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An Analysis of Gipps’ Car-Following Model of Highway Traffic *

R. Eddie Wilsonf

Abstract

A mathematical analysis of P.G. Gipps’ (1981) car-following model is performed. This model is of
practical importance as it powers the UK Transport Research Laboratory highway simulation package
SISTM. Uniform flow solutions and a speed-headway function are derived under simplifying conditions. A
linear stability analysis of uniform flow is then performed, and stable and unstable regimes are identified.
Finally, some numerical simulations for a variety of parameter regimes are presented.

1 Introduction

The car-following methodology for the simulation and analysis of highway traffic, which models vehicles as
discrete entities moving in continuous space, originates with Chandler (1958) [3] and Gazis (1961) [5], but has
recently been the subject of much attention in the applied mathematics and theoretical physics literature.

This interest has been sparked by the model of Bando et al (1995) [2], which possesses the following
property: in certain conditions, a uniform flow of traffic (in which all vehicles move at the same speed,
maintaining constant spacing) can lose stability. This means that small fluctuations to the flow will grow
rapidly, and it has been conjectured that the Bando model thus captures the essence of the mechanism for
flow breakdown and spontaneous traffic jam formation.

Holland (1998) [7] has subsequently identified the same loss of stability effect in a number of other car-
following models. However, one model outside Holland’s framework is that introduced by Gipps (1981) [6].
This model is the basis of the UK Transport Research Laboratory’s traffic simulation package SISTM [10],
and the network simulation software PARAMICS [4], and thus has great practical importance.

Gipps’ model contains a number of parameters which purport to model different behavioural features of
drivers, and is thus rather more complicated than the reductionist models which one usually finds in the
mathematical literature. This degree of realism is desirable for simulation software involved in the normative
testing of particular highway scenarios. However, in such simulations, it can be unclear how traffic flows relate
to particular parameters, without repeating the (computationally expensive) simulation at many points in
parameter space. Thus in our view, there is scope for the mathematical analysis of simplified scenarios: at
the very least, one might identify parameter regimes which merit further investigation with one’s simulation
software.

The aim of this paper is to apply such a mathematical analysis to Gipps’ model. The two principal
simplifying assumptions which will hold for the duration of our analysis are that 1. we consider a single lane
highway only; multi-lane scenarios with lane changing effects are not considered; and 2. we assume that the
characteristics of all vehicles and drivers are the same. This latter assumption simplifies calculations but is
probably not necessary for our analysis to work. When vehicles/drivers differ, it is likely that techniques
similar to those used on the Bando model by Mason and Woods (1997) [8], will extend the scope of our
analysis. Here (in Section 6) we perform some simulations of this inhomogeneous situation: results are
similar to those when all vehicles/drivers are equal, and this justifies our simplified approach.

Our scheme is as follows: in Section 2, we review the details of Gipps’ model, giving a brief description
of the parameters. Strictly speaking, this model gives a large system of differential difference equations.
However, Gipps’ idea was to integrate these equations using a coarse time step equal to the reaction time of
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drivers. This is a crude approach: however, we follow it faithfully, and thus derive a large system of coupled
maps for the discrete time evolution of vehicles’ displacements and velocities. The remainder of the paper
is concerned with the analysis and simulation of the system of maps, rather than the original differential
difference equation problem.

In Section 3, we analyse the uniform flow solutions of Gipps’ model. In uniform flow, all vehicles travel
at the same time independent speed and thus their spacings are time independent. Further if driving
characteristics are the same for all vehicles, the separation h of consecutive vehicles (known as the headway)
will be the same throughout the flow. For safety reasons, vehicles must travel slower if they are closer
together (the classic example being the so-called two second rule of the UK Highway Code [9]). We show
that there is usually a unique uniform flow for any headway h > 0; denoting the speed of uniform flow by
V', we thus find a monotone increasing speed-headway function V(h). We also find an unphysical parameter
regime where the speed-headway function is not well defined.

In Section 4, we consider the evolution of small perturbations imposed on the uniform flow solutions
of Section 3. In particular, we would like to know whether perturbations decay in time (corresponding to
a stable uniform flow) or whether they grow, giving rise to flow breakdown. We conclude with a complex
quadratic characteristic equation for an eigenvalue A, whose modulus must be less than one for stability.

Section 5 continues with an analysis of the quadratic characteristic equation derived in Section 4. This
equation is parameterised by an angle £ € [0,27), which determines the spatial wavelength of the pertur-
bations under consideration. To prove stability of a uniform flow, one must show |A| < 1 for all choices of
& € [0,27). To show instability one need only find a single £ for which |A| > 1.

We give an explicit analysis which shows that the £ = 0 (space independent) mode can only be unstable
in the parameter regime where the speed-headway function is not well defined.

We then present graphs which indicate that if any mode is unstable, then the £ = 7 mode (which has
shortest wavelength) is also unstable. We therefore perform an explicit analysis of the £ = 7 case. We thus
identify stable uniform flows and a physical parameter regime where uniform flow is unstable. We show
analytically that uniform flow is destabilised by reducing the parameters which correspond to 1. drivers’
estimates of the braking of the vehicle ahead, and 2. drivers’ safety margin (a quantity with units time); or
3. by vehicles driving faster. Gipps identified the first mechanism in a primitive numerical simulation: we
now have a complete analytical identification of stable and unstable regimes.

In Section 6, we present some simulations which illustrate the different stability features of Gipps’ model.
In particular, in the unstable regime, we show the formation of travelling waves, which resemble the shocks
one experiences when driving down the motorway. We also indicate that in some parameter regimes, there
are problems with the existence of a physical solution for all positive times.

Further, we show that similar solutions are observed if vehicles are allowed to have different characteristics
from each other, justifying the “all vehicles equal” assumption we make during our analysis.

Finally, in Section 7, we mention some possibilities for further work.

2 Review of Gipps’ model

In this section, we provide the mathematical details of Gipps’ car-following model: see [6] for the derivation.
The model takes the form of a system of differential difference equations involving the common reaction time
7 of drivers. Gipps implements this system by setting the time step in his integration package equal to T,
and here we formulate the (discrete time) system of maps arising from this approach when the Trapezoidal
rule integration scheme is used.

Figure 1 shows the basic situation. We consider a total of N vehicles labelled 1,2,... ,;n—1,n,n+1,... ,N
on a single lane road. Car number 1 is the lead car, and cars move in an increasing = direction, with
displacements 1, 2, ..., and with positive velocities vy, vs, .... The headway of vehicle n is given by
Rn == Tp—1 — Tn, and the length of each vehicle is S,,_; (although we may include a safety distance in this
value into which it is undesirable to encroach, so that h, < S,_1 corresponds to an incident which may
involve vehicles crashing).



Gipps’ modelling leads to a formula

vn(t) + 2.54, T (1 Un(t)) (0_025+ vn_(t))m,

Un (t + T) = min o Vmax Vmax

— B, (% +6) +

B2 (g + 0)2 + B, {2 {Zn_1(t) = 2n(t) — Sno1} — TUA(t) + 7”%:??2 H , (21)

giving the speed of each vehicle at time ¢ 4+ 7 in terms of its speed at the earlier time ¢. If the road is
uncongested and the headway of vehicle n is large, then the first argument of the min is attained, and vehicle
n accelerates freely according to a law fitted from empirical traffic data. (SI units are used throughout.)
Here A, > 0 is an acceleration parameter, and V" is the maximum speed at which driver n wishes to
travel. The parameter 7 corresponds to a reaction time, which Gipps assumes is equal for all drivers.

However, we are interested in congested situations where headways are smaller, and the second argument
of the min of (2.1) is attained. In this regime the speed of each vehicle is limited by the behaviour of the
vehicle in front. The fundamental assumption is that each driver sets his/her speed so as to be able to come
to a stop without hitting the vehicle in front, supposing that the vehicle in front decelerates at no more than
a certain rate. .

To be more precise, driver n estimates that vehicle n—1 will not wish to brake harder than rate B,,_; > 0,
and controls his/her speed so that if this level of braking does occur, then by braking at rate B,,, he/she will
be able to come to a stop without encroaching in the safety distance. Factored into this derivation is that
driver n cannot commence braking until a reaction time 7 has elapsed. However, it is supposed that drivers
also allow a safety margin time 6. This models the conservative behaviour of drivers who select speeds so
that if they commence braking at time @ after their reaction time has elapsed, they are still able to come to
a stop safely.

(Note we have made some notational changes from [6]: in particular positive quantities represent both
braking and acceleration rates, and we use capital or Greek letters to distinguish parameters which are
provided from lower case variables which are solved for. We have also retained the safety margin parameter
0: Gipps sets it equal to = 7/2 at an early stage of his derivation.)

Assuming that all vehicles have the same parameters and all drivers the same characteristics, we may
drop the subscripts from parameters, and note that the second regime of (2.1) can be written

On(t+7) = F(n1(t) — 2 (t), va(?), vn_1(t)), (2.2)

where

F($,4,x) = —B (; +0) + \/[32 (g +ev)2 +B{2(¢—S) — i+ %H (2.3)

The four parameters B, B , 7, and 6 will be the key ones in our linear stability analysis. In particular, the
relative sizes of actual braking B and perceived breaking B are crucial.
At this point, it is instructive to note the partial derivatives of F',

PG00 =BQ, SLFG.0) = =3B, ad L F@h0=2xQ (24
where
Q= [BZ (Z +0)2+B{2(¢—S)—T¢+X—f}]l/2, (2.5)
2 B
= > 0. (2.6)

T Fx)+B(5+06)

Therefore 0F/0¢ > 0, 0F /0y < 0, F/0x > 0. Thus we might talk of Gipps-like models to be those of the
form of (2.2), where the speed of a vehicle at time ¢ + 7 is inhibited by its own speed at time ¢, but enhanced



by the speed of the vehicle ahead, and enhanced by the headway. We use the term standard Gipps model
when the nonlinearity is prescribed by (2.3).

Now let us address how (2.2) can be used to formulate a closed mathematical system which predicts
the positions z,, and velocities v, of all N vehicles for all positive time. The most natural procedure is to
supplement (2.2) with

_xn(t) = Un(t)a (27)

to obtain a system of N + N differential difference equations (rather like a system of differential delay
equations). If initial data for positions and velocities are prescribed for ¢ € [—7,0], and a suitable boundary
condition is prescribed to fix the motion of the lead car for ¢ > 0, then (2.2,2.7) should predict displacements
and velocities of all vehicles for all time. However a boundary condition for the lead car is not required if
the vehicles are placed on a circular road, because vehicle 1 would have its speed determined by vehicle V.
This is our approach from Section 4 onwards.

Note that global existence of physical solutions for ¢ > 0 is not guaranteed: e.g., we have not proved that
the square root in (2.1) always gives rise to a real speed. Indeed, in Section 6 we present simulations which
show how solutions may become complex for inappropriate parameter choices.

The analysis of a differential difference equation system like (2.2,2.7) is technically difficult. However,
Gipps observed numerically that this system behaves well when integrated with time step 7. (Indeed,
reducing computational cost in this crude manner was the motivation for his model.) Thus we analyse
the system obtained by replacing (2.7) with its discretisation by a suitable integration scheme, such as the
Trapezoidal rule

- 1 1
mnltt D) = o) _ 1, () 4 Loa 4, (2.8
T 2 2
which rearranged yields
Tt +7) = 2p(t) + %vn(t) + gvn(t +7). (2.9)

It is not at all clear how the dynamics of the discretisation are affected by the integration rule used. We do
not analyse this question here, but conjecture that the dynamics should be similar for all A-stable integration
schemes. Henceforth, we consider only the system arising from the Trapezoidal rule.

Note that formula (2.9) is not implicit, because an explicit formula for z,, (¢ 4+ 7) in terms of values at the
earlier time step may be derived, since formula (2.2) for v, (¢ + 7) is explicit. Thus we obtain

T T
Tn(t+7) = 2a(t) + S0n(t) + S F(@n1(t) = 2a(t), vn(?), v5-1(2))- (2.10)
The key is to note that values of displacement and velocity at time ¢ + 7 now depend only on values at time
t, and not on values at intermediate times. Therefore, we may dispense with continuous time, and define
tm = to + m7, and let Zp n := Tn(tm), Vm,n := Un(tm), to obtain the system of 2V maps

T
Tm+1,n = Tm,n + SVUm,n + F(xm,n—l — Tm,ns Um,n, 'Um,n—l)a
2 (2.11)

Um+1,n = F(mm,n—l — Tm,n; Um,n, Um,n—l)-

for the discrete time evolution of all displacements and velocities.

3 Uniform flow and the speed-headway function

In this section, we analyse the uniform flow solutions of the system of maps (2.11). In uniform flow, all
vehicles travel at the same speed (v* say), so that their spacings are time independent. Let us also suppose
that all vehicles have the same properties, and the same common headway (h* say). Here we find the speed-
headway function V' which gives v* = V(h*). We expect V to be an increasing function, because (for safety
reasons) vehicles will drive more slowly as their spacing decreases.



Our uniform flow solution takes the form

Umn = V%, Ym,n

3.1
Tm,n = To +muT* —nh*. (3-1)

However, it is more convenient to change variables so that uniform flow is a steady state solution. This may
be achieved by re-casting system (2.11), which describes the joint evolution of displacements and velocities,
as a system which describes the joint evolution of headways and velocities. Noting that

hm+1,n = ZTm+1,n—1 — Tm+1,n; (32)

from (2.11) we may derive

Bnsin = b + 5 @mnot = Oma) + 5 {F (bmnt, Vmnot, Vmn-2) = F(bun,ns Vimns Omin1)} 53
Umtt,n = F(Rmny Umons Umon—1)-
Uniform flow solutions are now steady state solutions in the form
hmn =0, Vmn=10", Vm, n. (3.4)
It follows from (3.3) that such h*, v* satisfy
v* = F(h*,v*,v%). (3.5)

The desire is now to consider this formula and isolate v* as a function of h*, and thus give the speed-headway
function. Consider the definition (2.3) of F: we isolate the square root and square to give

* T 2 — 2 T 2 * U*z
v+ (F+o)] = |52 (5+0) +B{20r -9 -+ 1), (56)
which may be expanded and re-written as a quadratic in v*,
B *2 * *
5~ 1)v*" =2B(t +0)v* +2B(h* — S) =0. (3.7

In the special case B = E, this is a linear equation for v* whose solution is trivial. However, the predicted
v* is only valid if 0 < v* < V™2*_ To see this, first note that v* < 0 corresponds to an unphysical flow where
vehicles reverse. Secondly, note that if v* > V™2 then the derivation of (3.5) is invalid. This is because
the first argument of the min of (2.1) is negative (hence less than v*) and is thus attained. To expand upon
this idea, note that if all velocities are steady and equal to v*, then (2.1) yields

v* v* 1/2
v+ At (1— > (0.025+ > , F(h*,v*,v%)

.
v = min }/ max }/ max

(3.8)

Hence uniform flow with v* = V™% ig a solution provided h* is sufficiently large for F'(h*,Vmax jmax) >
Vmax to hold, so that the first argument of the minimum is attained.
Thus for B = B, we arrive at the speed-headway function

h—-S
= mid [0, =, V™ 3.9
V() = mid 0. 225 v, (39
where
mid(0, v, V&) := min {V™* max(0,v)}, (3.10)

defines the mid function. See Figure 2. Note in particular, for Gipps’ recommended parameter values
T =2/3s and 6 = 7/2, the linear regime of (3.9) corresponds to a one second car-following law.



For B # B, (3.7) may be solved to give

. B(r+6) 2(h* — S) (55_1)
_@li - B(T+£2 ’ (3.11)

using the standard formula for the solution of a quadratic equation. The solution possibilities are now
governed by whether B>B , Or vice versa.

For B > B , the magnitude of the square root is larger than one, so one obtains roots of opposite signs: as
before, only the positive root is physical. Similar considerations to the B = B case give the speed-headway

function
3(h - )
V(h) = mid |0, (%) “1+ {1+ (

&~

_%) , ymax | (3.12)

5

(r+6p

B B

See Figure 3.

However, when B < B, (i-e., when the estimated rate of braking is less than the actual rate), both
solutions are positive for h* > S. See Figure 4. It seems natural to take the lower (i.e. slower) branch
of the resulting parabolic curve. It may be shown that the rightmost point of the parabola occurs at
V=(r+6)/(1/B - 1/B). Hence problems occur if

T+0
Vmax> l_ly

B B

(3.13)

because there is no continuous way of joining the two solution parts v* = F(h*,v*,v*) < V™ and
v* = VM < F(p* Yymax ymax) - without V(h) being multi-valued at some points. However, it is widely
accepted in the traffic engineering community that the speed-headway function should be a single-valued
non-decreasing function, so we consider this situation to be unphysical.

However when (3.13) fails, we may write down the speed-headway function

2h—8)(L -1
V(h) =mid |o, [ 22 ) [1- [{1- (BA B) , ymax| (3.14)
1-1 (1 +6)?

We remark that the speed-headway functions (3.9), (3.12), and (3.14) for uniform flow depend only upon
the sum 7 4 6, and not on the reaction time 7 and safety margin § parameters separately. However, we shall
see in Section 5 that dynamic behaviour may depend on 7 and 6 independently of each other. Note also
that the speed headway function involves (1/B — 1/B), and not the braking rates B and B independently
of each other.

4 Linear stability of uniform flow: formulation

We now consider the evolution of small perturbations superimposed on the uniform flow solutions of Section
3. We want to know whether perturbations decay (in which case we say that the uniform flow is stable), or
whether they grow (in which case flow breakdown may ensue). This section considers only the mathematical
formulation of the stability problem, which is solved later in Section 5.

To begin, we substitute

hm,n =h"+ iLm,n;

.- 4.1)
Ummn =V + Um,n;

in system (3.3). Here v* = V(h*) (V is the speed headway function) and Ay, , and @y, are small pertur-
bations to the headways and velocities of the uniform flow under consideration. We then perform the usual



Taylor series expansions: leading order terms cancel out, and if we neglect quadratic and higher order terms,
we obtain

~ ~ T - ~
hm—{—l,n = hm,n + _(Um,n—l - Um,n)

2
+ g {(61F)(Bm,n—1 - Bm,n) + (62F)(ﬁm,n—1 - 'ﬁm,n) + (63F)(17m,n—2 - ﬂm,n—l)} ]

and
’Dm-{—l,n = (61F)ilm,n + (62F)ﬁm,n + (63F)ﬁm,n—1:
(4.2)

as a system of 2NN linear maps for the evolution of (small) headway and velocity perturbations. Here

0 0
(61F) = 6_¢F(¢a"/}7X)|(h*,v*,v*)7 (82F) = %Fwsad);)()\(h*,v*,v*)a

0
and (63F) = aF(¢a¢;X)\(h*,v*,'u*); (43)

denote the partial derivatives of F' evaluated at the uniform flow solution under consideration. For the
standard Gipps model, equations (2.4) and (2.6) with the uniform flow condition (3.5) give
1 1 7 v

OF) = 5, (BaF) = 5,
Y +I446 22 + 2446

and  (83F) = (4.4)

B
F+5+0

To simplify matters, we now suppose that the N vehicles are arranged on a circular road, so that vehicle
1 follows vehicle N. This implies that hg,,, and vy, (and thus h,, , and o) are N-periodic in the
vehicle index n, because if we count N vehicles along the circular road, we return to our starting point. The
periodicity in n allows expansion of h and ¢ in discrete Fourier modes of wave number £ =0,1,2,... ,N — 1.
To clarify, we seek solutions of (4.2) in the form

hm,n = Re (ch A" w™), Om.n = Re(cA"w"™), (4.5)
where ¢y, ¢, are complex constants, and w is defined by

w = e, where &= Qk_w (4.6)
N

This ansatz is the crux of our stability analysis, and was introduced by Bando et al (1995) [2] to analyse the

stability of a different car-following model from that considered here.

When £ = 0 (from k& = 0), the trial mode is space independent (i.e. the same for all vehicles at a
particular time). At the other extreme, £ = 7 (from & = N/2) corresponds to the shortest wavelength mode,
where the perturbation repeats every second vehicle. Note that A is a (possibly complex) eigenvalue whose
modulus determines whether modes grow or decay in time.

On the substitution of (4.5) in (4.2), the usual simplifications give

e = e + %cv + g(wfl -1 {(81F)ch + (02 F)cy, + (83F)wflcv} , 47)
ey, = {(81F)ch + (02 F)e, + (83F)w_lcv} ;
The first equation may be simplified using the second, and rearrangement gives the system

(A —1)cp = g(url —1)(A+ ey,

(4.8)
{X = (8:F) — (85 F)w™"} ¢y = (81 F)cy,



of two simultaneous equations for A and the ratio of the constants ¢, and ¢,. We are most interested in
finding A, since its modulus determines the stability of perturbations: if || < 1, perturbations decay, whereas
if |A| > 1, perturbations grow.

The phase constants ¢, and ¢, can be eliminated from (4.8) to give

(61F)%(w’1 —1DA+1)=A-1){A— (8F) — (83F)w’1} , (4.9)
and rearrangement yields

A2 - {1 + %(w_l —1)(8,F) + (8:F) + w_l(agF)} A+ {—g(w_l —1)(8LF) + (8:F) + w_l(agF)} -0.
(4.10)

For any given fixed parameters and wave number, this quadratic may be solved using the standard formula
to give A. Note that this procedure works for any Gipps-like model and does not rely on the functional form
of the nonlinearity F'. However, the explicit solution is sufficiently complicated so as to not be useful in its
full generality.

5 Linear stability of uniform flow: solution

In this section, we analyse the quadratic characteristic problem (4.10). One difficulty with this equation is
the presence of the unit magnitude complex parameter w, which gives the wave number of the perturbation
under consideration. To prove that a certain uniform flow is stable, one must show that both solutions A
satisfy |A| < 1 for every choice & € [0,27) of £&. However, to show that a uniform flow is unstable, one must
identify only one wave number, i.e. only one ¢ € [0,27), where (4.10) has a solution A with magnitude
greater than one.

Our strategy is to simplify matters by first considering space independent £ = 0 perturbations, in Section
5.1. By the explicit solution of (4.10), we show that uniform flow is usually stable to perturbations of this
class. This is in sharp contrast to the Bando car-following model [2], in which long wavelength perturbations
are the most unstable.

We do identify one parameter regime where it is possible for uniform flow solutions to be unstable to
space independent perturbations; however, this requires (3.13) to be satisfied, so that uniform flow is not
uniquely defined. We consider this regime to be unphysical.

In Section 5.2 we show some numerical plots of the modulus of solutions A against £&. These plots indicate
that if |A(€)| > 1 for some &, then |A(w)| > 1. We do not offer a proof of this result, but the numerical
observations motivate the analysis of the £ = 7 case (corresponding to short wavelength perturbations which
repeat every other vehicle) in Section 5.3.

Fortunately, the onset of instability of the £ = 7 mode may be found explicitly, and consequently, we
have an explicit sufficient condition for the instability of uniform flow. If one believes that the £ = 7 mode
is the most unstable in the sense just described, then our condition is also necessary for instability, and we
have a complete description of stable and unstable parameter regimes.

The reader interested only in the stability result, and not its derivation, should go straight to equation
(5.13) and the discussion which follows. Here we remark simply that our analytical result is in accord with
the simulations of Gipps, who found uniform flow destabilised as B is decreased. However, in addition, we
now understand the role of the other parameters B, 7, 8, and v*.

5.1 Long wavelength perturbations: £ =0

We take wave number k = 0, so that £ = 0 and w = 1. Characteristic equation (4.10) thus becomes
A2 — {14 (0oF) + (03 F)} A + {(02F) + (85F)} = 0, (5.1)
which factorises simply to yield the solutions

A=1 and A= (62F) + (63F) (52)



The first solution is present because we have a continuous range of uniform flow solutions of different speeds,
and neutral stability within this family. For the standard Gipps model, (4.4) gives the latter solution as

: (5.3)

(241)o<s ”

which is impossible, since the left hand side is positive and the right hand side is negative. Thus for instability
of the space independent mode, we require X\ > 1, which implies

T+0

B B
In this case, note that inequality (3.13) holds, since v* < V™%, Hence uniform flow is not well defined for
such parameter values and this seems to be an unphysical scenario.

5.2 Numerical evaluation of eigenvalues

In this section, we solve (4.10) using the explicit formula, and present numerical plots giving the modulus of
A as a function of wave number parameter £, for a number of different choices of physical parameters. The
findings are

e Uniform flow is destabilised as the estimated breaking rate B is decreased.

o If |A(¢)| > 1 for some &, then |A(m)| > 1. This motivates the explicit analysis of the £ = 7 case in
Section 5.3.

Firstly, Figures 5 and 6 describe solutions A of (4.10) for the parameter choices B = 3.0ms_A2, T = 2/3s,
6 = 1/3s, and uniform flow speed v* = 20.0ms™!. Figure 5 has estimated breaking parameter B = 3.5ms 2,
whereas Figure 6 takes B = 2.5ms 2. These parameter values are taken from a pair of simulations carried
out by Gipps [6]. Each plot shows the moduli of solutions A as functions of the wave number parameter &.
In each case we take only & € [0, 7], because of even symmetry. To each plot we add a horizontal line of
height one, so that stable and unstable behaviour may be distinguished. Note that in each of these plots one
branch of )\ is exactly unity at & = 0, because of neutral stability within the family of uniform flows.

In Figure 5, the solution curves lie below one, i.e. |A| < 1 for all £, so that this is a stable situation.
However, in Figure 6, one solution branch lies wholly above unity: this is an unstable situation. These
(partial analytical) arguments are in accord with the numerical simulations of Gipps: in the first case he
showed that perturbations are damped, whereas in the latter case they are propagated. These results also
indicate that flow is destabilised by reducing the estimated braking rate B.

This motivates our next experiment, where we keep the parameters the same as for Figures 5 and 6, but
vary B, so as to find the point at which this uniform flow becomes unstable. The results are summarised in
Figures 7 (for B = 2.86ms~2) and 8 (for B = 2.85ms~2): each shows max(|A_|, |A4|)(£).

These experiments indicate an instantaneous loss of stability for every nonzero value of £ (i.e. a loss
of instability to every finite wavelength disturbance). Further, they show that for these parameter values,
& = 7 is the most unstable mode, because max(|A_|, |+ |)(£) attains its maximum at £ = 7 in the unstable
plot. More importantly: if the flow is unstable, i.e. if max(|]A_|,|A+])(§) > 1 for some &, then it appears that
max(|]A_[, |[A+])(7) > 1. We have performed many other numerical calculations which are in accord with
this result: however, we have no proof. This result indicates that the stability /instability of the £ = 7 mode
determines the stability of the flow as a whole. Hence we analyse this situation in more detail in Section 5.3.

We close here with Figures 9 and 10. These figures give the stability diagrams for parameters B =
3.4ms—2, 7 = 2/3s, § = 1/3s, B = 3.1ms 2 (which are the mean values suggested by Gipps as suitable for
real highway simulation) and flow speeds v* = 20ms™~' and v* = 5ms ™! respectively. In the first case we
see that the flow is unstable, but the latter (much slower) flow is stable. Thus B is not the only parameter
affecting stability: in the next section we provide a complete analysis of the roles of all the parameters.



5.3 Short wavelength perturbations: £ =7

In Section 5.2 we showed numerically that the stability of the & = 7 mode, which corresponds to short
wavelength perturbations which repeat every second vehicle, governs the stability of uniform flow. Hence we
now perform an explicit analysis of this mode.

We proceed by substituting £ = 7 (so that w = —1) in the characteristic equation (4.10), to yield

N = {1 =7(01F) + (8oF) = (0 F)} A + {T(01F) + (0:F) — (85 F)} = 0, (5.6)

and solution by the usual explicit formula gives

A= % {1—7(8LF) + (82F) — (85 F)} + %\/ [{1 +7(01F) — (0F) + (8:F)}* — 87(01 F )] ) (5.7)

on some rearrangement of the discriminant. It may be shown that for the standard Gipps model,

vt > 22T (5.8)

is sufficient for a positive discriminant, giving rise to real A. The proof of this fact is relegated to Appendix
A. However, we note here that for the parameter values suggested in [6], (5.8) implies a critical speed of
5ms~!, and in practice we are always interested in faster flows than this. Hence from now on, we assume
that the discriminant is positive. Thus we obtain two solutions

A = — {1(0 F) — (8uF) + (8;F)} + % < Ap=1- % (5.9)
where
0<e<1+7(OF)—(0F)+ (0sF). (5.10)
It follows that neither root can pass through +1, and the onset of instability is defined by A_ = —1.
Substitution of A = —1 in (5.6) gives
(BsF) — (O F) =1, (5.11)

which using (4.4) for the standard Gipps model yields

(% _ %) - (5.12)

This equation identifies a relation between parameters which must hold at the onset of instability. Since the
numerics of Section 5.2 indicated that decreasing B destabilises flow, then we obtain conditions

1 1
0 < (E — E) v, for instability, supplemented by

1
(% - E) ymax <140, for a well defined speed-headway function (see (3.13)). (5.13)

Since v* < V™2% we identify an interesting range of useful parameter values, where a uniform flow is unstable
(as there is at least one unstable mode), yet the speed-headway function is properly defined at all headway
arguments. From (5.13) we may see that uniform flow is destabilised by

e decreasing the estimated maximum braking rate B ,
e increasing the actual maximum braking rate B,

e increasing the speed of the flow v*,
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e or decreasing the safety margin 6.

Note that for flow to be unstable, we require B > ]_f?, corresponding to drivers underestimating the rate of
braking of the vehicle ahead. Further, decreasing B or 7 + 6 too far, or increasing B too much, leads to
uniform flow which is not well defined. However, the interval of unstable but well defined uniform flow may
be expanded by decreasing the safety margin 8, whilst holding 7+ 6 (and hence the speed-headway function)
constant. However, in the next section we present simulations which indicate problems with global dynamics
when 6 is decreased.

6 Numerical simulations

Here we are concerned with the numerical simulation of the full system of maps (2.11) for the standard
Gipps model (2.1). Our toy system consists of N = 50 vehicles placed on a circular road, so that the vehicle
with index 1 follows the vehicle with index 50.

For each simulation, we prescribe initial data for displacements and velocities which correspond to a
uniform flow solution with speed v* = 20ms~!, with uniformly distributed random perturbations added to
vehicles’ velocities. For each vehicle, we take maximum speed V™ = 30ms~! (a little over the UK speed
limit of 70 miles per hour), the length of vehicles S = 6.5m, and the acceleration parameter A = 1.7ms™2

We present the results of six simulations in total. The first four simulations have all vehicles identical.
Experiment 1 illustrates a stable uniform flow. In contrast, Experiment 2 illustrates an unstable uniform
flow scenario, where the model produces travelling waves.

Experiments 3 and 4 depict parameter regimes in which Gipps’ model may lose global existence in time.
This occurs by the solutions evolving so that at some time, the action of taking a square root in (2.1) gives
rise to an imaginary candidate velocity: beyond such a time solutions are unphysical.

In Experiments 5 and 6, we allow vehicles to differ by assigning to them a uniformly distributed random
variable for the estimated braking rate B. Depending on the mean value of B we observe either travelling
wave solutions, or uniform flow. These two types of stable ¢t — oo solutlons seem remarkably robust
considering vehicles’ characteristics are allowed to differ. This justifies our analysis of the simplified situation
where all vehicle characteristics are equal.

Experiment 1: stable uniform flow. We take B = 3.0ms 2, 7 = 2/3s, § = 1/3s, and B = 3.5ms 2,
which were the parameters chosen for the first eigenvalue computation of Section 5.2. We apply large £70%
noise to the initial uniform flow velocity. Figure 11 plots the displacements of vehicles (modulo the length
of the circular road) against time. We see that the initial variations in velocity die out rapidly, and the
solution converges to a uniform flow, where trajectories in the (¢,z) plane are parallel. This is what we
expect: equation (5.13) indicates that this uniform flow is stable (and also that the speed-headway function
is well defined).

Experiment 2: unstable uniform flow, leading to a travelling wave. We take the same parameters
as Experiment 1, but reduce the estimated braking rate to B = 2.8ms~2. Criteria (5.13) indicate that
for 2.85714... > B > 2.72727 ..., this uniform flow is unstable and the speed-headway function is well-
defined. Figure 12(a) shows the (¢,z) plot: indeed the uniform flow solution is unstable and we observe the
formation of a travelling wave, which propagates around the circular road in an upstream direction. (Note
that the speed of this wave is more than 10ms~!, which faster than those observed in real traffic: see e.g.
Abou-Rahme (1999) [1, Sec. 2.2] who found a typical wave speed to be 19 kilometres per hour. However,
we anticipate that a more careful choice of parameters will produce a better value.) Figure 12(b) shows
the velocity against time of vehicle 1 as it performs a number of laps and passes in and out of the wave
structure. The velocity varies periodically between about 12ms~! and 29ms—!, with a gradual acceleration
and abrupt braking linking these extremes. This behaviour resembles the stop-start nature of real highway
traffic: however the deceleration produced here is unrealistically high.

Figure 13 gives more detail of the structure of the travelling wave solution. Figure 13(a) is a discrete
time plot of the velocity v of vehicle 1 against its headway h, upon which a graph of the effective speed-
headway function V' (h) has been superimposed. One observes that usually v < V(h), and the vehicle is
accelerating. However, owing to a hard braking of the vehicle in front, the headway is suddenly decreased
and then v > V(h). Hard braking then follows. The acceleration procedure then repeats.
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Figure 13(Db) is similar, except that the velocity va of vehicle 2 is plotted against the velocity vy of vehicle
1 (which is immediately ahead). The line va = v; is added to the figure. For much of the time vehicle 2 is
travelling slower than vehicle 1 and is accelerating: however, vehicle 1 then brakes sharply, leaving vehicle 2
travelling faster, and thus breaking sharply at the next time step.

From Figure 13 it may be seen that the travelling wave solution visits both regimes of (2.1). During
most of the loop, we have the car-following regime where velocity is limited by the vehicle ahead. However,
following the sharp braking, the free acceleration regime is possible for a short time.

We should add one further remark: from (5.13), we see that the linear stability of uniform flow is

unaffected by the parameters V™2 A and S. However, we have observed in other experiments that these
parameters do have an impact on the global solution patterns which result when uniform flow is unstable. For
example, increasing V™2 will lead to higher speeds being attained, or alternatively reducing the acceleration
parameter A will lead to smoother, smaller amplitude waves.
Experiment 3: loss of global existence as B is decreased. We take the same parameters as for
Experiments 1 and 2, but reduce B to 2.72ms2; i.e. below the limit for the speed-headway function to be
well defined, in the sense defined in Section 3. We now incorporate just 5% noise in the uniform flow initial
condition. Figure 14(a) gives the (¢, ) plot. As for Experiment 2, we see the instability of uniform flow, and
the rapid formation of travelling waves. All appears well. However Figure 14(b), which plots the contents of
the square root arising in the second regime of (2.1), minimised over all vehicles, indicates a problem. This
quantity hits zero (and then becomes negative) in finite time. This results in a complex candidate velocity
in (2.1), and at that instant Gipps’ model becomes unphysical.

We have performed a number of simulations of this kind, and our working conjecture is that such a loss of
global existence will not occur, provided the second condition of (5.13) is satisfied (so that the speed-headway
function is well defined), and provided the noise added to the uniform flow initial data is sufficiently small.

Thus it seems that there is only a small interval of B where uniform flow is unstable, yet where there is

also global existence in time. Examining (5.13), it seems that this interval of ‘interesting’ B can be increased,
if the safety margin 6 is decreased. Recall (from Section 3) that if this is achieved by holding 7+ 6 constant,
then the speed-headway function (which presumably one would fit to real world data) is unchanged. This
motivates our next experiment.
Experiment 4: loss of global existence as § is decreased. We take most parameters as for preceding
experiments, but set 7 = 5/6s, § = 1/6s, and set B = 2.8ms~2. We add 5% noise to the uniform flow
initial data. According to (5.13), this is an unstable situation where the speed-headway function is well-
defined. Figure 15 depicts the results. One observes that a travelling wave begins to develop, but then, as
for Experiment 3, the model loses feasibility. Therefore, our conjecture, which links the well-definedness of
the speed-headway function and the global existence of a solution, does not apply if 8 is reduced. Indeed,
Gipps himself realised that § = 7/2 was a special case (he found no crashes for this choice).

In our last two simulations, we no longer require that all vehicles/drivers are identical. There are many
ways in which one could break this symmetry: as a simple illustration, we allow only the estimated braking
rate B to vary from vehicle to vehicle, and we require that the other parameters are the same for all cars
and equal to the choices set in Experiment 1.

Experiment 5: noisy simulation, unstable flow. We assigned B according to a uniform distribution
between 2.55ms™* and 3.05ms™>. The initial condition was a uniform flow derived by (falsely) assuming
that all vehicles had B = 2.8ms~2 (the mean value), with 5% noise added to velocities. Figure 16 gives the
(t, ) plot, and the velocity of vehicle 1 against uniform time. We see that uniform flow is unstable (indeed
the initial data is not actually a solution, because of the variation in B between drivers), which is not too
surprising given that the mean of B lies in the unstable regime according to (5.13). However, given the
variations between vehicles (some as individuals are stable, others are strongly unstable), it is surprising
that such a regular travelling wave structure arises.

Experiment 6: noisy simulation, stable flow. We assigned B according to a uniform distribution
between 2.65ms~2 and 3.15ms~2, and provided initial data in the same manner as for Experiment 5. The
mean of B is now 2.9ms~2, which according to (5.13) is a stable value. Figure 17 shows the resulting stable
uniform flow solution. Note that the curves in this (¢,2) diagram are (eventually) parallel, indicating that
all vehicles travel at the same speed. However, because B (and hence the speed-headway function) varies
from vehicle to vehicle, the headways of vehicles are not equal. As in Experiment 5, it is surprising that
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there is such regular solution behaviour, given the variation between drivers.

7 Conclusions and further work

Here we have derived the speed-headway function for Gipps model, and presented a linear stability analysis
of the uniform flow solutions. We have also shown simulation results indicating interesting solution behaviour
when uniform flow is unstable.

More work is required to develop an understanding of the travelling wave structures. Further, is it
possible to derive analytical conditions which guarantee the global ¢ > 0 existence of physical solutions?

It might also be interesting to derive and simulate other Gipps-like models of the form of (2.2), where
the appropriate monotonicity conditions are satisfied.
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A Positivity of the discriminant
Here we derive a sufficient condition for the positivity of the discriminant

d:= {1+ 7(8,F) — (8,F) + (85F)}’ — 87(8, F), (A1)
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of formula (5.7), when the standard Gipps model is in force. (This was a necessary part of the explicit
stability analysis of the £ = 7 mode in Section 5.3.)
Using (4.4), we obtain

{5 +Gro}e {e)] s {5+ G+0)

I 2
S+ (5+0)}

d=

whose numerator D has the same sign as d and may be written

D:{%* (g+0)}2+{3§+%}2+{2%—57}{%+(%+0)}. (A.3)

Only one of the braces has indeterminate sign. Thus a sufficient condition for D > 0 (and hence d > 0) is

~

v > —. (A4)

1

Using typical values of 7 = 2/3s and B = 3ms™ implies positivity of the discriminant if the uniform flow

speed v* exceeds Sms~!.
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Figure 1: Definitions of displacement z, velocity v, headway h, and length of vehicle S. Vehicles travel to
the right in an increasing x direction.

Vmax

0 S S+ (1 +0)Vma

Figure 2: Sketch of speed-headway function for B = B. See equation (3.9).
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Figure 3: Sketch of speed-headway function for B < B. See equation (3.12).
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Figure 4: Sketch of speed-headway function for B > B. This is not well defined if V™ > (r46)/(1/B—1/B).
See equation (3.14).
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Figure 5: Eigenvalue plot for B = 3.0ms™2, 7 = 2/3s, § = 1/3s, v* = 20.0ms™', and B = 3.5ms™2. See
Section 5.2. This uniform flow is stable because |A(£)| < 1 for all &.
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Figure 6: Eigenvalue plot: as for Figure 5 except B = 2.5ms 2. Flow is unstable because there are eignevalues
with modulus exceeding one.
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Figure 7: Eigenvalue plot: parameters as for Figure 5, but with B = 2.86ms~2. The uniform flow is stable.
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Figure 8: Eigenvalue plot: parameters as for Figure 5, but with B = 2.85ms~2. Compare with Figure 7.
Note that £ = 7 is the most unstable mode, in the sense that if max(|A_ (&), |A+(€)]) > 1 for some &, then
max(|A—(m)], |Ay (m)]) > 1.
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Figure 9: Eigenvalue plot: B = 3.4ms™!, 7 = 2/3s, § = 1/3s, B = 3.1ms™2, and v* = 20ms™": uniform flow
is unstable.
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Figure 10: Eigenvalue plot: parameters as for Figure 9, except v* = 5ms™1!.
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Figure 11: A simulation where uniform flow is stable. See Experiment 1. The displacement z of vehicles
(modulo the length of the circular road) is plotted against time .
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Figure 13: Experiment 2 continued. (a) Velocity against headway for an individual vehicle, with the speed-
headway graph added. (b) The relation between velocities of two consecutive vehicles. In these figures,
‘+’ denotes points the first (freely accelerating) regime of (2.1). ‘x’ denotes the second (car-following, i.e.,
velocity limited by vehicle ahead) regime.
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