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Bifurcations of Dynamical Systems with Sliding:
Derivation of normal-form mappings

M. di Bernardo * P. Kowalczyk*! A. Nordmark?

December 12, 2001

Abstract

This paper is concerned with the analysis of so-called sliding bifurcations in n-dimensional
piecewise-smooth dynamical systems with discontinuous vector field. These novel bifurcations
occur when the system trajectory interacts with regions on the discontinuity set where sliding
is possible. The derivation of appropriate normal form maps is detailed. It is shown that the
leading order term in the map depends on the particular bifurcation scenario considered. This
is in turn related to the possible bifurcation scenarios exhibited by a periodic orbit undergoing
one of the sliding bifurcations discussed in the paper. A third-order relay system serves as a
numerical example.
keywords: discontinuous systems; sliding bifurcations; normal form maps; PACS 05.45-a

1 Introduction

Discontinuous events characterise the behaviour of an increasing number of dynamical systems
of relevance in applied science and engineering. Examples include the occurrence of impacts in
mechanical systems [1], stick-slip motion in oscillators with friction [2], switchings in electronic
circuits [3, 4, 5, 6] and hybrid dynamics in control devices [7]. These systems are often modelled
by sets of piecewise-smooth (PWS) ordinary differential equations (ODEs). These are smooth
in regions G; of phase space with smoothness being lost as trajectories cross the boundaries %; ;
between adjacent regions, see Fig. 1. Specifically, we have

&= F(a,t,p), (1.1)

with F : R**™+1 s R being a piecewise smooth (PWS) vector function; ¢ the time variable;
u € R™ a parameter vector and x € R” the state vector. In each of the phase space regions Gj,
the system dynamics are described by a different functional form, F;, of the system vector field.

Piecewise smooth systems have been shown to exhibit a richness of different dynamical be-
haviours which include several bifurcations and deterministic chaos [8, 9, 10]. Many of these
phenomena are due to the unique nature of these systems and involve interactions between
the system trajectories and its phase space boundaries. For example, a dramatic change of
the system behaviour is usually observed when a part of the system trajectory hits tangen-
tially one of the boundaries between different regions in phase space. When this occurs the
system is said to undergo a grazing bifurcation (also known as C-bifurcations in the Russian
literature)[11, 12, 13, 14, 15]. Grazing phenomena can lead to several dramatic bifurcation
scenarios including a sudden transition from stable periodic motion to fully developed chaotic
behaviour (e.g. [16, 17]).
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Figure 1: Schematic representation of the system trajectory crossing the boundary, 3 between
adjacent regions of smooth dynamics

A particularly intriguing type of solution which is unique to piecewise smooth systems is the
so-called sliding or Filippov solution [18]. This is a solution which lies entirely within the dis-
continuity set of the system under investigation and can be analysed by means of two alternative
methods: Filippov Convex method [18] and Utkin equivalent control [19]. Sliding is only possible
if the direction of the system vector field on both sides of a discontinuity set points towards the
set itself so that nearby trajectories are constrained to evolve on it (see Sec. 3 for further details).
Physically, sliding motion may be understood as repeated switching between two different system
configurations as has been reported in [20, 21, 22].

Recently it has been shown that a novel class of bifurcations can be observed when, as
the parameters are varied, the system trajectories cross regions of phase space where sliding is
possible (or sliding regions). According to the nature of these intersections and the properties
of the vector field describing different scenarios are possible. These bifurcations can explain, for
example, the formation of so-called stick-slip dynamics in friction oscillators [23], double spiral
bifurcation diagrams in power electronic converters [5] and fast-switching trajectories in relay
feedback systems [20].

The occurrence of complex transitions involving sliding was independently observed in the
Russian literature [24, 25] and more recently detailed to the case of relay feedback systems in [20].
It was shown that sliding can be associated to four different codimension-1 bifurcation scenarios
which are termed (i) sliding bifurcation type I; (ii) multisliding bifurcation; (iii) grazing sliding
and (iv) sliding type IT (switching sliding) (as will be detailed later in Sec. 3). Extensive numerical
simulations were carried out to understand the nature of these four scenarios and some of the
complex behaviour they can organise. It was found, for example, that sliding bifurcations can lead
to the formation of chaotic attractors and asymmetric orbits in a class of entirely symmetric relay
feedback systems [26, 27]. A pressing open problem is the derivation of appropriate normal-form
maps for these transitions to allow a proper, consistent classification of these bifurcations.

The aim of this paper is to present for the first time the derivation of such normal-form
maps for general n-dimensional piecewise smooth dynamical systems with sliding. Using the
concept of discontinuity mapping first introduced in [11] we will present the local analysis of the
four sliding bifurcation scenarios mentioned. After giving conditions for sliding to occur, we will
briefly describe the main characteristics of these novel bifurcations and give precise conditions
for each of them to occur. Using these conditions, we will then derive their normal form maps.
In so doing, we will show that sliding bifurcations are indeed novel type of transitions associated
to precise functional forms of corresponding normal form maps.

Our aim is to give analytical formulas for the local maps associated with bifurcations involv-
ing sliding which can be used to characterise the dynamics of several systems of relevance in
applications. As a representative example we will use relay feedback systems which have been
extensively studied experimentally.



The paper is outlined as follows. After stating some preliminary hypotheses, the four possible
scenarios of sliding bifurcations are presented in Sec. 3. Analytical conditions which must be
satisfied at the bifurcation point for each case are given. These conditions are used later in
the paper to carry out the analytical derivation of appropriate normal form mappings. These
are derived by using the concept of the so-called Zero Time Discontinuity Mapping (ZDM) (see
Sec. 4). The detailed derivation of such mapping for each case is outlined in Sec. 5. In Sec. 6
numerical analysis of a third order relay feedback system illustrates the theory presented in the
previous section. Finally, in Sec. 7 we briefly discuss the implications of our results to the analysis
of periodic orbits undergoing sliding bifurcations, before drawing some conclusions in Sec. 8.

2 Piecewise-Smooth Systems and Sliding Motion

In what follows, we consider a sufficiently small region D C R” of phase space where we assume
that the n-dimensional system (1.1) can be described by the equation

i {Fl(m) if H(z)>0 22)

Fy(z) if H(z) <0,

where x € R", Fi, F5 : R" — R" are sufficiently smooth in D and H : R” — R is a sufficiently
smooth scalar function (at least C*) of the system states. We label ¥ the hyperplane defined by

Y:={zeR':H(z) =0} (2.3)
which we term as switching manifold. 3 divides D into the two regions

G1:={z € D: H(z) > 0}, (2.4)
and

Go:={z € D:H(z) <0} (2.5)

Moreover, we assume that there exists a subset of the switching manifold 3 C %, labelled
as sliding region, which is simultaneously attracting from both sides in regions G; and Go.
Throughout the neighbourhood of this region we shall assume:

(VH,F,) — (VH, F1) > 0. (2.6)

Under these assumptions, if the system trajectory crosses the sliding region EA], it is then con-
strained to evolve within 32 until it eventually reaches its boundary [18]. This is the so-called
sliding motion which can be described by considering an appropriate vector field Fs, which lies
within the convex hull of F| and Fy, and is tangent to ¥ for z € 3 [18, 19]. According to Utkin’s
equivalent control method (see [19] for further details) such vector field is given by

P+ F - F
T2 2

F + Hy,(z) (2.7)
where Hy(z) € [—1,1] is some scalar function of the system states. H,(z) can be obtained in
terms of F; and F» by considering that F; must be tangential to the switching manifold, i.e.

(VH, F;) = 0. Using this condition, we then have
(VH, Fy) + (VH, Fy)

H. = — . 2.8
o) = =G, ) — (VA ) (2:8)

We can now define the sliding region 3 as
Si={ze¥:-1<H,(z) <1} (2.9)



It follows from (2.6) and (2.9) that:
<VH, F2> >0> <VH, F1>, (2.10)

throughout the region of interest. Additionally, we define the boundary of the sliding region as
0% = 0¥ T U 0¥, where

oLt :={reX: Hy(z) =1}, (2.11)

0% :={zx e X: Hy(z) = —1}. (2.12)

Note that if z € 951, from (2.7) we obtain F, = Fy, while, if z € 95—, F; = F}.
Also, it is worth mentioning here that H,(z) = +1 defines the equivalent-control manifold in
R"™ whose intersection with ¥ determines the boundary of the sliding region 3. The analysis
which is carried on later in the paper assumes that a bifurcation point z* = 0 lies on o8~ Tt
should be noted that this assumption places no constraints on the theory presented further on

in the paper. VH, is the normal vector to (9fli, which can be expressed as:

OH OF, 0°H OH 0F, 0*H o0H O0H
VH,(x) :[— (%E + WF + 97 On + WFQ) (%FQ - %Fl)
(BH oF, O0°H OH OF, 82HF ) (81—1 o0H )]
1

9z 9z 022 Bz 9z 012

oOH OH _\>
—F——F .
/ ( oz > Oz 1)
The dynamics of the system while sliding, which are given by the sliding flow, ¢, (z,t), generated
by Fs, will be moving towards the boundary of the sliding strip, say 0¥, if (VH,, Fy) < 0.
Without loss of generality, we assume that both ¥ and 03 can be flattened by making a series

of appropriate near-identity transformations.
In this case, (2.13) becomes

— RN+ —F

o o (2.13)

IR A T 9z 0z oz oz )\ ezt e

OH OF, OH 0F, O0H OH OH 0F, OH OF; O0H O0H
E o or or

VH,(z) = _<

(2.14)

3 Bifurcations involving sliding

3.1 The four possible cases

We now introduce the possible bifurcation scenarios involving interactions between trajectories
of the system and the sliding region 3. We give a heuristic description of all the possible cases,
which we will generically indicate as sliding bifurcations. We will then give appropriate analytical
conditions characterising each of them in the next section.

According to the results presented in [20], [27, 26] and independently in [24], we can iden-
tify four possible cases of bifurcations involving sliding. These can be generalised to the case
of n-dimensional piecewise-smooth dynamical systems of the form (2.2). A three-dimensional
schematic representation is given in Fig. 2. For the sake of clarity, we can assume that such local
bifurcations involve sections of trajectories belonging to some periodic orbit of the system. Figure
2-(a) depicts the scenario we term as sliding bifurcation of type I. Here, under parameter vari-
ations a part of the system trajectory crosses transversally the boundary of the sliding strip at
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Figure 2: The four possible bifurcation scenarios involving collision of a segment of the trajectory
with the boundary of the sliding region 0%~

the bifurcation point (trajectory labelled b in Fig. 2-(a)). Further variations of the parameter
cause the trajectory to enter the sliding region 3, leading to the onset of sliding motion. Note,
that the sliding trajectory then moves locally towards the boundary of 3. Since, at the boundary
Fs = F the trajectory leaves the switching manifold tangentially.

In the case presented in Fig. 2-(b), instead, a section of trajectory lying in region Gp or
G4 grazes the boundary of the sliding region from above (or below). Again, this causes the
formation of a section of sliding motion which locally tends to leave 3. We term this transition
as a grazing-sliding bifurcation. We note that this transition is the immediate generalisation
of so-called grazing bifurcations [11] to dynamical systems with sliding.

A different bifurcation event, which we shall call sliding bifurcation of type II or switching-
sliding, is depicted in Fig. 2-(c). This scenario is similar to the sliding bifurcation of type I shown
in Fig. 2-(a). We see a section of the trajectory crossing transversally the boundary of the sliding
region. Now, though, the trajectory stays locally within the sliding region instead of zooming off
the switching manifold X.

The fourth and last case is the so-called multisliding bifurcation, shown in Fig. 2-(d). It
differs from the scenarios presented above since the segment of the trajectory which undergoes
the bifurcation lies entirely within the sliding region . Namely, as parameters are varied, a
sliding section of the system trajectory hits tangentially (grazes) the boundary of the sliding
region. Further variations of the parameter cause the formation of an additional segment of
trajectory lying above or below the switching manifold, i.e. in region G; or G3. As shown in [20],
this mechanism can give rise to an interesting sliding adding scenario where the accumulation of
multisliding bifurcations causes the formation of periodic orbits characterised by an increasing
number of sliding sections.

We now make rigorous the scenarios described above by giving analytical conditions for their
occurrence.



3.2 Analytical Conditions

In all the cases presented in the previous section, the bifurcation events involve a part of the
system trajectory, crossing the boundary of the sliding region 83. At the bifurcation point, say
z = z*, t = t*, the following general conditions must be satisfied for all cases. Specifically, we
must have:

1. H(z*) =0, VH(z*)#0;
2. Hy(z*)=-1& F,=F, < (VH, F}) =0 at z*;

These conditions state that the bifurcation point: (1) belongs to the switching manifold, which
is well defined; (2) is located on the boundary of the sliding region (w.l.o.g. we assume it to
belong to 82*). In what follows we assume, without loss of generality, that the bifurcation point
is located at the origin, i.e. z* = 0,* = 0. Unless stated otherwise, it is assumed that all the
quantities in the equations below are evaluated at the origin.
Using (2.14) and the general conditions for sliding bifurcations, we can now express VH in
terms of VH, F1, Fy as:
2 OFY

V= = my Vo

(3.15)

where, the superscript * denotes quantities evaluated at the bifurcation point z*. In the deriva-
tions for the sake of brevity we omit the superscript *. Note that the denominator of (3.15) is
positive, according to (2.6).

3.2.1 Case I: Sliding Bifurcation type I

As shown in Fig 2(a), in this case, the sliding flow moves locally towards the boundary of the
sliding region, when perturbed from the bifurcation point. Thus, at the bifurcation point, we
must have:

H
A (A 0D)| g (3.16)
dt 40
which yields the additional condition
(VH,, F) < 0. (3.17)
After substituting (3.15) for VH, into (3.17) we get:
d?H (¢1(0,1)) OF,
—_— =(VH, —F . 1
12 o (VH, o 1) >0 (3.18)

3.2.2 Case II: Grazing-Sliding Bifurcation

This scenario is equivalent to Case I (see Fig. 2(b)). When grazing-sliding occurs the sliding flow
also moves towards the edge of the sliding strip. Thus, condition (3.18) holds in this case as well.

3.2.3 Case III: Sliding Bifurcation type II (or switching-sliding)

In this case, contrary to what assumed for Case I and II (see Fig. 2(c)), the vector field F must
point away from the boundary of the sliding region at the bifurcation point. Thus, recalling that
along 9%, F; = Fy, we require the extra condition:

H(A10.8)] (VH,, F1) > 0= FHGO.0) (VH on

o —r)<o. 1
dt —o d? —o g 11 <0 (3.19)



3.2.4 Case IV: Multisliding Bifurcation

When a multisliding bifurcation occurs, (see Fig. 2(d)) the sliding flow is tangential to the
boundary of the sliding strip at the bifurcation point. Hence, we must have

dHy(¢5(0,1))

=0 (3.20)
dt t=0

and since F; = F; along BZAJ_, we then have:
(VH,, F,) = (VH,,F) =0. (3.21)

Applying (3.15) for VH,, into (3.21) yields:

d2H (¢1(0,1)) oF,

_— = H,—F;) =0. 3.22
dt? 0 (VH, or 1 ( )

Moreover, assuming w.l.o.g. that the sliding flow has a local minimum at the bifurcation
point, we also require:

LRGO.0|
dt? -0
ie.,
B2 H,(,(0, 1)) OH, OF,  O%H, oF, -
dt2 =0 6.’E a,’E 1 8$2 1 <v U aiL' 1) +< 3:172 ’ 1) > 0 (3 3)

Under the assumption that 93 is flat ((3.23)) becomes:

d*Hy(5(0,1)) _ OF)
T o = <VHU, %F&) > 0. (324)
Using (3.15) for VH,,, we obtain:
d*H(¢1(0,t)) o \*
_ =(VH,| — ) F; . .2
Gl = qom (52) Ry <o (3.25)

4 The Discontinuity Mapping

As mentioned in the introduction, the main aim of this paper is that of presenting a comprehensive
derivation of appropriate local mappings associated with each of the four sliding bifurcation events
for n-dimensional piecewise smooth dynamical systems. For this purpose, we briefly outline here
the concept of so-called discontinuity mappings which was first introduced in [28]

The discontinuity map can be defined as the correction to be made to trajectories of a piece-
wise smooth system in order to account for the presence of the switching manifold (see Fig. 3).

Specifically, consider a periodic orbit, of period T, such as the one shown in Fig. 3 and suppose
one wishes to construct an appropriate fixed time T-map, say I'. To do so, say T the time taken
by the orbit to go from some point A to its first intersection, B, with the discontinuity boundary,
Y. . Then label T5 the time spent by the orbit on the other side of the boundary and T3 that
needed to get from the exit point C back to A. The trajectory from A back to itself would then
be described by the composition of low ®; and ®3. Namely, one would follow flow ®; for time
Ty, then switch to flow @4 for time 75 and finally get back to A by considering flow ®; for time
Ts.

Starting from nearby points, one would need to adjust the times in order to take into account
correctly the position of the discontinuity boundary. Alternatively, one could keep the flow times
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Figure 3: A periodic orbit in a piecewise smooth system

unchanged but consider appropriate corrections. In particular, such correction mappings should
be applied between flows ®; and ®5 and again between flows ®9 and ®;. Namely, the map from
a point, z, close to A would then be given by:

F(.’L‘) = (I>1(',T3) [¢) DM21 (@) (I’z(',TQ) @) DM12 (e} @1(.’1}',T1),

where DMi9 and DMo; are labelled as zero-time discontinuity maps (ZDM). In this sense, the
discontinuity map represents the correction brought about by the presence of the switching man-
ifold.

Similarly, if one wants to construct a Poincaré map for a given orbit from some Poincaré
section back to itself, similar maps can be introduced which take the name of Poincaré disconti-
nuity maps (PDM). Instead of considering fixed times, in this case PDMs introduce appropriate
corrections to flows between starting and ending transversal sections (for further details see [29]).

Note that a particular ZDM is applied between a given inflow and a given outflow. It consists,
as will be detailed in the rest of the paper, of consecutive flow lines starting with the inflow and
ending with the outflow so that the total time is zero. For a PDM, we would start from a
section transversal to the inflow and end on a section transversal to the outflow. In particular, a
PDM can be constructed out of a ZDM by restricting the initial points to the inflow-section and
considering an appropriate projection of the endpoints to the outflow-section. This in turn can
be also interpreted as changing the time spent in the outflow, i.e.: instead of achieving zero time
(ZDM), we flow until hitting given section (PDM).

These mappings have been shown to be an invaluable tool in characterising bifurcations in
piecewise-smooth and discontinuous dynamical systems [28],[30],[31],[29]. As will be shown in
the rest of the paper, they can be used to describe analytically the local dynamics of the system
at one of the sliding bifurcations described in Sec. 3. In the rest of the paper we shall show that
there is a fundamental difference between normal form maps associated with different sliding
events.

5 Normal-Form Maps for Sliding Bifurcations

Using the concept of discontinuity map briefly outlined above, we now present the derivation
of the normal form maps for each of the four cases discussed in Section 3. In so doing we will
assume that the vector fields Fi, Fy, F; are well defined over the entire phase space region of
interest. Therefore, we will suppose that the corresponding flows can be expanded as a Taylor
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Figure 4: A schematic representation of the ZDM derivation for sliding bifurcations of type I
series about the bifurcation point z* = 0, t* = 0 as:

bi(z,t) =z + Fit + ait? + bt + ¢;t> + diz?t + ejxt® + fit* + gixdt + hia®t? + jixt® + O(5),
(5.26)

where i = 1,5, O(5) indicates terms of order equal or higher than five and:
10F; aF- F; , (0F;\? 16%F;
; —F;, b ;= F F =
%= 20 bi= “~% ( o2l t <3m) Z)’ di 2 0z?’
82F 1 [8°F; 0°F; (  OF; OF;
“a= ( ( )) 24[6333 ’+8x2(16m+8w z>+

L (OPFOF: | ma (95 I R T 83FF+@82E-
922 9z | 3:1:(92 9z ) T T s M 973 oz 012 )’

X 2 1. X 2 1. i 92 1. 3
ji:E[BFZ ), PFOF . 0°F  0F OFO°F, @]'

oz3 " ° 0z?2 Oz i or2 ' oz +6m o2 ' oz
(5.27)

Note that we have used a shorthand notation here for the higher-order derivative terms, for

example

»PF, 5 PF;

(9:v3 - O0r;z;x
ijik=1,2,3 Ik

:I,‘iil,‘j.’Ek .

In what follows, we shall continue to use this shorthand, with care taken to correctly evaluate

the derivative tensors when required.
For each case we shall consider e— perturbations of the bifurcating trajectory, dividing the

derivation in different steps.

5.1 Case I: Sliding bifurcation type I

The bifurcation scenario corresponding to this case together with a schematic representation of
the map derivation is shown in fig. 4. Here we can see the bifurcating trajectory ¢ (0,t) crossing
3 at the point z* = 0 lying on its boundary 9%~ . In order to derive the ZDM, we consider
a perturbation of the bifurcating trajectory such that the new trajectory hits the sliding region

9



3 at some point, say exg € 3. The trajectory is then constrained to evolve within )y following
the sliding flow ¢s(exg,t). Under condition (3.18), the system evolution hits the boundary of the
sliding region 3 after some time, say &, at the point Z := ¢, (exo, d). The system evolution then
leaves the plane following ¢4 (z, t).

The zero-time discontinuity mapping or ZDM in this context is the correction that needs to
be applied to the flow at point ezy in order to account for the presence of the sliding region.
Specifically, this correction must be such that the system evolution across the surface may be
described entirely by applying the discontinuity map and using flow ¢;. As depicted in Fig. 4, the
ZDM maps ez to some point, say xy. From z; the trajectory then evolves through z following
flow ¢1. Thus, all the important information concerning the presence of the switching manifold
3 and its influence is indeed captured by the ZDM.

Our aim is to get an analytical expression for the ZDM. To do so we shall proceed in two
steps: (i) we evaluate the trajectory from the point ez to the point Z following ¢ for time ¢; (ii)
starting from Z we follow ¢; backward in time for the same amount of time as in (i), reaching
the final point z;. Note that the elapsed time from exq to z; equals 0.

5.1.1 First step

Let z,(t) = ¢1(0,1) be the bifurcating trajectory and let us consider perturbations of z,, of size
e:

z(t) = ¢s(ex, t) (5.28)
for some zy which we assume to be such that:
(VHy, z0) >0 (5.29)

The condition above ensures that for £ > 0 we analyse the trajectory which crosses the switching
manifold within the sliding region . If ¢ > 0, then at some time ¢; = § the perturbed trajectory,
z(t), will cross the boundary of the sliding region ¥ at x = x given by:

T = ¢s(exo,d) = exg + 0F, + 6%a, + edbszo + 03¢y + 626dsx§
+ed?esmg + 64 fs + 63(593:38 + 62(52h5$(2) +e6%j,10. (5.30)

We wish to define § to be the time such that H,(Z) = 0 which, since %~ and % are flat to
leading order, implies:

(VH,,z) =0 (5.31)
Using (5.30) for Z, (5.31) becomes:

€xoH, t+ 5F5Hu + (52(151{“ + 6(5(b5$0)Hu + (5363}1“ + 82(5(ds.'L‘§)Hu + 8(52(63$0)Hu
+0* forr, + €°0(950) m, + €70%(hs0) 1, + €6° (jsmo) m, = 0, (5.32)

where the subscript H, denotes the component of a vector quantity along VH,, i.e.
Yu, = (VH,,Y). (5.33)

We solve (5.32) for § as an asymptotic expansion in €. To establish a leading order term of the
asymptotic expansion we will balance the first and the second term of (5.32). This gives the
asymptotic expansion with the leading order term of O(g). Solving (5.32) for § as an asymptotic
expansion in ¢ with the lowest term of order O(g) gives:

§ = y16 + 70 + 736> + O(e). (5.34)

10



After substituting (5.34) into (5.32) and solving for coefficients: 1, 2, y3 we get:

<VH’1L7"E0>
= -0V 5.35
90! V. F.) (5.35)
2
__7ilVHy, as) + 71(VHuy, bso)
2= (VH,, Fs) (5.36)
_ _(72<VHuabs~TO> +')’1<VHuads~T%> +’Y%<VHU,CS>+
o= (VH,, F's)
+27172<VHU7(15> + 7%<VH1“63370>) (5 37)
(VHy, F's) '

Since condition (3.16) for sliding type I demands the denominator of (5.35) to be negative and
the numerator of (5.35) to be positive (condition (5.29)), -1 is positive. Thus, our asymptotic
expansion is consistent. After substituting (5.34) into (5.30), we get also the following leading-
order expression for z:

Z=ex1+ex2+exs (5.38)
where:
x1 = Zo+mnks, (5.39)
X2 = 72Fs+77as + nbsxo, (5.40)
x3 = 7Fs + zimds +ics + 2v172as + Y2bsTo + Toess- (5.41)
(5.42)

5.1.2 Second step
We now have to consider the evolution of the perturbed trajectory backward in time from the
point T to some final point x 7, defined as:
Ty = gbl(:i‘, —5) ~1—0F + (52(1,1 — b1 — 5361 —
0z%dy + z6%e; + 6t f1 — 73091 + 6% 3% — 7035). (5.43)

Substituting (5.34) and (5.38) into (5.43), we can express z in terms of the initial perturba-
tion €. Collecting terms at subsequent powers of ¢ yields the following expression:

zr = (1 —mF)e+ (x2 +via1 — P — xambi)e® + O(e%). (5.44)

Let us substitute (5.39) and (5.40) for x; and x29, respectively. After carrying out simplifications
we get the following expression for z; to leading order:

(VHy,z0)?

i i, 7y (P2 E)E (5.45)

Tp = €T —

Thus, the ZDM for sliding type I can be written as:

if (VH <0
D(wo) =4 | . (VHuy,20) <0 (5.46)
exg+e“v+ 0(e’) if (VHy,zo) >0
where:
1 <V.Hu,.7,'0>2
= WV Rw I p @y, 4
4 <VHU,F1>( 2 1) (5 7)
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Figure 5: Schematic representation of constructing the ZDM for the case of grazing sliding
bifurcation

Expression (5.47) is well defined because of condition (3.17) and non-zero, since condition (5.29)
yields (VH,,zg) > 0 and Fy # F;. Using (3.15), (5.47) can be expressed solely in terms of vector
fields Fy, F5 and VH as:

(vH, 9y,

Fy — FYy). 4
VH B)VE, %%Fl)( y — 1) (5.48)

N =

5.2 Case II: grazing sliding bifurcation

As shown schematically in Fig. 5, in this case a section of the bifurcating trajectory, x,,(t) =
$1(0,t), evolving entirely in subspace G (above the switching manifold), hits tangentially 9%~
at the point £* = 0. Again, we consider the motion of a trajectory perturbed around the origin.
We suppose that the new trajectory hits the switching manifold, ﬁ], at some point, say z and is
then confined to evolve on 3 until reaching its boundary, 9%, at the point £. Afterwards, the
trajectory zooms off the switching plane ¥ following ¢ (Z,t).

In the case of grazing-sliding bifurcations, the construction of the ZDM requires three different
steps: (i) firstly, we consider the evolution of the trajectory from the point ez backward in time
to the point Z € 33; (ii) we then study the sliding motion from Z to the boundary of the sliding
region 8%, (iii) finally, we consider the evolution along ¢; from the point Z to some final point
zy. In so doing, we require that the elapsed time to get from the point exo to z; is equal to 0.

5.2.1 First step

Say =, (t) = ¢1(0,t) the trajectory undergoing a grazing-sliding bifurcation and consider the
trajectory:

z(t) = d1(exo, 1), (5.49)
for some zy which we assume to be such that:

(VH, z0) < 0. (5.50)

12



This condition ensures that the perturbed trajectory crosses ¥ (twice) close to z*. In fact, this is
equivalent to leading order to requiring that the trajectory has a negative local minimum value
near the origin as such a minimum value is given by:

e(VH,z0) + O(£?). (5.51)

Under these conditions, if € > 0 is sufficiently small there exists some time #; = —¢ such that
the trajectory, x(t), crosses the switching manifold ¥ at a point z within the sliding region .
Specifically, z, will be given by:

T = ¢1(exg, —0) = exg — 6F) + 6%a; — edbyzg — 8¢y — 525d1x3
+edleimo + 641 — e35g123 + €262 hyxf — €6 j120. (5.52)

We wish to define ¢ to be the time such that H(Z) = 0, which since H(0) = 0 and ¥ is flat,
implies:

(VH, ) = 0. (5.53)
Using (5.52) for z, (5.53) yields to leading order:

exon — 0F g + 6%a1y — ed(bizo) g — 63c1m — 525(d1x(2))H +e0?(e1z0)m
+(54le — 635(911'8)]-[ + 62(52(h1$g)y — 653(j1.’1,‘0)H ~0 (554)

We note that second term in (5.54) is nought since condition (3.18) yields (VH, F;) = 0.
Solving (5.54) for § as an asymptotic expansion in /¢ gives:

§ = MVE +moe +36¥% + O(7). (5.55)

Substituting (5.55) into (5.54) and solving for 1, 2, 73, we get:

—ToH VH .T()
v = ‘/ \/ LRV (5.56)
' Ox

1 (b
vy = 2'7101H+ 120)H , (5.57)
aiH

1 —aim — ¥ (zoer)m + v2(brizo)m + 3vivecim — V1 fim)
n = . (5.58)
Y101H

Finally, substituting (5.55)—(5.58) into (5.98) and collecting terms at subsequent powers of /e,
we obtain:

T = x1ve + xae + x36° + O(e?), (5.59)
where:
x1 = —-mk, (5.60)
X2 = a0~k +ia, (5.61)
Xs = —73F1+ 2717201 — e — yibio. (5.62)

5.2.2 Second step

Having derived an expression for z, we need to consider now the subsequent sliding motion along
3. In particular, the system trajectory starting from Z will be constrained to evolve along the
sliding manifold for some time, say A, until reaching its boundary at the point Z.

13



Using again Taylor series expansion, we can get an approximate expression for & = ¢,(Z, A)
as:

& ~ I+ AF,+ A%, + AbT + Adcy, + Adyz?
+A%e, 7 4+ A'fy + Ago@® + A2h,z? + A3,z (5.63)

Now, since Z lies on the boundary of the sliding region, 9%, the following condition must hold:
(VH,,z) = 0. (5.64)
Applying (5.64) to (5.63) we get:

Zy, + AF,p, + Mgy, + A(bsZ) g, + Adcsm, + A(dsz?)y,
—|—(A265.7_,‘)Hu + A4szu + A(gsjs)Hu + A2(}7*551_;2)Hu + Ag(jsi)Hu ~ 0.

Solving (5.65) for A as an asymptotic expansion in /¢, ignoring the trivial solution A = 0, we
obtain:

A = i/ + e + 1532, (5.65)
where:

Vi =7, (566)

+v2, agg, + x1vib
vy = _ XeH, T Vipg,%sH, T X1V1 SHu’ (5.67)

FsHu

3 FsHu

n (Xles)HuV% + 2vy1a5, + V%CSHu (5.68)
FsHu

5.2.3 Third step

The last step describes the evolution of the trajectory from Z to the point z; obtained by
considering flow ¢; backward in time. Specifically, we have:

Ty = ¢1(i‘,5 — A) =T+ (5 — A)Fl + (5 — A)2a1 + (5 — A)bl.’i + ((5 — A)scl + £2(5 — A)dl
+ 20— A)2%e + (6 — A f1 + 2300 — A)gr + (6 — A)2hia? + 2(6 — A5y (5.69)

Substituting (5.55), (5.59), (5.63), (5.65) into (5.69), we can express z; in terms of the initial
perturbation €. Namely, collecting terms at subsequent powers of /¢ yields:

zr = (x1 +11F(n — vi)Fi)Ve + (x2 + a’sV12 + 1o Fy +
(71 — v)bi(x1 + 1 Fs) + (71 — v1)2a1 + (v2 — vo) Fi + bsxivi)e + O(%/%).  (5.70)

Since, according to (5.60) and (5.66), 1 = 1 and x1 = 1 F; then the term at /e simplifies
to 0. Moreover, using (5.60), (5.61) and(5.66), we get:

zy &~ (yray+ 20 — bYi Fi + agyt) € (5.71)

which, after some further algebraic manipulations, yields to leading order:

Tf = Ex) — (%(FQ — F1)> £+ O(3?). (5.72)

14
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Figure 6: A schematic representation of constructing the ZDM for the sliding bifurcation type
IT.

Under our assumptions, Fy # F», (VH, Fy) > 0 and, according to (5.50), (VH,zy) < 0. Hence,

(5.72) is non-zero and well-defined.
In conclusion, the local normal-form map associated to a grazing sliding bifurcation is piecewise-

linear and can be written in the form:

ET if <VH, :Eo) Z 0
D(zg) = , 5.73
(o) {sxo +ev+O(e3/?) if (VH,z) <0 (5.73)

where
<VH , 370)

wE ) ) (5.74)

VvV =—

5.3 Case III: sliding bifurcation type II

In the switching-sliding bifurcation scenario, the bifurcating trajectory is characterised by hitting
the sliding region on its boundary and then sliding away from it along the switching manifold
(see Fig. 6). Let us consider a new trajectory hitting the switching manifold outside the sliding
region in the neighbourhood of the point z*. Let’s say exg the point at which the new trajectory is
rooted. The ZDM in this case represents the correction that must be taken into account in order
to describe locally the entire trajectory using just the sliding flow ¢5. The analytical construction
of the ZDM proceeds in two steps: (i) firstly we consider the system evolution from ex( using
flow ¢; until it reaches the sliding region at the point Z after some time ¢; (ii) then we flow
backwards in time for the same amount of time from the point z using the sliding flow ¢;. As

usual, the ZDM is then the mapping from ez to z;.

5.3.1 First step
Let z,,(t) = ¢5(0,t) be the trajectory which undergoes a sliding bifurcation type II. We consider

e-perturbations of z,(t) of the form:

z(t) = ¢s(ez0, 1), (5.75)

for some zy which we assume to be such that:

(VH,,zo) <0. (5.76)
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Condition (5.76) ensures that, for ¢ > 0, the trajectory crosses the switching manifold within the
sliding region 3.

Firstly, we evaluate the flow ¢ from the point ez until its first intersection with the sliding
region, say T. Assume such intersection to take place after some time §, we have:

T = ¢i1(exp,0) mexg+ 0F + 82a;1 + edbizg + 03¢y + 62(5d1$%
+€5261£L‘0 + (54f1 + 835911}3 + 6262h1$(2) + 863j1.’E0. (5.77)

We wish to define § to be the time such that H(z) = 0, which since H(0) = 0 and X is flat,
implies:

(VH,z) = 0. (5.78)
Using (5.77) for Z, (5.78) yields that to leading order:

exom + OF 1y + 0%a1g + e8(bizo) g + 03cry + 82(5(d1w%)1{ + e6%(e1wo) g
+(54le + 635(91:53);1 + 82(52(h1$g)]{ + 63 (jlwo)H =0. (5.79)

The first term in (5.79) disappears since the point z( lies on the switching manifold by definition.
Moreover, at the bifurcation point, we also have(VH, F1) = 0, thus the second term of (5.79)
vanishes.

Solving (5.79) for § as an asymptotic expansion in € with the lowest term of O(e) gives:

§ = yie + Y22 + 362 + O(e?), (5.80)
where:
(VHy, o)
=-2—— 5.81
,Yl <VHu,F5>, ( )

2 2
Yo = _n(dizg)m + viewm + (61“"’)’”1), (5.82)
(2v1a1 + (b1zo) 1)

_eldizg)m + (M) ayi + gregy + 3w 4
(bizo)m + 271018

_ Yawm + i fur +2(eio) mmive + 73 (@i m

(1zo)m + 2v101m '

Y3 =
(5.83)

Note that the analytical conditions for the sliding bifurcation type II, Eq. (3.19, guarantee that
such asymptotic expansion is consistent.

Finally, substituting (5.80)into (5.77), we get the following expression for Z (we shall consider
terms up to third order):

T=ex1+ex2+e X, (5.84)
where:
X1 = wzo+mk, (5.85)
x2 = 7P +77a +vibixo, (5.86)
xs = P +aindi + e + 2miyear + zovebt + zoeryr. (5.87)
(5.88)
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5.3.2 Second step
To obtain the ZDM, we now have to solve the system backward in time using flow ¢, starting
from z for time —d. Using again appropriate Taylor series expansions, we get:
T = ¢5(%,—0) = T — 6F; + 6%a5 — 0bs7 — 6°cs — 67%d
+z6%es + 61 fs — T38gs + 62T — T6° 5. (5.89)
Using (5.80), (5.84), we can then express z; in terms of the initial perturbation e. Namely,
collecting terms up to third order yields:
zr = (x1—nFoe+ (x2 +71as —12Fs — xambs)e”
H(=73Fs + x3 — (e + x2m)bs + x177es — xTdsm + 2717205 — 7i¢s)e” + O(45.90)

Using definitions (5.85) and (5.86) for x; and y2 respectively, we get after some algebraic
manipulation:

T = exg+ve® + O(eh), (5.91)
where:
v = (c1— s+ bsas — bya1)yi + (eszo + €10 — bsbiwo — dsFag — dswo) Vi +
e(dizd — dsxd)y + %VQ(FQ — F)(VH,, x). (5.92)

An explicit expression for v in terms of the vector fields Fi, Fo and F is not reported here
for the sake of brevity. In the special case of linear vector fields, Fi, Fo, F, v can be simplified
to take the form:

<VHUJ$0>3 (aFI

_% <VHuaF1>2 or + %(<VH1“F2> - <VHu,F1>)) (F2 — Fl). (593)

Substituting (3.15) for VH,(z) allows to express the equation above as:

OF; . \3
2 (VH, Tl oF 1 OF OF
v=1 0 ( -+ (VH, % F) — (VH, —11:’2))(1572 — ).
3 (VH, F2)<VH, a—glel)Z ox <VH, Fg) ox ox
(5.94)
In conclusion the normal-form map for a sliding bifurcation of type II can be written as:
if (VH, <0
D) =" | s (VHy,20) <0 (5.95)
exg +e°v+ O(e*) if (VHy,,z9) >0

where v is given by (5.92).

5.4 Case I'V: multisliding bifurcation

We have come now to the last of the four sliding bifurcation scenarios presented in Sec. 3.
As shown in Fig. 7, in this case a segment of the system trajectory lying entirely on fl, hits
tangentially the boundary of the sliding region, 9%~ at the bifurcation point z* = 0.

In order to construct the zero-time discontinuity mapping, we consider, as usual, the trajectory
obtained by applying a perturbation of size € to it, with € sufficiently small. Such a trajectory
is characterised by crossing the boundary 9% at some point, say Z. The system then switches to
flow F1, evolving above the switching manifold, until reaching it again at a point labelled & € 3.
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Figure 7: A schematic representation of constructing ZDM for multisliding bifurcation case

The ZDM in this case represents the correction that needs to be applied to the system flow,
in order to allow the local description of the trajectory entirely in terms of the sliding flow ¢s. To
derive such a mapping we need to consider three different steps (see Fig. 7): (i) we consider the
perturbed trajectory assuming that it crosses the boundary of the sliding region at some time
t1 = —0; (ii) we evolve the system forward using flow ¢; until it reaches the switching manifold,
after some time, say A; (iii) we flow the system using flow ¢, so that the total time spent flowing
forward and backward is zero.

5.4.1 Step I

Let z,,(t) = ¢s(0,t) be the sliding trajectory undergoing a multisliding bifurcation at z* = 0,
t* = 0 and let us consider perturbations of z,, of size € given by:

z(t) = ¢s(exo, t) (5.96)
for some zy which we assume to be such that:
(VH,, o) < 0. (5.97)

As for the grazing-sliding case presented in Sec. 5.2 this condition ensures that the perturbed
trajectory crosses 0%~ (twice) close to z*.

At some time ¢; = —¢ the trajectory, z(t), crosses the boundary of the sliding region at = = .
Using (5.26) we then obtain:

z = ¢s(exy,—0) mexg— 0Fs + 62a5 — e0bgzg — 63cs — 825ds:1:g

+edlegzg + 6t fy — 63595558 + 625211355% — e63jx0. (5.98)
We defined ¢ as the time such that H,(z) = 0, thus, we have:
(VH,, ) = 0. (5.99)
Hence, substituting (5.98) in (5.99) we obtain:
exom, — 0Fsm, + 6%asm, — ed(bszo)m, — 6°csm, — e20(dsxd) mr, + €62 (eswo) m,

+6% o, — €36(gsxd) m, + €262 (hsx?) 1, — €63 (jsxo)p, = 0. (5.100)
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The second term of (5.100), —§(V Hy, F), is zero because of the general conditions for sliding
bifurcations reported in Sec. 3.2. Thus, solving (5.100) for § as an asymptotic expansion in /e
yields:

§ = 1VE + 72 + 7136%% + 4(e?) + O(7/?). (5.101)

—ZLo0H, _ (VHy, zo)
mo= g “BFI (5.102)
asH, H,, Bz >

1 ’}’1 CsHu (b .’E()

where:

— 5.103

2 9 asm, “s ( )
1 —2 2 b 2 — 4

vy = L Vaasi, — Vi (@oes)m, +Y2(bsTo) m, + 3ViV2CsH, — Vi szu)' (5.104)
2 ’YlCLSHu

Note that for the sake of brevity, we omit the explicit expression for 4 which is particularly
cumbersome and can be easily obtained by means of an algebraic manipulation software such
as Maple or Mathematica. Conditions (3.24) and (5.97) guarantee that also in this case the
asymptotic expansion performed is well defined.

Substituting (5.101)—(5.104) into (5.98), we obtain an expression for z of the form:

T = x1Ve + xo¢ + x36” + xa€” + O(7/?), (5.105)
where:
x1 = —7Fs, (5.106)
x2 = zo—7Fs +ias, (5.107)
X3 = —7Fs+ 271705 —7ics — mbso, (5.108)
xe = (v +73)as — y2bszo + Tovies + i fs — aFs — 3yiv2cs (5.109)

5.4.2 Second step

We now study the motion of the trajectory after it leaves the sliding region at the point z. The
trajectory then follows flow ¢, for some time, say A, until it reaches the next intersection with
the switching manifold at the point & = ¢1(Z,A). Expanding the flow as a Taylor series about
the origin, we can express & as:
& ~ T+ AF + A%+ AbiZ + Adcy + Ady7?
+A%e1 7 + At f + Agi1 7P + A%h 72 + A3 7. (5.110)

Since £ lies on the switching manifold we have:
(VH, z) = 0. (5.111)
Substituting (5.110) into (5.111) we then obtain to leading order:

Ty + AFig + Aaig + A(h12) g + Aeryg + A(diz2%) g
—|—(A261.f)H + A4f1H + A(gl.%?’)H + A2(h1£2)H + A?’(jl.T)H =0. (5.112)

Using the general conditions for sliding bifurcations reported in Sec. 3.2 and (3.21) together
with the fact that z lies on the switching manifold , it is trivial to show that that the first three
terms of (5.112) vanish. Moreover, since Z belongs to the boundary of the sliding region, we have
(VH,,z) = 0. Using (3.15), this implies that the fourth term in (5.112) is also null.
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After substituting for (5.105) into (5.112), we solve (5.112) for A as an asymptotic expansion
in \/e. Ignoring the trivial solution A = 0 we obtain:

A = v\ + e + 1/353/2 + €2, (5.113)

where:
_ Sapm t+anyiy/ -3+ % "
V) = 201H ’ (5 )

vy = —vi((xee1)mv1 + 20ax2d)m + g m + (x1i1) mv? + v fim + (X2ha) gvi) (5.115)

2(x1e1) v + (X3d1) g + 3vicim

—((exx1) uv + 2(e1x2) mvave + (e1xs) mv? + 2(dixaxe) mve + 2(dixixs) Hv:
(ZXIel)HVl + (X%dl)H + 3vl2ciy
_|_391HV1X%X2 + (dix3) mv1 + 3(jix1) mv1®ve + (jixe)mvi + 3vivicin
(2x1e1) g + (2di)m + 3v12ciy
+vo(g1x) m + 43 fig + 2(hix3) arive + 2(hixaxe) avl?)
(2x1e1)mv1 + (X3d1) g + 3v12ciy

vy =

_l’_

: (5.116)

We omit for the sake of brevity the explicit expression for v4 which is particularly lengthy and
does not add any extra information. (As mentioned earlier, this can be obtained by using any
algebraic manipulation software.)

Note that, as discussed in Remark 1 in the Appendix, under the assumption that > and by
can be flattened, applying (A.5) to (5.114) we obtain:

vy = 371. (5.117)
Finally, after substituting (5.113) into (5.112) yields:
& = 1h1v/E + 1hae + h3e/? + hye® + O(°/2), (5.118)
where:

Y1 = x1+uwk, (5.119)
P = x2+wvibixi+ P+ via, (5.120)
Y3 = wbixe + vabixa + 3Fy + X3 + 2vima; + vier + xividy + xivies, (5.121)

Ya = vibixs +vebixe + vsbixa + (2uivs + v3)ar + a1 + vixigr + 2xaviveer +

+xavier + x1v3d1 + (Xive + 2x1x2v1)d1 + X4 + Xaviky + 3vivecy + vaFy. (5.122)

5.4.3 Third step

The last step describes the evolution of the trajectory from & to zy = ¢4(&,6 — A). We use again
Taylor expansion evaluated at the bifurcation point to obtain an approximate expression for z.
Thus, we have:

i+ (6 — A)Fs+ (6 — A)?as + (6 — A)bsi + (6 — A)cs + 3%(6 — A)ds
+2(6 — A)es + (6 — A fs +3%(6 — A)gs + (6 — A)?hsi? 4+ 2(6 — A)35s. (5.123)

Substituting (5.101), (5.105), (5.110) and (5.113) into (5.123), we can obtain an expression for
zy in terms of the initial perturbation €. Collecting terms at subsequent powers of € yields the
following expression for z; to leading order:

zp = E1VE + e + £367 + &7 + O(e)™ (5.124)
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where

&= (a+mb), (5.125)
& = (xe+via1+wnF +vibixi+
(x1 + 1 F)(y1 —vi)bs + (11 — v1)%as + (2 — 1) F), (5.126)

and expressions for €3 and &4 are reported in the Appendix.
Substituting (5.106), (5.107) and (5.117) into (5.125, 5.126), we can show that £ = 0 and:

& = zo +Yias + viar — yibi Fy. (5.127)

Eq. (5.127) can be further simplified considering that at the bifurcation point Fy = F; and thus,
as shown in the Appendix (Remark 1), a; = as. Moreover, from the definitions of the coefficients
of the Taylor expansion (5.26), it follows that bsF' = 2as; = 2a1. Thus, (5.127) reduces to &3 = .

To obtain the leading order term of the local mapping we need to find an expression for the
first non-vanishing term of ;. The next term under consideration stands at £2 in (5.124) and
is characterised by the coefficient £3 . This can also be shown to vanish to zero (see Remark 3
in the Appendix). Thus, to leading order the correction to be made to ez in order to account
for the presence of the switching manifold (the ZDM) is at least of order O(¢?). Remark 4 in the
Appendix contains an explicit expression for this term and its coefficient &4.

Having established the leading-order term of the ZDM for the multisliding bifurcation case,
the general form of the map can be written as:

D(.’Eo

if (VHy,zo) >0,
):{6370 iV Huy20) 20 (5.128)

exo + €264+ O(e%?) if (VH,, zo) <O0.

where, as mentioned above, the explicit expression for &4 in general case is reported in the
Appendix.

We will present here the resulting expression for &4 in the case of Piecewise Linear vector
fields Fy, F5 and their constant difference. After lengthy algebraic manipulations the resulting
expression yields:

9 (VHy,z0)* OF, 9 (VH,, )2
T4 By = F)+ o o am oy YV, F2) (P2 — 1), 5.129
€4 4(VH,, L) 83:(  — F1) S(VHU,%E)( us F2) (F2 — Fr) ( )

which is non-zero if non-standard cancellation occurs. Substituting in (5.129) for VH, (3.15)
yields the above equation to take the form:

OF . \2

8F1 <VH, %F2>

= _2 (VH, 8x1$0> B o -
o 2<VH;F2)(VH,(%)2F1)(&L‘ (VH, Fy) >(F2 F1)- (5.130)

6 A representative example: relay feedback systems

We use a three-dimensional representative example to give numerical confirmation of the results
presented in the paper. Specifically, we study the normal form maps of sliding bifurcations in
the three-dimensional relay feedback system analysed in [20, 26, 27]. In so doing, we perform a
comparison between analytical normal form maps and numerically computed ones.

Third order system. Matrix representation

We consider a third order relay feedback system having the following state-space representation:
= Az + Bu,

= _Sgn(y)7
= Cu, (6.131)

21



where:

—(2¢w+A) 1 0 k 1
A= —(2€Awr+w?) 0 1 ), B=| 2kap |, C=1[0 : (6.132)
—Aw? 0 0 kp? 0

Thus, vector fields F; and Fy may be written as:
F1=A.T—B, FQZA.’L'-l-B

Applying Utkin’s equivalent control method we can express the vector field F governing the flow
on the switching manifold as:

F, = Az,
where A; can be expressed as:
0 0 0
As=1 0 —20p 1 |. (6.133)
0 —p? 0

In the case considered H(z) = Cz and H,(z) = — %‘%‘T . Hence, the switching manifold is defined
as:

Y :={zecR: Cz=0} (6.134)

where the boundary of the sliding region is given by:

CAz
CB

The dynamics of the system presented has been extensively studied numerically in [20, 26, 27].
We shall note here that the sliding bifurcation type I, the grazing-sliding bifurcation and the
multisliding bifurcation have been detected in this system but no evidence of switching-sliding
bifurcation has been found. In what follows we will present the local mappings for these three
cases of sliding bifurcations using numerical simulations. We will compare numerical results with
analytical expressions obtained using the results presented in Sec. 5.

In general, the bifurcations mentioned above occur in the relay system under investigation
at points z* = (z7,23,23) # 0. Since, our analytical derivation requires the bifurcation point
to be located at z* = 0, in order to compare numerical and analytical results an appropriate
transformation of the matrices A, B and C needs to be applied. After translating the bifurcation
point z* to the origin, the matrices A, B, C take the form:

OVt :={zcH: - = +1}. (6.135)

—(2¢w+2X) 1 0 0 2k
A= —(2€wr+w?) 0 1|, Bi=| —2kop+z} |, By=| 2kop+az} |. (6.136)
—w? 00 —kp? kp?
c'=(10 0), (6.137)

The applied transformation causes matrices B}, B, to have a different form for the transformed
vector fields F| and Fj, but the matrices A, C stay the same for both vector fields i.e.: F| =
A'z + B}, Fj = A'z + B). We need to apply the same transformation to the vector field Fy
governing the sliding motion. After that we get a new vector field governing the sliding flow:
F! = Az + B! where:

0 0 0 0
Al=|0 —20p 1 |, B.=| —2kop+ z} (6.138)
0 —p> 0 —kp?
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Figure 8: ZDM for sliding bifurcation type I after subtracting identity term

Having transformed the system under consideration in such a way that the bifurcation point
z* is located at the origin, we can now compare analytical expressions of the ZDM derived in
Sec. 5 with numerical results. In what follows, we will derive analytical forms of the ZDM for all
the four cases of sliding bifurcations. We will then validate the analytical results numerically for

the three bifurcation scenarios detected in the relay system under investigation.

6.1 Sliding bifurcation type I
The ZDM in the case of relay feedback system can be obtained from (5.46) after substituting
expressions defining vector fields Fy, Fj into (5.48). Thus, the ZDM can be written as:

z for C'A'z>0

D — 1 Al N2
(z) 1_(CAs) (g B4+ HOT for C'Alz<0.

(6.139)
T IO (CAB)

Following [26], we consider the sliding bifurcation type I observed in the circuit when w = A =
k= —0=1, p= 209885, at the point z* = [ 0 1 9.924404784 ]T. We can now compare
the analytical mapping (6.139) with numerical data. To do so we plot how an arbitrarily chosen
coordinate of some final point scales as the initial conditions are perturbed by an amount ¢ from
the origin. It should be noted here that it suffices to vary one coordinate of the initial point so as
the condition C'A’z < 0 is satisfied. Since, the identity term of the ZDM in figure (8) has been
subtracted a fortiori, the analytical curve converges to 0 at the bifurcation point.

We can see in Fig. 8, that the numerical and analytical curves do converge asymptotically,
confirming our analytical predictions.

6.2 Grazing sliding bifurcation

We consider now the grazing-sliding detected for —oc = p = k = 1, A = 0.05, { = 0.0485, occurring
at the point: z* = [ 0 1 —1.84481226874003 ]T. Using the results of Sec. 5.2, the ZDM in

this case has the form:
T for C'z >0,

D(=) = x—gg,(Bg—Bg)+0(x3/2) for C'z <0
2

(6.140)
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Figure 9: ZDM after subtracting identity term for grazing-sliding bifurcation, plotted x5 coordi-
nate versus z; coordinate

As for the previous case, the numerical and analytical data are compared after subtracting
the identity from the ZDM. The comparison between numerical and analytical data is presented
in Fig. (9).

Again we see a good agreement between the analytical predictions and the numerical sim-
ulations. Our numerics confirm that the mapping has indeed a leading-order linear behaviour
locally to the bifurcation point.

6.3 Multisliding bifurcation in the relay feedback system

We move now to the case of multisliding bifurcations. As reported in [26], a multisliding bi-
furcation is observed in the relay system considered, when A = k = —0 = p = 1, {( = 0.05,
w = 10.24176 and takes place at the point: z* = [ 01 -2 ]T. Using the results of Sec. 5.4,
the ZDM takes the form:

z for C'A'z <0,

D(J)) = 9 (C'Alx)2 , C'A'Bé , , 5/2 o
x_g(C'Bé)(C'A'A'B{) A - 0B, (By — B) + O(z°/#) for C'A'z > 0.
(6.141)

In Fig. (10), we see that the analytical and numerical curves converge asymptotically, con-
firming the quadratic nature of the multisliding normal form map.

6.4 Sliding bifurcation type II

Finally, we come to sliding bifurcations type II. These events have not been observed in relay feed-
back systems. Thus, we limit our presentation to the derivation of the ZDM for this bifurcation
event using the results of Sec. 5.3. Specifically, we get:

T for C'A'z<0

D(z) = 9 (C/A';p)3 . CIA'Bi _ CIAIBé ) / ) o
(6.142)
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Figure 10: ZDM for multisliding bifurcation (after subtracting identity mapping) - range of
perturbation:10~% — 104

The numerical validation of this map is currently under investigation and will be reported else-
where.

7 General Remarks

In Sec. 5 we have derived expressions for the zero time discontinuity mappings in the four cases of
sliding bifurcations. We have shown that the discontinuity mappings consist of two different ex-
pressions on either side of a boundary, with a degree of continuity across the boundary that varies
for the different cases. In [32] we will show how these discontinuities translate into discontinuities
in the Poincaré mapping for a given periodic orbit. Here we shall mention that generally the
type of discontinuity is preserved under compositions with a smooth mappings. Thus, the type
of discontinuity found in the ZDM describing particular bifurcation scenario will characterise the
full Poincaré map.

Since, we have found that in the grazing-sliding case the ZDM has a piecewise linear char-
acter there is a possibility of a sudden bifurcation as an hyperbolic orbit crosses the disconti-
nuity boundary. Since the Poincaré map in this case has a discontinuous Jacobian, the possible
bifurcation scenarios following grazing-sliding can be classified using techniques developed for
piecewise-linear maps (see [16, 8]).

In all the other three cases, dramatic bifurcation scenarios should be expected for non-
hyperbolic orbits. This would then typically be a co-dimension 2 bifurcation, as one parameter
is needed to make the orbit non-hyperbolic, and another to make it encounter the discontinuity.

Nevertheless, if the discontinuity in the Poincaré mapping, say in the second derivative, is
large in magnitude, sliding bifurcations can organise secondary bifurcations. For example, a
saddle-node bifurcation is often observed in numerical simulations as the parameters are further
varied from a multisliding bifurcation point (see [26]).

These and other issues will be discussed in detail in [32].
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8 Conclusions

We have discussed the characterisation of novel bifurcations in dynamical systems with sliding.
In particular, using so-called discontinuity mappings, we derived normal form maps for each of
the four possible scenarios involving interactions of system trajectories with the sliding region. To
obtain analytical leading-order approximations for such mappings, we performed a combination
of Taylor series expansions and asymptotics.

We showed that the leading order term of the local map is quadratic for the sliding bifurcation
type I and multisliding bifurcation, or cubic in the case of sliding bifurcation type II. In the
grazing-sliding bifurcation case the normal form map has a piecewise linear character. Thus, as
shown in [8, 9, 16] if grazing-sliding bifurcation occurs in the system a wide range of dynamical
behaviour may be observed, including sudden jumps to chaos and period-adding bifurcations.

We also discussed how the normal form mappings can be used to analyse the behaviour of
periodic orbits undergoing sliding bifurcations. We should mention here that analysis presented
in this paper captures the dynamics associated with trajectories that are in the close vicinity of
the bifurcating trajectory. Global analysis of periodic orbits still remains an open issue.

Further work shall be directed towards a consistent classification of the possible bifurcations
exhibited by the maps derived in this paper. Ongoing research is devoted to the analysis of
sliding bifurcations in systems of relevance in applications.

A Appendix

A.1 Remark 1

An important result follows from the assumption that X and 9% can be considered linear. Specif-
ically, assuming 3 to be linear we get:

0’H,
= 0. Al
0z? 0 (A-1)
Substituting for aa—Iiu, (3.15) we get:
Hy _ , 0 aHanl (A.2)
or2 "0z \(VH,F) )’ '

Differentiating (A.2) yields:

—0’H OF, 0H O0H 9’F, 0H 0’°H _ 0H 0F, 0OH OF, 0H 0F;
PH, 502 a5 022 as a2 an 2t 5225 5 T 55 s
u_o_O0z? Jz Ox Oz 0z? Oz ox Or 0r Ozr Ox Or Ox (A.3)

0x? <VH, F2>2
2
Both the first and the third term in the numerator of equation (A.3) are 0 since, 52 0. Thus,
since the denominator of (A.3) is positive, (A.1) yields:
8F2 8F1 BQF 1
VH VH — VH,F5) ) =0. A4
(3:1: dr  0x? (VH, F) (A-4)
Rearranging (A.3) we can get that if 9% is flat, the following must hold:
0*F, 1 oOF, oF
H = H H . A5
v 0z? (VH,F,) (V oz v oz ) (A.5)
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A.2 Remark 2

This remark is valid for the multisliding bifurcation case. The general condition for all the sliding
bifurcations ensure that at the bifurcation point F; = Fj. Thus, in the multisliding bifurcation
case terms denoted as a1, as take the same value. Let us express a; as:

1 (8F1 1

as = 5 %Fs + 5 (F2<VHuan) - F1<VHU’FS>>)' (A'G)

We can simplify a; so that (A.6) takes the form:

10F
ag = ia—;FS. (A7)
. 1 0F; 1 .. .
Since as = 58—551FS’ a) = i%Fl and F; = Fi, this implies that a5 = a;.

A.3 Remark 3

In what follows, we present the general expression for the term denoted as £3 in equation (5.124).
To get an expression for {3 we will substitute (5.110), (5.101), (5.113), (5.105) into (5.123). Since
F; = F1 we shall refer to the vector field F; when the vector field F without a subscript is used.
Thus,¢3 has the form:

&3 = ((y3 — v3)F + x3 + 2v11ma1 + xavier + xividi + 2(n — 1) (2 — v2)as + vicr + vibixe +
+wbixi 4 (71— 11)3es + (1 + i F) (2 — 1) + (x2 + viar + voF + vibixa) (11 — v1))bs +

+usF 4 (xa + i F)(y — v1)2es + (x1 + i F)2 (1 — v1)ds)e%/2.
(A.8)

We can simplify the equation above using the fact that a; = as; and substituting for (5.106),
(5.107), (5.109) X1, X2, X3 subsequently. From Taylor expansion it also follows that: dsF? =
3¢, —bsas, di1F? = 3¢y —biaq, esF = 3¢, e1 F = 3c1. Thus, after lengthy algebraic manipulations,
(A.8) takes the form:

&3 = (—3b1’72F + 4bsyo F' + 4agsve — 2y9as + 3bixg + 6901 — 3bszg — 4bs Flvg — FZ/le)’)’l +
+ (6Fbsby + 9c1 + 6bsas — 18a1bs — 9cs — 3biay + 3ashy)7s.
(A.9)

Finally, after further simplifications and using the fact that vy = 3y, b, F = 2a1, b1 F = 2a4
(A.9) can be rewritten as:

&3 =9(c1 — ¢5)73 + (3byxy — 3bszo)y1- (A.10)
Using the fact that 72 = —2 (VHy, z9) and substituting for cs, c1, bs, b1 the elements of
(VHy, - F)

Taylor expansion (5.26). Then, we get:

2 2
(VH,, 25 F) 02”1 " (VH,, T F) \ 0

_(<<VHu,a:o> OFy by, (VHu,20) (8F5)2F5> OF; an%)_

+ Sy —
VH,, 9L F) 022" ° ' (VH,, 2B\ Oz oz ° oz

(A.11)

Expression (A.11) can be shown to be identically nought, noting that:
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oF, 1 1
1. OF _ 90, SPVH, - SFVH,

or ~— 9r
BZFS a OF, a apl _ 9*H,

2 2
OoF; _ ( OF 1

Since the above substitutions simplify (A.11) to nought the local map in the multisliding bifur-
cation case does not contain terms of O(e%/2).

A.4 Remark 4

To get an expression for &4, in (5.124) where &, appears, we substitute (5.105), (5.110), (5.101),
(5.113) into (5.123). The resulting expression yields:

Ex = s+ (P1(vs — v3) + Pa(v2 — v2) + hs(y — v1))bs + (2(71 — v1) (73 — v3) + (72 — v2)%)as +

(74 — va)F + (291 (71 — v1) (72 — v2) + Yoy — v1)P)es + (v — v1)* + gs(y — 1)yt +

3(v1 — v1)%(v2 — va)es + hs(y1 — v1)*Y] + jsbr(m — ).
(A.12)

After substituting (5.106) - (5.109), (5.119) - (5.122) for x1, X2, X3, X4, ¥1, V2, 3,4 We can get
the final expression for &4.
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