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Entropy and bifurcations in a chaotic laser
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(Dated: March 21, 2002)

We compute bounds on the topological entropy associated with a transition to chaos via a bound-
ary crisis of the Poincaré return map to a fixed plane of a semiconductor laser with optical injection.
Even though this Poincaré map is not defined globally in the whole of the plane, we are still able
to compute the stable and unstable manifolds of periodic points globally. In this way, we identify a
boundary crisis, which involves periodic point with negative eigenvalues, and obtain the information
that forms the input of the entropy calculations. The entropy associated with the chaotic attractor
is positive at the boundary crisis and persists in a chaotic saddle after the bifurcation.

I. INTRODUCTION

Many physical systems exhibit low-dimensional chaotic
dynamics. Well-known examples include the Lorenz
system [1] and various forced nonlinear oscillators; see
Refs. [2] and further references therein. How can one
show that a given system is chaotic, or better, determine
how chaotic it is? Established methods are the computa-
tion of Lyapunov exponents [3] and estimating the fractal
dimension of a chaotic attractor [4]. Both methods are
computationally expensive and may be inaccurate.

In this paper we show how to compute rigorous bounds
of the topological entropy [5] by using the methods of
trellis theory developed in Refs. [6, 7]. This approach
can also be used to extract symbolic dynamics, and it
is an example of the study of the dynamics via a topo-
logical construction. Other such methods are the Con-
ley index methods of Mischaikow [8] and the topological
approximation methods of Rom-Kedar [9]. Topological
entropy is a single number measuring how chaotic a given
system is, much like a Lyapunov exponent. (There is in-
deed a deep mathematical connection between the two
concepts [10].) While Lyapunov exponents measure how
chaotic an individual attractor is, topological entropy is
a global measure of chaos, and is associated with homo-
clinic and heteroclinic tangles formed by the stable and
unstable manifolds of saddle periodic orbits. For low-
dimensional systems, the topological entropy measures
the growth rate of the number of hyperbolic periodic or-
bits, another natural measure of the complexity of the
system; see Ref. [11] for this approach.

To showcase the power of our method for practical ap-
plications we consider the technologically relevant exam-
ple of a semiconductor laser subject to external optical
injection, introduced in Sec. IT below. It is known that
optical injection produces an enormous variety of differ-
ent dynamics, including chaos [12-16], and it was recently
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considered for chaotic communication schemes [17, 18].
Its bifurcation (or stability) diagram has been studied
extensively [16] and excellent agreement was found with
experimental measurements [15, 19]. This revealed differ-
ent routes to regions of chaos in the system, and sudden
bifurcations of chaotic attractors [20, 21].

In this paper we consider one such sudden transition,
namely a boundary crisis in the case that the stable
and unstable manifolds are non-orientable. Note that
the term boundary crisis generally refers to a bifurca-
tion in which a chaotic attractor suddenly disappears
when it collides with its basin boundary [22]. Boundary
crises have been extensively studied, and are well under-
stood when they occur at a homoclinic or heteroclinic
tangency of stable and unstable manifolds [23, 24]. How-
ever, here we find a boundary crisis where only the clo-
sures of the stable and unstable manifolds under consid-
eration intersect. This phenomenon was first described in
the orientation-reversing case by Osinga and Feudel [25].
We give the first detailed account of this phenomenon
in the orientation-preserving case which is observed in
flows. The disappearance of the chaotic attractor also
raises the interesting question of what happens to the
entropy during the bifurcation.

Our main tool is to consider a Poincaré map in a suit-
able section. It is an important observation that the
Poincaré map of this laser system is only locally well-
defined as the k-th return map to the section. It is not a
globally defined invertible and differentiable planar map
on the entire section, and this must be seen as the typical
situation in applications. We remark that this is differ-
ent from what one is used to in much studied examples,
such as the Hénon [26] and the Ikeda [27] maps, or the
Poincaré maps (which are in fact stroboscopic maps) of
the forced Van der Pol and Duffing oscillators [2], which
all are globally defined planar maps.

Adapting the method in Ref. [30] to this more general
setting allows us to compute suitably long pieces of sta-
ble and unstable manifolds as input to the topological
algorithm in Ref. [6]. In this way, we establish rigorous
bounds for the entropy near the boundary crisis. This
constitutes a proof that the semiconductor laser with op-



tical injection does indeed have chaotic dynamics.

This paper is organised as follows. In Sec. IT we intro-
duce the equations of an optically injected semiconductor
laser and discuss its Poincaré map. Global bifurcations
are explained in detail in Sec. IIT and the entropy bounds
are the topic of Sec. IV. We draw some conclusions and
point to future work in Sec. V. Appendix A is a brief ex-
position in the Hénon map of a boundary crisis involving
the closures of stable and unstable manifolds.

II. SEMICONDUCTOR LASER WITH OPTICAL
INJECTION

A semiconductor laser with optical injection is ar-
guably the most accessible laser system showing chaotic
dynamics, being modeled very well by the single-mode
rate equations
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for the complex electric field £ and the population inver-
sion n [16]. The main parameters are the injected field
strength K and the detuning w of the injected field from
the solitary laser frequency. The parameters a, B and I’
specify material properties of the laser. In particular, o
is the well-known linewidth enhancement factor and for
semiconductor lasers it is in the range a € [1,10]. In this
paper we set the material laser parameters to the realis-
tic values @ = 2, B = 0.015 and I = 0.035; see Ref. [16]
for further details.

A. The Poincaré map

To study system (1), we consider the first Poincaré
return map f to a section. This has the advantage of
reducing the system to a two-dimensional iterated map,
which is easier to visualise and is more amenable to many
kinds of analysis. It is usual to consider a Poincaré sec-
tion which is everywhere transverse to the flow and to
which all trajectories return, in which case the resulting
map is globally defined, continuous and invertible. Un-
fortunately, for the semiconductor laser, there is no such
global section, so instead we take a natural section X for
the system, namely the plane ¥ = {(E,n) : n = 0}, and
treat the resulting pathologies appropriately.

If po is a point on ¥ such that the trajectory through
po has a first return to ¥ at a point p;, and the flow is
transverse to ¥ at pp and p;, then the first return map
f is locally a diffeomorphism at pg. On these regions,
f can be treated like any other diffeomorphism and no
special theory is required. However, some initial condi-
tions pp may lie in the basin of an attractor which does
not intersect ¥. Indeed, it may even be that the tra-
jectory through po never returns to ¥. In this case, the

first return map is undefined at po. For initial conditions
approaching the boundary of the domain of definition of
f, the return time typically tends to infinity.

A more serious problem is that the first return map f
need not be continuous. In all cases, a discontinuity of
the return map is due to a loss of transversality of the
flow with the section. Before discussing the various cases,
we first examine the behaviour of the flow of system (1)
on X.

Since ¥ is defined by the condition n = 0, the direction
in which the flow crosses ¥ is given by the sign of 7 at
n = 0. From (1) we see that

Aln—o =1 - |EJ” (2)

so n increases through ¥ when |E| < 1 and decreases
when |E| > 1. The flow is tangent to X precisely on
the unit circle C' given by |E| = 1. For this system,
the tangency set is independent of the parameter values.
Even though this parameter independence is not typical,
we note that the tangency set is one-dimensional, which
is the generic case.
On C' we compute

% (IE]?) = 2K Re(E) 3)

so the flow is directed toward the outside of C' for
Re(E) > 0 and inside for Re(E) < 0. Locally, C di-
vides X into two pieces, X1 and Xs, which we can choose
so that the vector field is directed from ¥ to X5. As-
suming further the generic case of a quadratic tangency,
we see that points in X; return to the section in X5 af-
ter a time interval which tends to O as the starting point
approaches C, whereas points in X5 have no local re-
turns to ¥. Therefore, C is a discontinuity curve of f,
with f(p) ~ p if p is in ¥; and close to C, but typically
f(p) g CforpeC.

Despite these discontinuities, the first return map is
still invertible, since an inverse is given by reversing the
flow direction. There are three generic types of discon-
tinuity, corresponding to a flow line which is tangent to
the section ¥ at an initial, interior or final point, respec-
tively. In two of these cases, a locally continuous map
can be constructed by allowing the number of returns to
the section to vary.

The easiest situation is that the tangency occurs at an
interior point of the flow line joining two points. Chang-
ing the number of intersections with the section by two
allows a smooth extension of the return map, as the flow
is transverse to the section at the initial and final points.
Similarly, when the tangency occurs at the initial point of
the flow line, changing the number of intersections with
the section by one allows a continuous extension of the
return map, though this is not smooth. However, when
the tangency occurs at the final point of the flow line,
there is no continuous extension. It is possible to change
the number of intersections by one and obtain a return
map which is close to the original one.



A continuous extension of the return map is known as
a branch of the return map. These branches are best
understood by considering the set

{(po,p1,t) €Z X X x R : ®4(po) = p1}

which gives all possible returns. A more detailed discus-
sion of non-globally defined Poincaré maps, which must
be regarded typical in applications, is beyond the scope
of this paper.

FIG. 1: Stable and unstable manifolds of the 4-periodic points
{po, p1, p2, ps}, which are in the same orbit under the Poincaré
map f, shown in the section {n = 0} in this and all other
figures; w = 0.270 and K = 0.290. On the circle C = {|E| =
1} the Poincaré map is discontinuous.

B. Stable and unstable manifolds

A great deal of information about the dynamics of the
system can be obtained by computing the stable and un-
stable manifolds of its periodic saddle orbits. For the
laser system (1), with parameter values K = 0.290 and
w = 0.270, we consider two periodic saddle orbits P and
@, with periods 13.14 and 13.19 respectively. The sta-
ble and unstable eigenvalues of P are both positive, and
those of () are negative, so the invariant manifolds of @)
are non-orientable [29]. We call P a direct saddle orbit
and @ a flip (or twisted) saddle. The product of stable
and unstable eigenvalues for both P and () is less than
1, so both saddles are dissipative, that is, the attracting
direction is stronger than the repelling one.

Both of these orbits cross the section ¥ at four points,
which are, therefore, 4-periodic points of the first re-
turn map f. We label these point pg,p1,ps2,p3 and
qo, 91,92, g3, where the convention is that the points map
to each other in this order and back to pg or qo, respec-
tively. Figure 1 shows the stable and unstable manifolds
of the orbit P = {po,pl,p2,p3}.

The stable and unstable manifolds of the p;, denoted
W#(p;) and W¥(p;) respectively, consist of the intersec-
tion of the stable and unstable manifolds of P with the
section n = 0. Since the stable manifold of P is a smooth
surface, its intersection with any section will (generically)
consist of an immersed collection of one-manifolds. How-
ever, the presence of discontinuities in the first return
map means that the properties of the stable manifold
may be very different from that of the stable manifold
of a surface diffeomorphism. Indeed, we can see that the
stable manifolds through pg and p3 and those through p;
and p3 coincide. This would be impossible for a diffeo-
morphism, but can occur here as the stable curve passes
through the tangency curve C. In addition, there are
components of the stable manifold which do not contain
any of the points po, p1, p2, ps.

The presence of discontinuities complicates the com-
putation of the invariant manifolds. Most algorithms for
computing one-dimensional invariant manifolds involve
computing the invariant manifold in a neighbourhood of
the periodic orbit and growing it. Here we use an adap-
tation of the algorithm of Krauskopf and Osinga [30],
which we combine with the observation that the com-
putation of a continuous branch of the return map can
be formulated as a family of boundary value problems.
In this way, stable and unstable manifolds can be con-
tinued across discontinuities of the first return map by
changing the number of iterates. At present we com-
pute the return map by shooting, but one could also use
collocation techniques in combination with standard con-
tinuation methods, such as is done in the package AUTO
[31].

III. GLOBAL BIFURCATIONS

We now consider the bifurcations of the system as the
parameter w is increased from 0.260 to 0.280 keeping K
fixed at 0.290. In this region, sudden bifurcations to
chaos have been found in numerically computed bifur-
cation diagrams, and later also in an experiment on an
optically injected DFB laser [19]. Here we consider these
transition in much more detail, and this requires looking
in a small range for w. The periodic saddle orbits P and
@ which were computed for w = 0.270 can be continued
through this parameter range, and they remain direct
and flip saddles, respectively.

The first bifurcation we encounter is an inner tan-
gency at w = wip, =~ 0.269292. It is governed by the
stable and unstable manifolds of P and results in the
creation of a chaotic saddle. The inner tangency is
almost immediately followed by a boundary crisis at
W = wpe ~ 0.269299. For w < wp. the system has a
strange attractor A. In the boundary crisis, this attrac-
tor collides with the chaotic saddle and is destroyed. The
system then jumps to a periodic attractor.

The boundary crisis is caused by the intersection of the
closure of W*(Q), which constitutes the attractor A, and



the closure of W#(P), which constitutes the boundary of
the basin of attraction. For this to happen, we must
already have intersections of W*(P) and W?(P). Hence,
the inner tangency is a vital ingredient in the destruction
of the strange attractor. However, the bifurcations occur
very close together in the injected laser, which makes it
difficult to distinguish them.

A boundary crisis of flip saddles, involving the clo-
sures of the stable and unstable manifolds, has not been
described in detail. It was discussed in Ref. [25] in
the orientation-reversing case. In Appendix A we illus-
trate this global bifurcation and its effects W*(Q) in the
orientation-preserving Hénon map. This has the addi-
tional advantage, that there is no inner tangency close to
the boundary crisis.

A description of the bifurcations can be obtained by
considering the Poincaré return map to X. As w varies,
P and @ each continue to intersect ¥ transversely at
four points. The strange attractor A intersects X in four
components, Ay, A1, Az, Az, with each A; containing g;
and being invariant under f*. The component Ay is con-
tained in the rectangle R = [-0.1,—0.2] x [-0.65,0.35].
Although f, and hence f* are not globally continuous,
the restriction of f* to R is, so the dynamics on this set
is essentially that of a diffeomorphism, and is governed
by the two periodic saddle points py and ¢y and their
stable and unstable manifolds.

FIG. 2: Stable and unstable manifolds of the 4-periodic
point po (left column), of the 4-periodic point go (middle
column), and of both py and go (right column), before (row
a), approximately at (row b) and after (row c) the destruc-
tion of a chaotic attractor; K = 0.290 and from (a) to (c)
w = 0.2673, 0.269292, 0.270.

A. Inner tangency

For parameter values of w less than wj,, the geometry
of the stable and unstable manifolds of py and qq is as
shown in the first column of Fig. 2 . The closure of the
unstable manifold of the flip saddle gq is a chaotic attrac-
tor Ag with a positive Lyapunov exponent and positive
entropy. For many parameter values, this attractor may
have smaller sub-attractors inside it, including stable pe-
riodic orbits [32], but the observable behaviour is that of
a single strange attractor. One branch of the unstable
manifold of pg ends in a periodic attractor rg, and the
other branch intersects the stable manifold of ¢o. Hence,
points near py are either attracted to Ag or to r9. The
stable manifold of py does not intersect the unstable man-
ifold of pg, so there are no orbits homoclinic to pg.

The stable and unstable manifolds to py at the inner
tangency bifurcation occurring for w = wj,, are shown
in Fig. 2 (bl). The attractor Ay persists, but there is
now a new basic set associated with the homoclinic or-
bits to pg, also with positive topological entropy. Since
the direct saddle pg is dissipative, a result of Palis and
Takens [33] shows that there must have been chaotic at-
tractors present near py even before this bifurcation, but
these are small enough not to be physically relevant. The
significance of this bifurcation is that now there are no
topological obstructions for the stable manifold of py to
intersect the unstable manifold of go.

Because @ is a flip saddle, there can be no parameter
value at which a first tangency of W?#(P) and W*(Q)
exists. Instead it is characterised by the intersection of
the closures of W#(P) and W*(Q). Indeed, the closures
of these manifolds appear to intersect tangentially giving
a closure heteroclinic tangency in the terminology of [25].
In this bifurcation the chaotic attractor A collides with
the chaotic saddle that was created in the inner tangency.

B. Boundary crisis involving flip saddle

The attractor A is destroyed in the boundary crisis
occurring at w = wpe, soon after the inner tangency.
For w < wpe, the stable manifold of py, W*(po), and
the unstable manifold of go, W*(qo), are disjoint, and
we have a strange attractor consisting of the closure of
the unstable manifold of go, W%(qo). For w > wype, the
manifolds W*(po) and W*(qo) intersect transversely, and
we now have a heteroclinic tangle formed by the stable
and unstable manifolds of py and go. Therefore W (qq)

and W4(py) are the same, and the closure of the un-
stable manifold W¥(qo) is no longer a strange attractor.
Instead, almost every point is attracted to the periodic
point rg. This bifurcation gives a discontinuous change
in the closure of W*%(qq).

As w approaches wp. from above, there are infinitely
many parameter values at which heteroclinic tangencies
of W#(po) and W*(qo) occur, and wp is a limit point of
these values. Since qq is a flip saddle, its unstable mani-




fold limits on itself from both sides, so it can never have
tangencies with any stable manifold without also hav-
ing transverse crossings. At wpe, the manifolds W?(pg)
and W¥(qgo) must still be disjoint, but they do have com-
mon limit points. Therefore, we call this bifurcation a
limit crisis. Thus at the limit crisis, the closures of the
manifolds, W#(pg) and W¢(qq), intersect, and numerical
evidence strongly suggests that W4 (pg) and W¥(qq) are
tangent at the bifurcation giving a closure heteroclinic
tangency [25]. Although W?(pg) and W¥(go) are dis-
joint, there may be periodic saddle points in W$(pg) and
Wu(go) whose unstable manifolds do have a first tan-
gency at wye, in which case the crisis is as described in
[22].

The limit crisis can be seen as a bifurcation of the
chaotic saddle B associated with the homoclinic tangle
of P and the attractor A associated with the homoclinic
tangle of @); see Appendix A. A natural consequence
is that at the boundary crisis, the topological entropy
associated with A and B must be the same; see also Sec-
tion IV.

IV. TOPOLOGICAL ENTROPY

As mentioned in the introduction, topological entropy
is a global measure of the degree of chaos of a dynami-
cal system, and is associated with the growth rate of the
number of periodic points of a given period. There is
also a notion of entropy applied to a homoclinic or het-
eroclinic tangle, which is given in terms of the growth
rate of the number of intersections of initial branches of
stable and unstable manifold under iteration of the lat-
ter. The entropy of a tangle is equal to the growth rate
of the periodic orbits associated with the tangle. Since
some entropy may be associated with other tangles of the
system, the entropy of the tangle under consideration is
a lower bound for the topological entropy of the system.

Here, we estimate the topological entropy of the fourth
return map of the semiconductor laser using the methods
described in [6, 7] and also give a detailed description
of the system in terms of symbolic dynamics. For the
remainder of this section, we shall use f to refer to the
fourth return map f* of the laser system.

The quality of the information obtained depends
greatly upon the length of stable and the unstable man-
ifolds one computes. Consider the initial pieces of sta-
ble and unstable manifold, called a trellis, shown in Fig-
ure 3(a). The stable and unstable manifolds are such
that no information about the entropy can be obtained
other than the standard result that it must be strictly
positive.

In Fig. 3(b), the trellis divides ¥ into a number of
regions. It can be shown that the regions R4 and Rp
must contain chaotic dynamics. Orbits that are entirely
contained in these two regions can be coded symbolically
by assigning to each orbit the sequence of A’s and B’s
such that the k*® element of the sequence gives the region

FIG. 3: Initial branches of stable and unstable manifolds of po
from Fig. 2 form a trellis that does not force chaotic dynamics
(a). For a longer piece of W*(p) the trellis bounds two regions
R4 and Rp with positive entropy dynamics (b), while an
even longer piece of W*(p) reveals that the regions of chaotic
dynamics are thin strips (c); K = 0.290 and w = 0.270.

containing the kP iterate. Such a sequence is called an
itinerary of the point. Using our methods, we can show
that f must have orbits of every itinerary except those
which contain a word of the form AB*"*t* A where k =1
or k = 2; see below for more details.

Increasing the length of stable and computed unsta-
ble manifolds allows better estimates of the symbolic dy-
namics, and better entropy bounds can be obtained. The
unstable curve shown in Fig. 3(c) is the iterate of that
shown in Fig. 3(b). We can now deduct that the chaotic
saddle which must exist in regions R4 and Rp, must lie
in the very thin strip bounded by the indicated piece of
W (po).

We now return to consider the trellis for w = 0.270 of
Fig. 3(b) in more detail. The symbolic dynamics is found
by constructing a graph G embedded in the complement
of the unstable manifold, and using the stable manifold
to induce an action g on this graph; see Fig. 4. The edges
of G are of two types, control edges, shown in black, and
expanding edges, shown in gray. The control edges are
short edges crossing the stable manifold. Their primary
role is to capture the topological and dynamical infor-
mation contained in the stable manifold. The expanding
edges connect the control edges without crossing the trel-
lis or introducing unnecessary loops. They carry all the
interesting dynamical information.

Performing the algorithm given in [6] we obtained the
graph in Fig. 4. The induced action g on the expanding
edges of the graph is given by

a+— ab152, b1 = b2, bz = b3, b3 = b4, b4 = ab1 . (4)

We see that orbits of g also have an itinerary given by
A’s and B’s, with the edge a corresponding to A, and the
edges by, ba, b and by corresponding to B.

The most important property of g is that for any orbit
of g, there is an orbit of f with the same itinerary. The
orbits of g are said to force orbits of f. Furthermore,
for any periodic orbit of g, there is a periodic orbit of
f with the same itinerary and period. For example, the
4-periodic orbit of g that visits edges a, b2, b3 and by



FIG. 4: Initial branches of stable and unstable manifolds of
po from Fig. 3(b), with a corresponding graph G capturing
the topology of the trellis; K = 0.290 and w = 0.270.

forces a 4-periodic orbit of f with itinerary (ABBB)Z.
We can also deduce information about the orbits of A
that are homoclinic to po: for any orbit of g that has all
but finitely many points in a (and so whose itinerary is
homoclinic to AZ), there is a corresponding orbit of f
which is homoclinic to pg.

The converse of these forcing results is not true; the
orbits of f do not force orbits of g, and in many cases
there must be orbits of f that have a different itinerary
from any orbit of g. Therefore, all we can say is that
the dynamics of f are more complicated than those of
g. This is well-reflected in the topological entropy, which
satisfies the inequality

htop( ) Z htop(g) (5)

For this example of w = 0.270, we find hyp(g) =~
log(1.544) = 0.434, giving a lower bound for the entropy
of the system as htopf4 > 0.434.

0.280
0.596

0.282
log 2 ~ 0.693

w || wim % 0269292 0.278
hiop () 0.436 0.596

TABLE I: Lower estimates of the topological entropy of f=
f* K =0.290 and w is as indicated.

We now study how the topological entropy changes
with the parameter w; the resulting estimates for the en-
tropy are summarized in Table I. For w < wy., the topo-
logical entropy of the attractor Ag can be estimated by
considering the trellis formed by the stable and unstable
manifolds of gg. Since the stable manifold of py and the
unstable manifold of gy do not intersect, the dynamics
on the attractor can be considered separately from that

of the chaotic saddle associated with py. For the stable
and unstable manifolds of gy computed for both w = wj,
and w = wpc, the bound for the entropy of the attractor
is 0.346, though the actual entropy may increase slightly.
At w = wy,, the entropy of the trellis associated with pg
is 0, and at the limit bifurcation, the entropy of the trel-
lises associated with py and gp must be equal, hence the
entropy of the trellis associated with pg must be at least
0.346.

FIG. 5: The emergence of a full horseshoe of f*; K = 0.290
and from (a) to (¢) w = 0.278, 0.280, 0.282.

As w increases further, more intersections of stable and
unstable manifold are created. While some of the fine
structure of the tangle may change for w between 0,272
and 0.280, there are no significant changes. For w be-
tween 0.280 and 0.282, there is a bifurcation sequence,
illustrated in Fig. 5, which ends in the creation of a full
Smale horseshoe. The entropy bound for the chaotic sad-
dle increases, and appears to change continuously with
w, though the bound computed from given finite pieces
of stable and unstable manifold jumps at the homoclinic
tangencies. For the trellises in Fig. 5, we compute en-
tropy bounds of 0.596, 0.596 and log2 = 0.693, respec-
tively; see also Table I. However, this entropy only mea-
sures the complexity of the transient orbits, and would
not be seen if the system was already locked to the sta-
ble limit cycle rq; see Sec. II. It is a curious phenomenon
that the entropy of the chaotic set is increasing as w in-
creases past the limit bifurcation. In other words, while
the complexity of the system as measured by the topologi-
cal entropy is increasing, the observed behaviour becomes
simpler, because the chaotic set loses stability and only
ro remains as an attractor.

V. CONCLUSIONS

The method of analysis presented here can be extended
to any low-dimensional system. We have seen that invari-
ant curves of saddle points in a section can be computed
even if there is no globally defined, continuous return
map. From these manifolds, the structure of the large-
scale attractors of the system can be computed, and bi-
furcations in which they are destroyed can also be found.

One can then compute good lower bounds for the topo-
logical entropy on attractors and chaotic non-attracting



sets, and obtain a description of their internal dynamics
in terms of the itineraries.

For the laser system described, there is a bifurcation
sequence in which an inner tangency of a direct saddle is
a prerequisite for the disappearance at a boundary crisis
of a chaotic attractor, which is the closure of the unsta-
ble manifold of a flip saddle. This bifurcation sequence is
typical in two-dimensional orientation-preserving diffeo-
morphisms and three-dimensional flows, as was demon-
strated by identifying this type of boundary crisis also
in the Hénon map. At the boundary crisis the entropy
associated with the chaotic attractor is positive, and it
persists as the entropy associated with a chaotic saddle
after the bifurcation.
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APPENDIX A: BOUNDARY CRISIS IN THE
HENON MAP

The scenario described above, in which a limit crisis is
responsible for the destruction of a strange attractor, is
typical in orientation-preserving diffeomorphisms, which
include all return maps of flows. Indeed, this bifurcation
is responsible for the destruction of a strange attractor
in the Hénon map

H(z,y) = Hap(z,y) = (a — 2* — by, z) (A1)
in the orientation-preserving case b > 0; see [34] for an
example. We fix b = 0.5, so H is uniformly dissipative,
and vary the parameter a.

For sufficiently large a, H has two saddle fixed points,
a direct saddle p and a is a flip saddle ¢, which means
that we are in the same situation as discussed previously
for the injected laser. For a > 0.840 the manifolds W*(p)
and W*(p) intersect transversely yielding homoclinic or-
bits to p. For parameter value a = 2.4, W*(p) intersects
both W?*(p) and W?*(q), but W*(q) does not intersect
W*(p), as shown in Fig. 6(a). The closure of W*(q) is a
strange attractor A, and remains inside a region bounded
by an arc of W¥(p) and an arc of W?#(p). The boundary

of the basin of attraction of A is W3(p).
For a = 2.5, shown in Fig. 6(b), the situation is very
different. W*%(q) now intersects W#(p). Since points

which lie to the left of W?*(p) escape to infinity, there
is an open set in W*(q) consisting of points which es-
cape to infinity, and the set of points which escape is
dense. The closure of the set of points heteroclinic to p

FIG. 6: Before (row a) and after (row b) a limit bifurcation in
the Hénon map. Shown are the stable and unstable manifolds
of p and ¢ (left column), just of p (middle column), and the
stable manifold of p and unstable manifold of ¢ (right column);
b= 0.5, and a = 2.4 (row a) and a = 2.5 (row b).

and ¢ is now a chaotic saddle, and gives only transient
behaviour of the map; all other points escape to infinity.

Once W#(p) and W*(q) intersect, they must do so ar-
bitrarily close to p, and, by the A\-lemma [35], the closure
of W¥(p) contains W*(q). Hence, W¥(p) and W*(q)
have the same closures. This means that the branches
of W*(q) now limits on the branch of W#(U) which ex-
tends to infinity. Hence, this type of boundary crisis is a
discontinuity point of W*(q) (using the Hausdorff metric
on sets).

To illustrate this, in Fig. 7 we show how W*(q) is build
up in successive iterates. In Fig. 7(row a), we have com-
puted W*(q) to length 1; successive figures are computed
by iterating the unstable curve. Notice how for the first
few iterates, the unstable curve remains close to the for-
mer attractor, but as higher iterates are computed, there
are arcs that cross W#(p) closer and close to p. Although
the topology of the unstable manifold changes discontin-
uously at the limit bifurcation, for parameter values close
to the induced boundary crisis, a very large number of
iterates of the initial segment of unstable manifold are
needed to cross a given arc in W#(p). This must be
the case, since even though the topology of the mani-
fold can change discontinuously, any fixed iterate must
change continuously.
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