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Walking cavity solitons
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A family of walking solitons is obtained for the degenerate optical parametric oscillator below
threshold. The loss driven mechanism of velocity selection for these structures is described ana-
lytically and numerically. Our approach is based on understanding the role played by the field
momentum and generic symmetry properties and, therefore, it can be easily generalized to other
dissipative multi-component models with walk-off.



For multi-component optical fields, the complexity of the problem of soliton formation is often enhanced by the
difference between group velocities of the interacting components or double refraction properties of the nonlinear
medium, which introduce, respectively, temporal and spatial walk-off. Therefore, for existence of multi-component
mutually trapped solitons, intrinsic walk-off compensating mechanisms should be present in the problem along with
more conventional diffraction or group velocity dispersion compensations. In the context of free propagation, walking
solitons have recently been predicted theoretically [1-4] and observed experimentally [5,6] in degenerate and nonde-
generate three-wave mixing in x(2) media [1-3,5,6] and in degenerate four-wave mixing in x(®) media [4]. Both of
these systems are described by Hamiltonian conservative models.

Non-Hamiltonian systems with gain and loss also have paramount importance in nonlinear optics and the study
of dissipative localised structures is a subject of much current research. A particularly important class of dissipative
localised structures with potential for practical application are cavity solitons existing in optical cavities filled with
passive nonlinear media and supported by external driving [7,8]. One of the possible advantages of using quadratic
cavity solitons for information processing is that x(?) nonlinearity has a practically instantaneous response, while
relatively large nonlinear coefficients can be achieved using modern phase matching techniques. These two properties
are normally difficult to achieve simultaneously in materials with Kerr-like nonlinearities, see [9].

To the best of our knowledge, walk-off effects on bright cavity solitons have not been addressed until now. Here
we shall discuss them at a fundamental level using the optical parametric oscillator (OPO) as an example. Our main
result is to demonstrate analytically and numerically how the common velocity of the mutually trapped two-component
wave envelope is selected. In achieving this we will develop a method based on the evolution equations for the field
momentum. This method gives a clear physical interpretation of the velocity selection mechanism and provides good
quantitative estimates for the velocity itself. The timeliness of addressing this problem for cavity solitons stems in
part from the ever-improving experimental results on observation of spatial and temporal localisation effects and
instabilities in x(?) cavities [15-17].

Assuming phase matching, the equations describing a synchronously pumped pulsed ring OPO can be written in
the following dimensionless form [11,12]

—i(@t + 'Yl)El = (alaf + ivlaz + 61)E1 + (E2 + ,U;)Eik,
—i(@t + ’YQ)EQ = (0@63 + l"UQaz + 62)E2 + E12 (1)

Here E;, j = 1,2 are the scaled slowly varying envelopes of the intracavity fields at fundamental (signal) and
second harmonic (pump) frequencies; explicit formulas connecting them to physical fields can be found in [11-13].
Dimensionless coordinates z and ¢ can be interpreted, respectively, as the position measured in the frame moving
with an average group velocity and time measured in the units of the cavity round trip. It is important to note that
in deriving (1), the external pump field characterized by the parameter p has been subtracted from the intracavity
pump field, transforming to zero the cw solution corresponding to sub-threshold behaviour, see [12,14] for details.
The coefficients §; and 7; > 0 represent detunings from the cavity resonances and linear losses respectively. The
group velocity dispersion parameters «; are taken to be 1/j in our numerical calculations. The walk-off parameters
are vy 2. We assume below, without loss of generality, that v, = 0.

We seek cavity solitons in the form E; = A;(7), where 7 = z — Vt, and velocity V' is the unknown parameter
characterizing common shift of the group velocities. The envelope profiles A; obey the following set of ordinary
differential equations:

—i’ylAl = (011(972. + i(v1 — V)a-,— + 61)A1 + (A2 + H)AT,
—Z"YzAz = (0428;2. - zV(?T + (52).42 + A% (2)

For vy = 0, quiescent (V = 0) bright soliton solutions of Egs. (1),(2) existing in the region of bistability between
the trivial (E; = 0) and nontrivial homogeneous (E; = const;) solutions were studied in Refs. [10-12]. The trivial
and two nontrivial solutions coexist if pr, < g < pg providing that 6182 > 7172, where ug = /62 ++2 and
prL = |7162 + 7261]//62 + 73. The eigenvalue which determines the stability of the trivial solution of Eqs. (1) with
respect to perturbations ~ eMtikz is \ = —vy; +ikvy + \/p? — (6, — k2)2. Below we focus on the case when §; < 0
and the trivial solution losses its stability exactly at u = pg. Furthermore, certain localisation effects in models which
go beyond the mean field approximation and include walk-off were described in [18,19]. One can envisage that for
v1 # 0 practically any solution existing for v; = 0 should start to drift. It remains unclear, however, whether such
moving structures can be found as solutions of the simple autonomous model (2) or whether they might belong to
more complicated classes of non-steady moving solutions to Egs. (1). Our primary objective here is to show how a
family of the cavity solitons existing in the bistability region can be continued as steadily moving structures into the
region of nonzero walk-off.



A useful property of Egs. (1) is that solitary solutions can be found in the limit when cavity losses 7; are small,
which physically corresponds to the limit of large cavity detunings [12]. Therefore, for the question of existence,
the balance between nonlinear focusing and diffraction appears to be more crucial than the energy balance between
external driving and loss. This relative importance, together with the absolute necessity of the latter balance, allows
us to develop a physical reasoning for the selection of V' based on the quasi-conservation of transverse momentum.

Specifically, straightforward manipulation of Egs. (1) shows that the total field momentum M = M; + M obeys

atM = —2’)/1M1 — Q’YQMQ, (3)

where M; = —i [ dz(E;9.E; — c.c.) are momenta of the individual components. If the right-hand side of Eq. (3) is
small, then M is a quasi-conserved quantity, and one can assume that V' is a slowly varying order parameter, 0;V < 1.
To first approximation, Eq. (3) then becomes

OtV(‘)VM = —2’)/1M1(V) - 2’}’2M2(V), (4)

where M, » represent the individual momenta calculated for ; » = 0. For zero losses we have been able to numerically
continue quiescent solutions [12] into the region of nonzero v; and V, by continuously increasing the latter (more
reasoning on why it this is possible will be given below). Thus M; on the right hand side of Eqs. (4) can be
considered as continuous functions of the parameter V, as is the case in other similar Hamiltonian models [1-4].
Hence, for cavity solitons traveling with constant velocity one finds that

M(V) 7
M) = 5)

Therefore, if this equality holds, walking cavity solitons exist and travel with velocity selected by the ratio of losses of
the fundamental and second harmonic fields. Plots in Fig. 1(a) shows how M; » depends on V', and hence the range of
V for the possible existence of cavity solitons according to the formula (5). Note that a particular value of V' can be
selected only from the finite interval Vo <V < Vi1, where M, (Vi) = 0, and it is strictly fixed by the ratio of losses.
The dotted curves in Fig. 1(b) show the predicted dependence of V' on ~, /71, obtained using Eq. (5). Remarkably,
in spite the fact that the two-component cavity soliton moves as whole with selected velocity, its components carry
momenta with opposite signs. Thus the walk-off compensating mechanism can be considered as analogous to the
formation of excitons in semiconductors.

In order to independently verify the above considerations and to extend them to large ’s we have used numerical
path-following techniques to compute localised solutions to Eqs. (2) with V' assumed unknown. We have found good
agreement between the numerical and semi-analytical results over a wide range of possible values of parameters, e.g.
see Fig. 1(b). Fig. (2) shows typical transverse profiles of the components and the interval of existence of single-
humped solitons as the pump parameter p is varied (Fig. 3b shows the corresponding variation of V). Note that
broad features of the profiles and parameter regions of existence are relatively insensitive to the value of v;. We have
stopped computing solutions at a point where the branch of single-humped solitary waves undergoes a limit point
(fold) at the large-u end of their interval of existence (finite |4;|?). Computations can be continued beyond this
point but the soliton profiles become multi-humped, just as they do in the quiescent case [12]. Our numerical results
reveal that the soliton profiles are asymmetric and that the degree of asymmetry is accentuated as one approaches
the right-hand limit point of u-interval of their existence, see Fig. 2(b) which is at just such a limit point.

To gain insight into the dynamics of the solitons in the presence of walk-off, let us consider the effect that small
dissipation has on the spectral properties of walking solitons. For this purpose it is useful to deduce from Eq. (4)
the equation for the soliton position 2o = [ ¢ V(t')dt'. Expanding the right-hand side of Eq. (4) in Taylor series about
V =V, where V; is found from Eq. (5), one obtains

M'8} 20 = 2(mi M{ + 72 M3) (Vs — O120), (6)

where ' stands for derivative with respect to V at V = V,. The same equation can also be derived by direct
asymptotic expansion, see below. Analyzing the stability of the solution zy = Vit we find that it has eigenvalues
Ay = —2(y1 M{ + v2M3)/M" and A, = 0. The later corresponds to the zero-eigenvalue (translational) mode of the

eigenvalue problem ﬁ{ = )\E, where

—-Y1 — (’Ul - V)(?T - ImAz ImA1 —(11(93 - (51 —R€A1
,CA _ —2ImA,; —Y2 + Vo, —2ReA; —Ckz@?. — by (7)
- @102 + 61 + ReAs + ReA; -y —(v1 =V)8; + ImAy  ImA,
2ReAq 012(93 + b9 —2ImA, —v2 + Vo,



and E: (w1, us, w1, ws)T. This mode is given by the gradient of the cavity soliton 5] = 0,(ReA;, ReAs, ImA;, ImAs)T
and Eq. (7) has been derived by substituting the anzats

Ej = Aj(7) + e(u;(7, 1) + iw;(7, 1)) (8)

into Eqs. (1) and assuming € < 1, u;, w; ~ e. For zero losses, our system becomes Hamiltonian and the soliton’s

position obeys Newton’s equation for a free particle 8729 = 0. This explicitly shows that the translational mode é{)
is now doubly degenerate and that velocity of the soliton is an arbitrary parameter determined by initial conditions.
Note that the losses introduce not only damping (the term proportional to d;z¢ in Eq. (6)) into the soliton dynamics
as one might expect, making A, < 0, but also external forcing (the term proportional to V;). Numerical analysis of
the spectrum of £ has shown that the region of stability of the walking solitons is approximately inherited from the
quiescent case [12]. This region of stability is as indicated by the solid lines in Fig. 2 (b), where for these moderately
large y-values the Hopf bifurcation, present in the Hamiltonian limit 1 5 — 0 at p-values to the left of the right-hand
limit point, has been suppressed.

To explicitly calculate the dependence of V' on vy, we take the new limit of small v; = € and seek solution of Egs. (1)

in the form (8), where 7 = z — zp(t) and ;29 ~ €. We find that to the first order: e(/fo - at){z Otzof-(; - 7)173, where

Lo=L(vy =V =0)and P = 8,(ReEy,ImE;,0,0)T. V is found from the condition that corrections to the resting
soliton should be bounded in ¢:

(€0, ENYV = v (P, &), 9)

which explicitly shows proportionality of V' to v;. Here ﬂ] is the translational mode of the adjoint operator, EATEE =0,
and (-,-) defines scalar product. It is clear now that the effective external force in Eq. (6) is proportional not only
to losses but, unlike the effective friction, to v; also. Fig. 3(a) shows numerically calculated dependence of V' vs vy,
indistinguishable on the scale depicted from the results obtained from Eq. (8), namely V/v; = 0.645 and 0.475 for
the parameter cases (1) and (2) respectively. Surprisingly even for v; ~ 1 the linear dependence predicted by Eq. (7)
is preserved to within a few percent. Dependence of V/v; on the pump parameter in Fig. 3(b) shows that V' varies
only slightly with g over the stable part of the branch, with the variation being the greatest near the ends of the
p-interval. Furthermore, numerical calculations over a range of other parameter values have indicated that V; never
exceeds v;. Eq. (7) starts to give poor results when (f_;), g}'§> becomes the order of €, which happens in the Hamiltonian
limit 7 5 ~ €. In this case one needs to assume v; ~ € and proceed with an asymptotic expansion up to second
order. In fact, this second-order term gives nothing other than Eq. (6), and signals that Egs. (3) and (6) should
be considered as having second order of smallness in €. Note that finding explicit expressions for the effective mass
M’ and friction A, is more cumbersome using this asymptotic approach, compared to our previous momentum-based
method. Nevertheless, the two the two methods give the same final answer.

The question of velocity selection can also be approached from a more intuitive, symmetry based, point of view.
Upon taking small perturbations of the trivial zero solution of Egs. (2) proportional to e“”, one can show that the
eigenvalues w are roots of the characteristic polynomial x(w) = [(a1w? +81)% + ((v1 — V)w +71)? — p?][(aaw? 4+ 82)2 +
(72 — Vw)?]. Inside the region of the soliton existence x has four roots whose real parts are positive and four roots
with negative real parts. Generically therefore, in order for the four-dimensional stable and unstable manifolds to
intersect along a homoclinic orbit (corresponding to a solitary-wave solution to Egs. (1)) one needs to tune one of
the parameters, e.g. velocity V, to a particular value, while holding the other parameters fixed. Thus walking cavity
solitons are a codimension-one phenomenon in the parameter space of Egs. (2).

There are, however, two special limits in which the soliton’s acquire special symmetries and, as a consequence of
this, a lower codimension. The first is if 44 o = 0. Then Eqgs. (2) become invariant with respect to reversibility
transformation

Rl : (T,Re A1,Im Al,Re AQ,IIII AQ) —
(=7, —Re A;,Im Ay, Re Az, —Im 45), (10)

and we find that a family of R;-symmetric solitons exist for a continuous V-interval, i.e. have codimension zero. This
is because, intersection of the stable and unstable manifolds now automatically takes place if trajectories leaving zero
along the four-dimensional unstable manifold intersect the four-dimensional symmetry hyperplane fix(R1) at a point.
A second limit is the case of quiescent solitons v1 = V' = 0, when Egs. (2) are invariant under a different reversibility,
Ry : (1,A1,A2) — (—7,A1,A43). Then Ry-symmetric codimension-zero solitons exist throughout a finite range of
parameters [12]. Thus both of the asymptotic methods applied above are valid in the limits when either the of the
symmetries R; or Ro are weakly broken. Therefore, it would be correct to interpret velocity selection as being due to
the breaking of reversibility. For a review of properties of the homoclinic orbits in reversible systems see e.g. [20].



Finally we verify the velocity selection mechanism and the stability of the walking solitons by presenting the results
of numerical simulation of Eqs. (1). First we consider excitation of a solitary structure in the presence of the walk-
off and with zero losses. If localised initial conditions are even functions of z, i.e. the initial momentum is zero,
then, providing that walk-off is non-zero, emission of linear waves during the relaxation to the solitary wave has an
asymmetric character and therefore the emerging soliton acquires nonzero velocity, see Fig. 4(a). Walk-off induced
momentum transfer from linear waves to solitons can be compensated by imposing asymmetric transverse variations
of the phase of the initial conditions. Thus, the soliton velocity is a tunable parameter and can be reduced, e.g., to
zero, see Fig. 4(b). In contrast, when we take into account losses, then, the simulations clearly show that the soliton’s
velocity becomes independent from the value of the momentum stored in the initial conditions, see Fig. 5. This is in
full agreement with the above analytical considerations.

Let us also remark briefly on previous studies involving velocity selection. In reaction-diffusion systems arising in
biology and chemistry, the notion of the selection of the speed of a front or pulse is widespread; in e.g. the FitzHugh-
Nagumo equations for nerve impulses [21], or the Nonlinear Schrédinger equation with third-order dispersion and
dissipative corrections [22]. Note, that in the latter work an approach based on energy and momentum balance
similar to the one described above was used to find the selected value of the soliton velocity. In the context of
quadratic nonlinearity, dissipative shock waves, and solitons in the presence of walk-off have recently been modeled
using so-called quadratic GL equations [23,24]. Walking domain walls in optical parametric oscillators above threshold
have been reported in [25] using a reduction of Egs. (1) to a real GL equation. Also, questions of pattern formation
in the presence of walk-off have attracted much attention recently, see e.g. [13,26].

In summary, we have established the existence of two-component cavity solitons in the degenerate OPO with
walk-off and have revealed the phenomenon of velocity selection. Moreover, we have provided asymptotic methods for
predicting the selected velocity of dissipative solitons, for which we get excellent numerical agreement. These methods,
valid in the limits of small losses or walk-off, can be generalised to other multi-component optical systems. Moreover,
we have shown how the asymptotic results can be interpreted in terms of the breaking of reversibility by the inclusion
of walk-off and losses. We finally remark that we have also obtained results similar to the above for non-degenerate
OPOs, where not only velocity, but also frequency shift is selected [27], and for the case of two transverse dimensions.

We thank W.J. Firth for useful discussions. DVS acknowledges support from the Royal Society of Edinburgh and
the EPSRC grant GR/N19830. ARC holds an EPSRC Advanced Fellowship.
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FIG. 1. (a) M2 vs. V for y12 = 0 and v1 = 0.3. (b) V' vs 72/71. Other parameters are §1,5 = —2, p = 0.25. Full lines
corresponds to the numerical solution of Eqgs. (2) and dotted lines are obtained from Eq. (5). All quantities in this and
subsequent figures are dimensionless.

FIG. 2. (a) [dr|A;12|* against pump parameter p for vy = 0.1 and v; = 1.0 (almost overlaid) solid curves represent the
stable portions of the branch. (b) Soliton profile for v1 = 0.5, 4 = 1.821581, which is just the right most point of the existence
region. Other parameters are §1 = —1.8, 62 = —4, 1,2 = 0.5.

FIG. 3. (a) V against v1 for: (1) y1,2 = 0.5, 61 = —1.8, 62 = —4, p = 1.0; (2) 71,2 = 0.02, 61,2 = —2, p = 0.25. (b) V/v1 vs.
pfor v12 =0.5, 61 = —1.8, 62 = —4.

FIG. 4. Trajectories of walking cavity solitons after excitation by localised initial conditions: E; 2 = a1726—z2/w2+m1,2z_ (a)
at,2 =0, (b) a1,2 = —0.2. Other parameters v1 = 0.2, y1,2 =0, p = 0.5, 81,2 = —2, a1 =10, a2 = 1.

FIG. 5. The same as Fig. 4, but 71,2 = 0.05.
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