)
1 . Since X is compact,

the sequence (x
(`)
1 )`∈N has a convergent subsequence (x

(`)
1 )`∈L̂0

, for some L̂0 ⊂ N. We denote its

limit by x1.

Proposition 3.4. There is a control u0 ∈ Rm such that x1 = f(x0, u0).

Proof. By construction of the graphs GP(`) , for every ` ∈ L̂0, there is a point x
(`)
0 ∈ P

(`)
0 and a

control u
(`)
0 ∈ Rm such that x

(`)
1 = f(x

(`)
0 , u

(`)
0 ). Since diam(P(`))→ 0 as `→∞, we have

lim
`∈L̂0

x
(`)
0 = x0 and lim

`∈L̂0

x
(`)
1 = x1.

Since U is compact, we can choose a convergent subsequence (u
(`)
0 )`∈L0 of (u

(`)
0 )`∈L̂0

, with L0 ⊂

L̂0. We denote its limit by u0. By continuity of f we must have x1 = f(x0, u0). �

We can continue our construction of the trajectory (xk(x,u))k∈N by repeating the above with

x1 instead of x0 = x, that is, for ` ∈ L0 we choose points x
(`)
2 ∈ P

(`)
2 , a convergent subsequence
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(x
(`)
2 )`∈L̂1

, L̂1 ⊂ L0, with limit x2 and a corresponding control u1 ∈ U as the limit of a convergent

subsequence (u
(`)
1 )`∈L1 , L1 ⊂ L̂1, such that x2 = f(x1, u1), etc.

The construction of the desired trajectory (xk(x,u))k∈N can now be done using a standard

“diagonal argument”: Note that we implicitly constructed a sequence (Lk)k≥0 of subsets of N,

such that Lk+1 ⊂ Lk for all k ≥ 0. Choose some arbitrary element `0 ∈ L0 and inductively let

`k ∈ Lk, k = 1, 2, . . . be the smallest number such that `k > `k−1. Define L = {`0, `1, . . .}. By

construction, for every k, the subset {`k, `k+1, . . .} of L is contained in Lk. Furthermore, for all

k = 0, 1, . . .

lim
`∈L

x
(`)
k = lim

`∈Lk
x

(`)
k = xk and lim

`∈L
u

(`)
k = lim

`∈Lk
u

(`)
k = uk.

The incremental cost of each iterate in the trajectory (xk(x,u))k∈N, with u = (u0, u1, . . .), is

now directly related to the limits of the weights of the associated edges in GP(`) . Namely, for

k = 0, 1, . . .,

q(xk, uk) = lim
`∈L

q(x
(`)
k , u

(`)
k ) = lim

`∈L
w(e

(`)
k+1).

We are now ready to proof Theorem 3.3.

Proof of Theorem 3.3. Suppose that for some x ∈ X the statement does not hold, that is,

lim
`→∞

VP(`)(x) = V̄ (x) < V (x).

We are going to show the existence of a controlled trajectory with cost J(x,u) ≤ V̄ (x). This

violates the definition of V . Following the construction above we obtain a controlled trajectory

(xk(x,u))k∈N with total cost

J(x,u) =
∞∑
k=0

q(xk, uk) = lim
K→∞

K∑
k=0

lim
`∈L

q(x
(`)
k , u

(`)
k )

= lim
K→∞

K∑
k=0

lim
`∈L

w(e
(`)
k+1) = lim

K→∞
lim
`∈L

K∑
k=0

w(e
(`)
k+1).



12 TITLE WILL BE SET BY THE PUBLISHER

Since w(e
(`)
k+1) = 0 for all k > m(`), we can stop the summation at m(`), possibly increasing

the sum when m(`) > K. Hence, we obtain

J(x,u) ≤ lim
`∈L

m(`)∑
k=0

w(e
(`)
k+1) = lim

`∈L
VP(`)(x) = V̄ (x).

This yields the desired contradiction and completes the proof of Theorem 3.3. �

4. Implementation

The central computational step is the construction of the finite graph

GP = (P , EP), EP = {(Pi, Pj) ∈ P × P | f(Pi, U) ∩ Pj 6= ∅}, (4)

in particular determining the edges e = (Pi, Pj) ∈ EP with their associated weights

w(e) = min
x∈Pi,u∈U

{q(x, u) | f(x, u) ∈ Pj}. (5)

Once this weighted graph has been computed, standard algorithms from graph theory (for

example, “all source, single destination” shortest path algorithms like Dijkstra’s algorithm [2,5])

can be applied in order to compute the approximate value function VP in (3).

Essentially, the construction of GP breaks down into the following three steps

(1) Construction of a suitable partition P of the region of interest X ∈ Rd;

(2) Construction of the set EP of edges of GP ;

(3) Computation of the weights w(e) for the edges e ∈ EP .

One can think of the first two steps as the problem of constructing the graph GP from a given

(nonlinear) control problem. The last step, that is, the weights involve the cost function and

make the graph relevant for solving an optimal control problem.

It is the interlocking of these three steps in a multilevel approach, as pioneered in [3], that

makes our method computationally efficient. Namely, the construction of GP does not happen

step by step, determining first P , then EP and only then w(e) for e ∈ EP . Instead, we build

GP using a nested sequence GP(`) of partitions. The central idea is a hierarchical multilevel

approach to the construction and storage of P . This has the following two advantages:
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• Possibly large regions of X are removed from consideration at early stages in the proce-

dure. Namely, these regions are not contained in S and a finer partition for such regions

is not necessary.

• The complexity of the computation of the set EP of edges of GP reduces from O(N2),

using a naive approach, to at least O(N logN) (where N is the number of elements in

P).

For an in-depth description of this approach see [4, 3, 17]. It is implemented in the software

package GAIO1, which was also used for the computations in Section 5.

Note that it is essential to restrict to a compact subset X ∈ Rd and it is not possible to

include trajectories that are not entirely confined to X. For problems with non-compact phase

spaces, for example, the whole of Rd, we can only find an approximation of the value function

on a compact subset X. However, in this case VP will not be a lower bound everywhere and

regions may be deemed not stabilizable, because they are not stabilizable in X.

4.1. Construction of the partitions

We are going to use d-dimensional boxes as the elements of a partition P . These boxes are

stored in a binary tree which builds up a nested sequence of partitions P(`) up to a required

level. In summary, starting with a coarse partition P(`), a finer partition P(`+1) is constructed

by bisecting the boxes in P(`) with respect to some coordinate direction. At first this doubles

the number of boxes, however, once we computed EP(`+1) we will be removing some of them.

4.2. Construction of the edges

The set of edges EP(`+1) can then be constructed using the information of EP(`) . For every

box P
(`)
i ∈ P(`) there are at first two boxes P

(`+1)
i,− , P

(`+1)
i,+ ∈ P(`+1) with P

(`)
i = P

(`+1)
i,− ∪ P (`+1)

i,+ .

Hence, only if there is an edge e(`) = (P
(`)
i , P

(`)
j ) in EP(`) , one needs to check whether there

should be edges e(`+1) = (P
(`+1)
i,σ , P

(`+1)
j,τ ) in EP(`+1) , σ, τ ∈ {−,+}. This check requires to

determine whether

f(P
(`+1)
i,σ , U) ∩ P (`+1)

j,τ 6= ∅ (6)

1http://math-www.upb.de/~agdellnitz/gaio
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for σ, τ ∈ {−,+}. Typically, this check is performed using a finite number of test points

(x, u) ∈ T
(`+1)
i,σ ⊂ P

(`+1)
i,σ × U . Obviously, by discretizing (6) using arbitrary test points, one

introduces the possibility that not all edges are detected. When certain Lipschitz-constants on

f are known, this discretization can be made rigorous [12]. In some cases it is also possible to

use interval arithmetic in order to check condition (6); see e.g. [7].

In the examples of Section 5 we used test points, but ignored the special relation between

edges of level ` + 1 and edges of level `. Instead, we considered all boxes at level ` + 1 when

determining which element of P(`+1) contains the image of a test point (x, u). This technique

renders the computation of the edges more robust. Furthermore, due to the hierachical storage

of the collections P(`), the complexity of this search is still only O(logN) (where N is the

number of elements in P(`+1)).

4.3. Computation of the weights

Once the graph GP as defined in (4) has been computed, the computation of the weights

(5) reduces to a (nonlinear) optimization problem. This can in principle be solved by standard

methods (see e.g. [9]). In the examples we worked with a rough approximation only, using

w(e) ≈ min
(x,u)∈Ti

{q(x, u) | f(x, u) ∈ Pj}, e = (Pi, Pj) ∈ EP ,

with Ti ⊂ Pi × U the finite set of test points.

Remark 4.1. If we could determine the edges EP and associated weights exactly, Proposition

3.1 would hold. However, with the use of test points, we introduced the possibility of errors that

lead to an approximation VP of V that may no longer be a lower bound. Similarly Proposition

3.2 could fail when T
(`+1)
i,− ∪ T (`+1)

i,+ ⊃ T
(`)
i , which is to be expected, because one would typically

choose a fixed number of test points regardless of the diameter of the box. Nevertheless, in

practice, VP seems to be a good approximation of V .

5. Examples

To demonstrate the effectiveness of our approach, we consider the problems of balancing single

and double inverted pendula. We find that our method is very good to get a rough idea of the
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behaviour of the value function, because the computations are extremely fast. Furthermore,

even with a crude partition and very few test points, the results appear to be quite accurate.

A detailed error analysis of the method will be the topic of future investigations.

5.1. Single inverted pendulum on a cart

As a first example, we consider balancing a planar inverted pendulum on a cart that moves

under an applied horizontal force u, constituting the control, in a direction that lies in the plane

of motion of the pendulum. This problem was also studied in [10,11] and we can compare the

results.

The position of the pendulum is measured relative to the position of the cart as the offset

angle ϕ from the vertical up position. We completely ignore the dynamics of the cart and

focus on the two-dimensional state space (ϕ, ϕ̇) ∈ R2 describing the motion of the pendulum.

Assuming that there is no friction, the equations of motion can be derived from first principles.

Here, we use M = 8 kg for the mass of the cart, m = 2 kg for the mass of the pendulum. The

center of mass lies at distance l = 0.5 m from the pivot. Writing x1 = ϕ and x2 = ϕ̇, the

equations become

ẋ1 = x2 (7)

ẋ2 =
g
l

sin(x1)− 1
2
mr x

2
2 sin(2x1)− mr

ml
cos(x1)u

4
3
−mr cos2(x1)

where mr = m/(m+M) is the mass ratio. We use g = 9.8m/s2 for the gravitational constant.

The stabilization of this inverted pendulum is subject to the incremental cost

q(x, u) =
1

2
(0.1x2

1 + 0.05x2
2 + 0.01u2). (8)

These parameters are as in [10] where the value function was computed using a completely

different method.

For our computations, we need to obtain a discrete-time control system. To this end, we

consider the time-T map

f(x, u) = φT (x;u), (9)
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Figure 1. The approximate value function VP for the single inverted pendulum
on a cart. The size of the boxes in the partition P is 1/64×5/256. The region of
interest is X = [−8, 8]× [−10, 10] and the controls are restricted to U = [−64, 64]
left and U = [−128, 128] right, respectively. The optimal cost for each initial
condition is represented by a color from 0 (blue) to red (7).

where φt is the flow associated with Equation (7), T is some fixed time and u ≡ u(t) is the

constant control action. The instantaneous cost function of the time-T map is

qT (x, u) =

∫ T

0

q(φt(x;u), u) dt, (10)

where, again, u denotes the constant function with value u on [0, T ].) For this example we used

T = 0.1 and each iterate was computed via the Runge-Kutta scheme of 4-th order with step

size 0.02. As in [10], we choose X = [−8, 8] × [−10, 10] as the region of interest . We used a

partition P of this region with boxes of size 1/64× 5/256. The computation of the weights was

based on a total of 4 equally spaced test points per box (i.e. the vertices) in phase space and

20 equally spaced points in control space.

Let us first illustrate the effect of restricting the controls to a bounded set. Figure 1 shows

two approximations of the value function V . In both pictures, each box Pi ∈ P has been given

a color representing the approximate optimal cost of driving an initial condition x ∈ Pi to

the origin. Cost runs from 0 (blue) to 7 (red). The upper bound of 7 is artificial, and white

regions corresponds to points that either have a higher optimal cost, or are not stabilizable and
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Figure 2. Left: approximate value function VP for the single inverted pendulum
on a cart. The size of the boxes in the partition P is 2−5×2−4. Right: approximate
value function as computed in [10]. Again, the optimal cost for each initial
condition is represented by a color from 0 (blue) to red (7).

the approximate value function is infinite. For the left illustration of Figure 1 the controls are

restrictred to U = [−64, 64], and for the right to U = [−128, 128]. The pictures agree quite well

for relatively small (in absolute value) velocities ϕ̇. However, for relatively large values of |ϕ̇|,

especially near |ϕ| = 0 the optimal cost is a lot higher when the controls are restricted more

severely.

The illustrations in Figure 1 also show another interesting feature. Along the boundary of the

colored region, the approximate value function exhibits “oscillations”. This behavior is most

pronounced in the left picture. The effect that we see here is due to the restriction that an

optimal trajectory must lie entirely in X. The bubbles with lower optimal cost are associated

with optimal trajectories that are not affected by this restriction, that is, the true optimal

trajectory is contained in X. If we enlarge X this effect will again be pushed to the boundary

of the region of interest.

In order to illustrate the quality of the approximation, we compared our computations with

those of [10]. To this end we computed an approximation VP of the value function V using

a partition P with boxes of size 2−5 × 2−4 of the region X = [−8, 8] × [−16, 16], while the



18 TITLE WILL BE SET BY THE PUBLISHER

actual region of interest (the plotted region) remained [−8, 8]× [−10, 10]. (It is indeed enough

to only enlarge the region for ϕ̇.) This results in a disappearance of the “oscillations” near

the boundary. This time we used an integration time of T = 0.4, realized by ten Runge-Kutta

steps. The computation of the weights was again based on a total of 4 equally spaced test points

per box in phase space and 20 equally spaced points in control space. The set of admissible

controls was chosen as U = [−120, 120]. This is in accordance with the computations in [10]

where the absolute value of the controls never exceeded 120. The approximation VP is visualized

in Figure 2 (left) using the same color scheme as Figure 1.

The computations in [10] were done using a different method and the value function is

represented as a collection of optimal cost isoclines. The computations were done up to level

V = 1
2
3.32 = 5.445. The visualization of this data is shown in Figure 2(right). Note that the

same color scheme as Figure 2(left) was used, with a maximal cost of 7, so red is missing in this

picture. We remark that a similar picture can be found in [10, Fig. 2], where the coloring is

done proportional to the square root of the cost (in fact, the factor 1
2

in the cost Equation (8) is

missing in this figure). It should be noted that the computations of [10] are extremely accurate,

but their method is very cumbersome and the computation of the optimal cost isoclines up to

V = 5.445 took about one week.

Our computation for VP took only a couple of minutes on a recent workstation. Even when

using a fairly crude partition and only few test points the comparison is already quite good.

However, one can see that the “numerical” VP is not a lower bound of V , as predicted by the

theory. We believe that this is (partly) due to the fact that we compute the weights from the

test points, assigning too high an optimal cost to each edge.

5.2. Parametrically forced inverted double pendulum

Our method has the nice property that it is readily applicable to higher-dimensional spaces.

As an example we consider the problem of balancing a parametrically driven (planar) inverted

double pendulum [14]. The phase space x = (ϕ1, ϕ̇1, ϕ2, ϕ̇2) ∈ R4 is four-dimensional. The
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equations of motion are
2ϕ̈1 + ϕ̈2 cos(ϕ1 − ϕ2) = 2

(
g + u

`

)
sinϕ1 − ϕ̇2

2 sin(ϕ1 − ϕ2),

ϕ̈2 + ϕ̈1 cos(ϕ1 − ϕ2) =

(
g + u

`

)
sinϕ2 + ϕ̇2

1 sin(ϕ1 − ϕ2),

(11)

where ` = 0.5. As the corresponding discrete-time system we consider the time-T map with

T = 0.4. The integration is done using the 4-th order Runge-Kutta scheme with constant step

size 0.04. The cost function is defined as in (10) with

q(x, u) =
1

2
(0.1ϕ2

1 + 0.05 ϕ̇2
1 + 0.1ϕ2

2 + 0.05 ϕ̇2
2 + 0.01u2).

We use X = [−2π, 2π] × [−4π, 4π] × [−2π, 2π] × [−4π, 4π] as the region of interest, and U =

[−4, 4] for the control space. The computations are done using a rather crude partition of X

into boxes of radii (π
8
, π

4
, π

8
, π

4
). We use 81 test points (on a regular grid) in each box in phase

space, and 9 equally spaced points in control space.

Unfortunately, it is not possible to visualize the value function as in the previous example,

because this data set is four-dimensional. However, one can show an approximate optimal

trajectory for just one arbitrarily chosen initial condition. For example, Figure 3 shows such

an approximation for the point x0 = (ϕ1, ϕ̇1, ϕ2, ϕ̇2) = (π, 0, π, 0). In order to obtain the

approximate optimal trajectory we consider the shortest path p = p(x0) connecting a box in

the partition that contains x0 to a box that contains the origin. By definition, each edge

e = (Pi, Pj) in p(x0) is associated with a particular state xe = (ϕ1, ϕ̇1, ϕ2, ϕ̇2) ∈ Pi and control

ue ∈ U such that

w(e) = min
x∈Pi,u∈U

{q(x, u) | f(x, u) ∈ Pj} = q(xe, ue).

The approximate optimal trajectory in Figure 3 is the piecewise continuous concatenation of

trajectories obtained by integrating (11) for time T = 0.4 with initial condition xe and control

u ≡ ue, where xe and ue are associated with edges along the shortest path p(x0). For example,

the first edge of the shortest path starting at a box containing (π, 0, π, 0) is associated with the

point xe = (ϕ1, ϕ̇1, ϕ2, ϕ̇2) ≈ (2.37,−0.78, 3.15,−0.78) and uses the control ue = −1.
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Figure 3. Approximate optimal pseudo-trajectory starting at xe =
(ϕ1, ϕ̇1, ϕ2, ϕ̇2) ≈ (2.37,−0.78, 3.15,−0.78), close to the vertical down position,
that drives the double inverted pendulum close to the upright position.

Figure 3 shows all variables ϕ1, ϕ̇1, ϕ2, ϕ̇2 plotted versus time. The approximate piecewise

constant optimal control action u is shown as well. For each variable we also plotted the

integration steps used in the numerical integration of the time-T -map of (11).

Due to the nature of our computations, the approximate optimal trajectory is only a piecewise

continuous curve with discontinuities at each time-T iterate. Note that such discontinuities are

to be expected, because the initial condition for each iterate is determined by the weight of the

edge in the optimal path, rather than by the endpoint of the previous iteration. As mentioned,

this approximate optimal “pseudo-trajectory” should be viewed as an intial guess for standard

(local) solvers for optimal control problems (see e.g. [19]).

As a further analysis of the four-dimensional data set we extract a two-dimensional domain

by considering initial conditions on the “diagonal” {ϕ1 = ϕ2, ϕ̇1 = ϕ̇2}. This subset is the set of

initial conditions where the two pendula are aligned and moving with the same angular velocity.
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Figure 4. Left: the approximate value function VP for the parametrically forced
inverted double pendulum on the subset {ϕ = ϕ1 = ϕ2, ϕ̇ = ϕ̇1 = ϕ̇2}. Right:
the approximate value function VP for the parametrically forced inverted single
pendulum. The radii of the boxes in the partition is (π

8
, π

4
, π

8
, π

4
). The controls

are restricted to U = [−4, 4]. The optimal cost for each initial condition is
represented by a color. Blue represents low (0) and red high (11) cost.

Hence, at least initially, one would expect the same behavior as for a single parametrically

forced inverted pendulum. The approximate value function of this diagonal subset for the

double pendulum is shown in Figure 4(left).

We also computed the approximate value function of the parametrically forced inverted single

pendulum

ϕ̈−
(
g + u

l

)
sin(ϕ) = 0, (12)

where l = 1 in this case and the cost function is chosen such that it matches the cost function

for the double pendulum restricted to the set {ϕ1 = ϕ2, ϕ̇1 = ϕ̇2}, that is,

q(x, u) =
1

2
(0.2ϕ2 + 0.1ϕ̇2 + 0.01u2).

Here, x = (ϕ, ϕ̇) ∈ R2. We used the same discretization as for the double pendulum and

concentrated on the region X = [−2π, 2π] × [−4π, 4π] with U = [−4, 4]. We used a similarly

crude partition with boxes of radii (π
8
, π

4
) with 9 test point in phase space and 9 in control
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space. The approximate value function of the parameterically forced inverted single pendulum

is shown in Figure 4(right).
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