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The ‘Indian rope trick’ for a
parametrically excited flexible rod;
nonlinear and subharmonic analysis

BY W. BARRIE FRASER (1) & ALAN R. CHAMPNEYS (2)

(1) School of Mathematics and Statistics, The University of Sydney, NSW 2006,
Australia. email: barrief@maths.usyd.edu.au
(2) Department of Engineering Mathematics, Queens Building, University of
Bristol, Bristol BS8 1TR, UK. email: a.r.Champneys@bris.ac.uk

Recently Mullin has demonstrated experimentally that an upright column that
is longer than its critical length for self-weight buckling can be stabilized by sub-
jecting it to vertical harmonic excitation. This paper extends an earlier linearized
analysis of a rod-mechanics model of this set up, to include three-dimensionality,
and geometric nonlinearity. The stability of the upright state is then analysed using
weakly nonlinear asymptotic expansions in the limit of small-amplitude excitation.

First, the unforced problem is treated, extending the classical result by Greenhill
to show that all bifurcations are supercritical. The main results are for the forced
problem near the simplest among the potential infinity of dynamic instabilities.
These correspond to pure bending modes, and to resonances between a vibration
mode of the column and the first harmonic or subharmonic of the drive. The result is
to produce an asymptotic description of these instabilities, including information on
the stability of dynamically bifurcating states, in terms of the three dimensionless
parameters of the problem (bending stiffness and the amplitude and frequency of
excitation). A qualitative explanation is offered of why the earlier linearised analysis
fails to quantitatively match the experiments.

Keywords: rod mechanics, parametric excitation, inverted pendulum,
asymptotic analysis, subharmonic resonance

1. Introduction

It is well known that if a column exceeds a certain critical length it will, when placed
upright, buckle under its own weight. Recently, as illustrated in Acheson (1997)[Ch.
12], Tom Mullin has performed experiments on a flexible piece of ‘curtain wire’ (a
thin, plastic coated, tightly wound helical metal spring) that is just longer than its
critical length. He found that such a wire can be stabilized by parametric excitation,
namely by subjecting its bottom support point to a vertical harmonic vibration of
appropriate amplitude and frequency. This demonstration was motivated by earlier
experiments (Acheson & Mullin 1993) which verify the stabilization by parametric
excitation of an inverted system of coupled pendula. A delightfully simple explana-
tion for the case of N coupled pendula was given in Acheson (1993), which extends
the result for a single inverted pendulum due originally to Stephenson (1908). How-
ever, this theory does not extend to the case N — oo (see Otterbein (1982)) or to
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2 W.B. Fraser € A.R. Champneys

the inclusion of bending stiffness, which together would lead to the problem ad-
dressed here. The use of oscillatory excitation to stabilize systems such as inverted
pendula is also of interest in control theory, e.g. Weibel & Baillieul (1998). Here,
though, we do not consider any feedback or other control effects, just the case of
constant sinusoidal vertical forcing. Specifically we shall extend the results in our
earlier paper (Champneys & Fraser (2000), henceforth referred to as ‘Part I’) on a
parametrically excited continuously flexible column with bending stiffness.

The linearized analysis presented in Part I, which is summarized in the course
of the results presented below, is appealing in that it provides a simple lower bound
on the product of the excitation frequency and amplitude necessary to stabilize
the column. Moreover, this bound can be expressed solely in terms of the ratio of
the column’s length to the critical one (eq. (4.18) of Part I'). However, in order to
match the details of Mullin’s experiment (details of which will appear in (Acheson et
al. 2000)) there are two problems with this formula. First, it seems to underestimate
the true lower bound by a factor of between 2 and 4. Second, it does not explain
the experimental observation of an upper bound on the frequency for stabilization.
Whereas the low-frequency instability is associated with the wire simply falling
over, the upper one appears to be caused by a dynamic resonance of a higher-order
spatial mode of the wire with a harmonic of the drive. The present paper is aimed
at addressing these deficiencies by the inclusion of three-dimensional effects, and
(most crucially) an asymptotic description of (sub)harmonic resonances.

In §2 the derivation of the equations of motion given in Part I is extended to
include the geometrically nonlinear terms. In §3 an asymptotic analysis of static
buckling /post-buckling behaviour of these equations is given. The main results are
contained in §4 which presents a new asymptotic analysis of the dynamic equations
for the parametrically excited column. Finally §5 interprets the consequences of the
preceding analysis in understanding Mullin’s experiment, draws conclusions and
suggests directions for future work.

2. Mathematical Formulation

Consider an initially straight column with a uniform circular cross-section of radius
a, length ¢ and mass density m per unit length (see Figure 1). The column is
assumed to be inextensible and to have a linear bending moment versus curvature
constitutive relation. The derivation of the equations of motion for such a column
was given in Part I where it was argued that the effects of rotary inertia and
torsional waves could be neglected in this application with no torsional loading.
Here we give only the briefest details of the derivation, paying extra attention to
the geometrically nonlinear terms.

(a) Dimensionless equations of motion
The equation of motion of the rod shown in Figure 1, derived in part I, is
nD’R = (TR') - B{|(R"-R")R] +R"} — k. (2.1)

Here R(s, t) is the position vector, with respect to the origin O of an inertial frame,
of a material point P on the column axis a distance s along the axis from the
bottom of the column at time ¢, D( ) = 0( )/0¢, and ()’ = 9( )/0s, and T (s,t)
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Nonlinear analysis of ‘Indian rope trick’ 3
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Figure 1. Definition sketch

is the tension in the column at P. Unit vectors i, j and k are the usual basis
vectors of the Cartesian frame with origin at O and k pointing vertically up. The
dimensionless variables are defined in terms of dimensional (barred) variables via
R T B wae A
_ —732—3;77:L;5:—;

mgl g y4
where B is the bending stiffness, g is the acceleration due to gravity, wp is the
angular frequency of the vertical oscillation of the base of the column and A is the
amplitude of this oscillation. The inextensibility condition is

R -R'=1. (2.2)

The bottom (s = 0) end of the column is assumed to be clamped to a device
that oscillates vertically. Hence the lower boundary condition is

R(0,t) =ecostk, R/'(0,t)=k at s=0. (2.3)

The top end of the column is free, which implies the shear force, moment and
tension there must vanish, which can be shown to be equivalent to

R"(1,t) =R"(1,t) =0, T(1,t)=0. (2.4)

Suitable initial conditions are the specification of the position R(s,0) and velocity
DR(s,0), with the tension 7 (s, t) then determined by the inextensibility condition.

The model (2.1) and inextensibility condition (2.2) together with these boundary
and initial conditions represent a well-posed problem for the position vector R(s, t)
and tension 7 (s,t). Note that the nonlinearity comes not from any constitutive law,
but from the geometrically nonlinear expression for the bi-normal vector R’ x R/
about which bending takes place. Note also that the inextensibility condition (2.2)
contains no time derivatives, so viewed as an infinite-dimensional dynamical system,
the model is an (index 2) differential algebraic equation.

(b) Subtracting out the trivial solution
The vertically straight solution of (2.1), (2.2) subject to (2.3), (2.4) is
R(s,t) = (ecost + s)k, T(s,t) =—(1—mnecost)(l—s)
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4 W.B. Fraser € A.R. Champneys

In order to investigate its stability and to include the possibility of large lateral
deflections of the vertically oscillating column, substitute the following into (2.1):

R(s,t) = (ecost+ s)k +1(s,t), T(s,t)=—(1—necost)(l—s)+T,

where r, and T are not necessarily assumed to be small as they were in Part I.
Taking the inextensibility condition (2.2) into account, the result is

n{D’r —ecost[(1 - s)r']'} = —Mr+ T’k + (Tr') = B[(x" - 1"")(k + 1')]'(2.5)

2r' - k+r' - =0, where Mr := Br'V +[(1 —s)r']". (2.6)

The boundary conditions (2.3) and (2.4) become
r=r'=0, at s=0; r"=r"=0, T=0, at s=1. (2.7)

This completes the formulation of the nonlinear stability problem.

3. Static post-buckling analysis (n = 0)

In this section the classical buckling problem for a vertical column under its own
weight is extended to determine the immediate post-buckling behaviour. Setting
n = 01in (2.5), (2.6) results in a problem in which the bending stiffness B is the only
dimensionless parameter. Therefore, consider the following perturbation expansion
in a small parameter o which measures distance of B from a bifurcation value By:

B = BO(l +p02); I'(S) = 0'1'1(8) + 0‘21'2(5) —+ 0'31-3(5) “+ .- , }
T = oT1(8) + 02Ta(s) + o®T3(s) +-- -,

where p = £1 and bifurcation values B = By are to be determined as part of the
solution process. Note the 0% dependence in B is due to the reflection symmetry
of the problem which dictates that all bifurcations are pitchforks. Now substitute
this form into (2.5) and set successive coefficients of o to zero, to give:

M()I‘l - Tllk = 0, (31)
M()I‘2 — Tzlk = —BO (I‘Ill . I‘Ill)lk -+ (Tll'll)l, (32)
Mors —Tzk = —Bo [pr{¥ +2(r} - r3)'k + (|Ir{[’r})'] + (Tor} + Turh)’,  (3.3)

where My is M evaluated at B = By. The inextensibility condition (2.6); gives

1
k- rll =0, k- rl2 = —5(1'11 ' rll)a k- I'g = _(rll : rl2)7 (34)

with each {r;(s), Ti(s)}, i = 1,2, 3, subject to boundary conditions (2.7).
Consider the O(o) equation (3.1). Taking its scalar product with k, using the
boundary and inextensibility conditions, one finds that 77 = 0, leaving
Myry := BorlV +[(1 - s)r}] = 0. (3.5)
As known to Greenhill (1881) this equation, subject to (2.7), has solution

r = 'I.lk(S) = Akwk(s)i, k= ]., 2,3, . (36)
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Nonlinear analysis of ‘Indian rope trick’ 5

Here Ay, is an unknown amplitude, without loss of generality the vector r; (which
must be perpendicular to k) is orientated in the i direction, and the eigenfunctions
¥ may be expressed in terms of a Bessel function J_; 3 via ¢3(0) = 0 and

[1—s 2, 1 3 ! 2
¢2(s) = Nk J_1/3 (EAI” 2(1 — 5)2) ; Nk :/0 |:\/]. — SJ_1/3 (EA’“

. 1
The corresponding eigenvalues By = Ay are the zeros of J_y/3 (%B0 2); A =

0.127594, A, = 0.017864, A3 = 0.0067336, Ay = 0.0003503, A5 = 0.0002142, ....
Equation (3.5) is self-adjoint, the eigenfunctions satisfy the orthogonality relations

fol u - ufVds = — fol u) - ul'ds = fol uy - ujds =
for all k # j. (3.8)
Jol(L = s)ul) - ujds = [, (1 - s)ul, - ufds =0

and they have been normalized so that fol(w}g)2ds =1.

The solution of prime interest in this paper is the one that bifurcates from
the largest eigenvalue Ay = 0.127594, corresponding to eigenfunction u;(s) above.
This is because B = A; := B,, corresponds to the critical value of dimensionless
bending stiffness below which a column is unstable (the ‘greatest height consistent
with stability’ Greenhill (1881)), see Part I §3(e). Thus each lower eigenvalue Ay
with & > 1 corresponds upon decreasing B to a further loss of stability from an
already unstable state. Hence let us take

ri(s)=w(s), Th =0, and By=A;=0.1275%4, (3.9)

where u;(s) is given by (3.6) with the amplitude A; to be determined. The inex-
tensibility conditions (3.4) now become

1
k-uj =0, k-r'2=—§(u'1-u'1), k-ry=—(u] -rj). (3.10)

Now consider the O(c2) equation (3.2) after substition of (3.9):
AV 4+ [(1 = s)rh) — Tok = — A (uf - uf)'k, (3.11)

To find an expression for T5, form the scalar product (3.11) with k, using the inex-
tensibility condition (3.10)2, to obtain an equation for Tj which can be integrated,
the integration constant being zero due to the boundary conditions (2.7):

1 1
To(s) = A ) = SAa(uf )" — S(1—s)(ul u)). (3.12)

Equation (3.11) now reduces to
1
Mory = Airg¥ + (1= s)rp]" = o {Au(uy - u)” + [(1 = s)uy - up)]'}k,  (3.13)

where all terms on the right-hand side are now known functions. The solvability
condition for (3.13) is that the right-hand side be orthogonal to u;(s). Only the
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6 W.B. Fraser € A.R. Champneys

particular integral is of interest as any contribution from the solution (3.7) of the
homogeneous equation can be absorbed into the O(1) term r;. The particular so-
lution is rs = fo(s)k, where f5(s) satisfies

Mofs = ~25H (@D + [ - )T}

A calculation using (3.8) shows that the right-hand-side of this equation is orthogo-
nal to uy (s) as required and that the particular integral solution is f§ = —1(A;4})%.

Now go to O(o?). Since the solution r(s) and its derivatives are in the k direc-
tion, and rf(s) is perpendicular to k, the inextensibility condition (3.13)3 reduces
to k - rf = 0. The tension perturbation T3 is then found to be zero from the k-
component of (3.3). When all known terms are substituted into (3.3) it reduces
to

Mors = Ajr” +[(1 = s)rh]) = —pAjui” — Ay[(uf - uf)uf]’ + (Tou})'.

The right-hand side is now known, up to the unknown sign p and amplitude A; of
uy, which are determined by the solvability (orthogonality) condition

1 1
oA [ Y s = [ (Tl - Al - ul)u ]} wds
0 0

Integration by parts twice and substitution for T5 from (3.12) gives

pio [ uyas = 3 [ {0 ) u)? - Al w2} s

Substitution of uy(s) from (3.6), then gives an expression for p and A;:

- - i) e oo

where A1 =0.127594, and 1 (s) is given by (3.7) with N7 = 2.795394... ..

Evaluation of the integrals in (3.14) using Maple, reveals that K; = —.0239242;
hence p = —1 and A; = 2.309388. The final post-bifurcation result is therefore
that, for B = 0.127954(1 — 0?), with |a| < 1, the centreline is

R(s) = 0[(2.309...)¢1(s)] i+ (g — —(2.309. / 1 ( ) k + O(c?),

where 1, is defined by (3.7). This bifurcation is the right-hand one depicted in
Figure 2. Specifically it shows that as bending stiffness is decreased through B = B,
(to values of B just slightly less than B..) the vertically upright configuration
(o = 0) becomes unstable and the column assumes a stable equilibrium position
displaced from the vertical (Jo| > 0).

Before proceeding to a dynamic analysis, note that the above post-buckling
analysis is easily repeated at each of the other static bifurcation points B = Ay,
k > 1, by replacement of the subscript 1 on 91, etc. by k. A remarkable fact, found
by numerical evaluation of the integrals K} for £ > 1 is that p < 0 in each case
and, given the choice of normalization, that Ay = A;. Hence each bifurcation is a
supercritical pitchfork and when appropriately rescaled (recall that o2 represents
the percentage change of B from its bifurcation value) the quadratic bifurcating
curves are identical. The first three curves are plotted in Figure 2.

Article submitted to Royal Society
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-0.02 x 002

Figure 2. Weakly nonlinear static post-buckling analysis showing the first three bifurca-
tions. The norm in the ordinate is the La-norm of r’ -i. All curves are depicted beyond the
region of validity of the analysis. The insets show the corresponding bifurcating modes at
o =0.01, 0.1 0.2 and 0.3.

4. Multiple-Timescale Dynamic Asymptotic Analysis
(a) Linear Modal Analysis

Now consider 7 > 0 and let us briefly recall the analysis from Part I of the forced
and unforced dynamic problem obtained from the linearized version of (2.5). It was
assumed, without loss of generality, that r(s,t) = u(s,t)i so that the linearized
equation is [cf. Part I Eq. (3.11)]

nD*u = —(1 — gecost)[(1 — s)u']' — Bu'V,

The results are summarized qualitatively in Figure 3. Here the A\,(B) n =1,2,...
represent the vibration frequencies of the solution to the unforced (¢ = 0) problem

u(s,t) = Zq&n(s; B) {An cos [\[()\n/n) t] + By, sin [\/()\n/n) t] } ,

where the ¢,(s; B) are the eigenfunctions of M ¢, — A,¢, = 0, subject to the
boundary conditions (2.7), where M is given in (2.6). The eigenfunctions and
eigenvalues are related to the static ones via Ap (B = Ag) = 0, and ¢y (s; B = Ag) =
1y, and satisfy the orthogonality relations (for fixed B)

/qﬁmqﬁnds = /[Mqﬁm]gzﬁnds =0, with n#m, and A, # As.

Unlike the static eigensolutions, the ¢,, are not expressible in closed form. Numeri-
cally the ¢,, have the same basic mode shapes as the 1,,; and A,,(B) is approximately
a linear function for each n (see Fig. 2 of Part I).

Moreover, in Part I section 5, it was shown via infinite-dimensional Floquet
theory that at each B-value such that A;(B) = n(%)? for some non-negative integer
i and positive integer j, there is the root point of an (Arnol’d or Mathieu) instability

Article submitted to Royal Society



8 W.B. Fraser € A.R. Champneys
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19M /4
In )
- M(B)

B

Figure 3. Summarizing the results from Part I, see text for details. The shaded regions
correspond to the where the vertical solution is stable. Solid lines correspond to Floquet
multipliers +1 and dashed lines to multipliers -1.

tongue in the (e, B)-plane, as depicted qualitatively in the lower part of Figure 3.
Here i/2 counts the temporal harmonic and j the spatial mode number. The B-
values of these roots are labelled B;/; ;, where by definition By ; = A;. Note that
the relative location of the tongues is highly n-dependent. Note also that Figure
3 is a caricature and in reality, as confirmed by numerical computation in Part I,
those tongues corresponding to ¢ > 1 are remarkably narrow.

(b) The multiple-timescale asymptotic analysis

In Part I, section 4 a two-timing asymptotic analysis of the linearized problem
was undertaken in the vicinity of B = B, = By,. This confirmed that the primary
resonance curve emanating from this point bends back to the left as depicted in
Figure 3 (although see the caveat presented in §4(c) below). This shows that for
small € there is a short range of B-values at which a statically unstable rod (B <
By,1) can be stabilized; the ‘Indian rope trick’. In §4(c) below, this lower bound on
B (near By 1) for stability is extended to a weakly nonlinear and three-dimensional
analysis in the spirit of §3 above. §4(d),(e) then goes on to use the two-timscale
asymptotic methods to determine approximations in the (&, B)-plane to the Mathieu
tongues near ¢ = 0 for the simplest dynamical resonance points, B = By s ; and
B, ;, corresponding to the first subharmonic and harmonic instabilities. The hope is
that these will provide an upper bound on B for stability, as suggested by Mullin’s
experiments.

Before giving the three separate asymptotic analyses, let us construct a general

Article submitted to Royal Society



Nonlinear analysis of ‘Indian rope trick’ 9

asymptotic expansion involving two slow timescales 7, = ¢t and 7, = £2t. Timescale
71 is required to obtain a distinguished limit for the fundamental resonance near
B., and for subharmonic resonance. Time scale 7, is required for the case of har-
monic resonance. Thus, consider the following expansions (cf. Kevorkian & Cole
(1981)[p.152]):

B = B0+5B1+E2BQ+"';
I‘(S,t) = 5r1(s,t,7'1,7'2)+52r2(s,t,7'1,7'2)+53r3(s,t,7'1,7'2)+--- .
T(s,t) = 8T1(S,t,7'1,7'2)+62T2(3,t,7'1,7'2)+83T3(8,t,7'1,7'2)+"'

When these expansions are substituted into (2.5) and the coefficients of powers
of € in the resulting equations are set to zero, we obtain

621‘1 '
N + Mori — Tk =0, (4.1)
2 2
na—? + Myry — Tik = costLry + (Tir)y) — Bo(||eV]|?)'k — BirlY — 2y 0 (4.2)
ot or ot

821'3
a2

—By[||r}|I*ry)’ — Biry¥ — Bor¥ — 2

+ Myrs — Tsk = ncostLry + (Tyrh + Tory) — 2By (r] - rh)'k

821‘1 621'1 321‘2

onot o2 oot

(4.3)

where Lr = [(1—s)r']’ and M, was defined previously. The inextensibility condition
again yields (3.4), and the r,,(s, ¢, 71, 72) are each subject to the boundary conditions
(2.7).

(¢) The first pure bending mode near B = B.,; the ’falling-over’ instability

In this case By = B, and the O(e) solution is assumed to be the fundamental
buckling mode with its amplitude dependent only on the slow time variables. Thus,
the solution of equation (4.1) is taken to be

T, =0, rl(S,t,Tl,Tz) = [f(Tl,Tg)i + g(Tl,Tz)j] ¢1(s) = le(s), (44)

which satisfies the inextensibility condition (3.4);. For stability, the functions f and
g must be bounded as 71,72 — o0 The inextensibility condition (3.4)y becomes

kxh = —2 [FIP)) (45)

The O(e?) equation.
When (4.4) is substituted into the O(e?) equation (4.2), the result is
821‘2
Tor?
As before T; is found by forming the scalar product of this equation with k; thus

+ Mors — Tk = {ncostLipi(s) — Biyg } F — Bo||F[I*[(¢))*]'k.  (4.6)

T, = -IFIP {Bo [5l0077 - 2] + sa -9 ). @)

Article submitted to Royal Society



10 W.B. Fraser € A.R. Champneys

Note from (4.5) that k - r2 does not depend on the fast time ¢t. When this result is
substituted back into (4.6) the solution for r} is found to be

1
ry(s,t,71,72) = [Fy(s) + costF{ ()] F — S[|F[* (1)K,
where Fy(s), Fi(s) satisfy the ordinary differential equations
MQFO = _Bl¢{V7 MOF1 - ’I']F1 = ’l’]L'lbl(S) (48)

since the right-hand side of the first equation above is not orthogonal to the eigen-
function vy of the operator on the left, we must choose B; = 0.

The dependence of the amplitude functions f and g on 71 is determined by a
solvability condition for the component of the O(¢®) equation that is pependicular
to k. Let uz be such a component of r3 (us -k = 0) and substitute the above
solutions into (4.3) to obtain the following equation for us:

o 62F 1 OF
i 1;3 + Myuz = —np1—5 ncos2tLF1( JF + 2nsintFy(s)—
ot ot} o

1 1
#{Gim — BalY = 4 [Bowl)yut + (- t”] PP} v

The particular integral of this equation is

OF

uz = Go(S,Tl,TQ) + COSZtGl(S,Tl,TQ)F + SintGQ(s,Tl,TQ)aT,
1

1
where MOG1 — 4’]7G1 = §T)LF1, M()G2 — 'I)G2 = 27)F1 and

1 v 1 12\, 11 13]’ 2 &

MoGo = § LFy = Bag{” — 3 [Bo(wi™)"¥ + (L= s)04° | IFI? | F— s o,
2 2 oty

(4.9)

with each of the functions G, (s, 71, 72) satisfying the boundary conditions (2.7).
Finally, the condition for the existence of the particular integral of (4.9) gives
equations for F = fi+ gj as a function of 71:

2

v prrau s =0, '
71

= 5 +Pg+Q(f*+4g%)9=0, (410

' 1
P= (/0 [BﬂbfV - %nLFl] 'zﬁlds) /A, where A= n/o Yids  (4.11)

2= /0 {Boli )" + (1= s)h)?} (9h)%ds =~ 1 ot

and K is given by (3.14). To obtain these expressions for P and @, the terms in
the numerators have been simplified by integration by parts. The 75 dependence is
determined at O(g*) but does not add any significant behaviour.

Article submitted to Royal Society
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Figure 4. Numerical evaluation of the coefficient By = by for which P = 0. Panel (b)
shows a blow up of (a) for small 5

Consider now the amplitude equations (4.10). They can be written more com-
pactly in complex form after defining z = f + ig from which it is apparent that
they are rotation invariant and completely integrable, and satisfy the circularly
symmetric unforced Duffing equation z” + Pz + Q||z||*z = 0. The origin z = 0 is
stable for P > 0 and unstable for P < 0. Hence the stability boundary is given by
those values of By := bs(n) for which P given by (4.11) is zero. Note that P is the
same as the coefficient —a? found in the linearized analysis in Part I (eq. (4.12)
of that paper) where real values of « represent the vibration frequency about the
zero solution. Note that these linear vibrations include circular modes, which can
be seen by setting z = Rei(!) with R =const. from which we obtain §2 = P+ QR2.
Nonlinearly, this relationship gives the frequency of rotating ‘relative equilibria’ as
a function of R, n and B.

In Part I, the stability boundary b2(n) was found to be sensitive to . In Figure 4
we present more details of this result which was obtained by numerical evaluation of
the integral (4.11) after solving the boundary-value problems (4.8)2 using AUTO
(Doedel et al. 1997). Note that the curve has an asymptote for small 5 of be =~
—C(n)n where C' =~ 0.1, which leads to the simple lower stability bound given
in Part I. However, as is more apparent here where n rather than § = 1/9 is
the frequency parameter, for larger n this asymptotic curve while still correct ‘on
average’ is punctuated by a series of singularities (the first three near n = 53.3,
460.7 and and 1813.5). In §5 we shall give an explanation of these singularities,
which were erroneously put down to secondary ‘bifurcations’ in Part 1.

Consider now, the nonlinear implications of these stability results. For simplicity,
bearing in mind the rotation symmetry, we shall restrict ourselves to planar modes
in the invariant plane g = 0, leaving the planar Duffing equation (4.10); with g = 0.
Since K; < 0 then @ > 0 and, if B > b2(n), then all the phase-plane trajectories are
periodic and the origin is a centre. Hence linear stability implies nonlinear stability.
See Figure 5(a). If, on the other hand, By < b2(n) then P < 0 then the origin
becomes a saddle flanked by the symmetrically-opposite bifurcated stable equilibria
corresponding to the fundamental static mode 1. See Figure 5(b). Hence linear
instability does not necessarily imply nonlinear instability, since small perturbations
will form oscillations about one or other of the leaning-over equilibrium states. With
the addition of small damping, this implies that under quasi-static reduction in B
(which is experimentally realisable by increasing the length of the rod), a stable
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(b) B,=-0.25

Figure 5. Showing the phase-plane of the slow-time equation (4.10) with g =0 and § =1
so that @ = 0.2971, and: (a) B2 = 0.25 > by, implying P = 4.3559; (b) By = —0.25 < bs,
implying P = —1.8532.

one-sided leaning state would be observed before any gross instability of the upside
down position sets in.

Finally note that, up to numerical evaluation of coefficients P and @, the above
analysis works near B = By ; for j = 2,3,..., by simply replacing 11 by ;.

(d) Subharmonic resonance in the neighbourhood of B = By s

In the case of resonance where the vibration frequency of mode ¢; is half that
of the drive, it will transpire that the instability boundary is fully determined by
the O(¢2) equations which are independent of timescale 5. Analysis of the O(e?)
equations then leads to expressions for the amplitude of the bifurcating solutions,
but does not alter the leading order expression for the boundary itself. For brevity
we shall omit the O(e?) analysis, and hence set 71 = 7 in this subsection. Thus we
set Byp = By/5,; and take the solution to the O(e) equation (4.1) to be Ty = 0 and

r = [f(T)ml/Q =+ 2g(T)m1/2 =+ h(T)n1/2 + 2]5(7')111/2] ¢(8) = Nl/g(t, 71, T2)¢(5).
(4.12)

Here, the unit vectors m, and n, (with ¢ = 1/2) are given by
my(t) =icosgt + jsingt, ny(t) = icosqt — jsingt. (4.13)

Also ¢(s) is the solution of Mo — 2¢ = By j¢"V + Lp — 2¢ = 0, subject to the
usual boundary conditions. The amplitude functions f(7), g(7), h(7) and k(7) will
be determined by the O(¢2) equations.

Note that the general notation for the vectors my and ng,t0 be used in §4(e) also,
defines vectors which rotate around the k-axis at the appropriate (sub)harmonic
frequency. They have the following properties:

dm, . ..

k-m;, =0, —3*=m;=qkXxm, and m, = —¢’m, (4.14)

k-n, = | =5, =gk d i, = —¢° '
n, =0, 7 =hy = ¢k xn, an ng = —q"ng.

Note that planar motions are given with respect to bases my & n,.
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When (4.12) is substituted into the O(e?) equation the result is

n82r2
ot?
df . 1d dh . 1dk
—2n d_{_ml/i’ - Zd_f_ml/Z + Enlﬁ - ZE“IN] ¢— Bl/z,nF(ta T)[(¢”)2]Ik

1 2 . 2 .
+ Mory — Tok = 5 [fms/z + 39ms/2 + hngjs + gkn3/2 L¢

1 . ;
+§7I [fn1/s — 291y /5 + hmy jp — 2kmny /5] L — BlN1/2¢IV; (4.15)

where F(t,7) = (f* + ¢ + h*> + k%) — 2(fk + hg)sint + 2(fh — gk) cost.

Also, by the inextensibility condition, k-r5 = F(t,7)®"(s) where ®(s) satisfies the
ordinary differential equation

" (s) = —%(¢')2, subject o ®(0) = &(1) = 0. (4.16)
The tension T3 is found from the k component of eq. (4.15) to be
Ty = —F<I>(s) + F(t,7)M®(s) + By 2o F(t,7)(¢")?, (4.17)
where M® = By 5 , 81V + (1 — 5)®".

The solvability condition for (4.15) is that the resonant terms on the right-hand
side be orthogonal to ¢(s), which, in components of m, m, n and n, gives

§g+ah—ﬂ31f=0, 2§£+ak+ﬂBlg:0, (w15)
%-}-af—ﬁBlh:O, 2%+ag+/331k=07 .

a= /01 ¢L¢ds//01 ¢’ds, and f[= 2/01(¢”)2ds/n/01 Hds.

Note that for this resonance, the lowest order amplitude equations (4.18) are
linear and hence we can without loss of generality at this stage, consider only planar
motions in the (i, k)-plane by setting f = h, g = k. The condition for stability of the
trivial equilibrium can then be obtained by eliminating f (or g) from the equations

2 A
so obtained to give %g + %(Bfﬁz —a?)g = 0. The solution of this equation will be
T
periodic, giving stability of the trivial solution provided B2 > (b{")2 := a2/32. This
determines the approximately linear boundaries of the Arnol’d tongue emanating
from the root B = By, ; of the (¢, B)-plane:

. . 1 1
B=By;teb) +0(?),  where b = g / SLpds / / ¢"ds  (4.19)
0 0

Figure 6 shows the numerical computation of the integral defining bgj ) (depicted
as an absolute value) together with the value of By /5 ; obtained by solving the eigen-
value problem for the linear boundary-value-problem. Note the striking closeness to
linearity of the dependence of both quantities with 5 (note that b; depends nonlin-
early on 7 since ¢ does). Figure 7 shows that these asymptotic formulae agree well
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Figure 6. Numerically computed curves By, ; and bgj ) against 7, for j = 1,2, 3.
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Figure 7. Comparison between numerics and asymptotics for the (1/2, j)-resonance tongue:
(a) with n =1 and j = 1; and (b) with 5 = 200 and j = 2. The latter value was chosen
to illustrate how the resonance interacts with the pure bending mode, whose instability
boundary calculated both asymptotically and numerically is also depicted

with the corresponding numerically computed stability boundaries (all such com-
putations in this paper were obtained with the numerical Floquet theory presented
in Part I with N = 4).

Note that from (4.18), it is possible to distinguish between the dynamic mode
corresponding to the left and right instability boundaries in (4.19). That which
has B; = —I—bgj) corresponds to solutions like f(7)cos(¢/2) which have maximum
lateral deflection at the top of the vertical excitation, and zero deflection at the
bottom. Such motion has been described as ‘nodding’ in Acheson (1995), for the
analogous motion of a rigid pendulum. In contrast, those solutions that bifurcate
from B; = —bgj ) are like g(7)sin(t/2) and have zero displacement at the top of the
drive, maximum displacement at the bottom. In fact numerical evaluation shows,
at least for j = 1,2,3, that bgj) < 0, hence the cosine-mode instability boundary
emanates from By ; to the left, and the sine-mode to the right.

(e) First harmonic resonance in the neighbourhood of B = B ;

For this case set By = Bi,;. The distinguished limit occurs on a timescale 7o
and the solutions are independent of 7. So, throughout this subsection, the solution
depends on s, t, and 7 = 72 = €2t. The O(e) solution (eq. (4.1)) is Ty = 0 and

ry = [f(T)my + g(7)ry + h(7T)n; + k(1)01] #(s),
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Nonlinear analysis of ‘Indian rope trick’ 15

where ¢(s) is now a solution of
Mop —n¢ = By ;6" + Lo — ¢ =0, (4.20)

subject to the usual boundary conditions. The amplitude functions f(7), h(7) and
9(7), k(7) are to be determined. The unit vectors m,, and n,, which rotate in the
anti-clock-wise and clock-wise directions respectively about the k axis, were defined
in (4.13) and (4.14).

When this solution is substituted into the O(e?) equation (4.2) the result is

82
n 3;22 + M(]I'Q T2k =
S0 [i(F 4 1) +i(0 = k) + fima + hma + L(griny + i) L -
B1nF(t,7)(¢")°]'k — By [f(7)my + g(7)riny + h(7)n1 + k(1)m] ¢, (4.21)
where

F(t,7) = (f* + h%* + g + k%) — 2(fk + hg) sin 2t + 2(fh — gk) cos 2t.

Also, by the inextensibility condition,
1
kol = F(t,7)8"(s) = —3(R' - R,

where ®(s) satisfies the boundary-value problem (4.16). The tension T; is found to
be given by (4.17) after By, ; is replaced by By ;.
The particular integral of equation (4.21) is

ry = Ho(s) [f(7)my + g(T)1iy + h(7)ny + k(1) ] + F(2,7)®' (s)k+

HL(3) (7 + R) +3(9 — B)] + Ha(s) | fmo + by + S(gmny + o) | (4.22)

1 1
where MoHy +nHy = —B1¢'Y, MyH, = 5nL¢, MyH, — 4nH, = 577L¢.
(4.23)

For the first of these equations to have a solution, its right-hand side must be
orthogonal to the eigenfunction of the operator on the left. Thus B; = 0, and
without loss of generality Hy(s) = 0.

When the above solutions are substituted into the right-hand side of the O(g?)
equation (4.3) the equation for the component usz of r3 perpendicular to k satisfies
the equation

Ouy
o
m; {%n [LHi(f +h) + LHyf] + (¢ M®)' (f* + h* + ¢* + k*) f+

+ Mousz =

(M@ — a6 [K(7k -+ ho) + (1 - 9] — Bao [ + 21057 |

+similar terms in the directions my, n; and n;, and terms involving mj etc..
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Figure 8. Phase portraits for solutions of the planar-mode amplitude equations (4.27) with
7 = 60 which implies a; = 19.46, 8 = 0.11635 and v = —1.08504. In (a) B, = —10.32,
implying a; = 58.29; (b) B = 5.05, implying a1 = —3.93; (c) B2 = 20.16, implying
a1 = —65.09.

For a particular solution of this equation to exist the right-hand side must be or-
thogonal to the eigenfunction ¢(s) of (4.20), which leads to the following amplitude
equations for f(7), g(7), h(7) and k(1)

99 4 onf +ash— B2+ 12+ + )] — (W + )] =
——J;+aly—azk—ﬂ(f2+h2+92+k2)g—7(h2+k2)g =
ar tah+af = B(f2 + 0+ g* + k)h —(f* + ¢%)

( )k —( )

—%+a1k—a29—6 PPHr+ g8 +k)k

(4.24)

o O O O

where
o1 = [y [30(LH, + LH;) - B>¢'V] ¢ds [ B, a5 = [) snLHgds | B,
g= M¢(¢’)2ds/ B, v= [} (M®—4yd) ¢>’2ds/ B; B=2n[ ¢ds.
(4.25)

The amplitude equations (4.24) may be expressed more simply in complex form
via defining v = f +ig, v = h + ik:

i = 1w+ a0 — B(lul? + [vP)u + ylv[*u, } (4.26)

i = oqv+ s — B(Jv]? + |ul?)v + v|ul?v,

where an overbar represents complex conjugation.

Like the simpler amplitude equations (4.10), the ‘normal form’ (4.26) is com-
pletely integrable and circularly symmetric. There also exist relative equilibria so-
lutions, which in this case correspond to a slow-time rotational drift of the fast-time
planar oscillations. A detailed analysis of this normal form is left for future work.
We shall restrict ourselves here to the simplest class of solutions, namely the planar
modes, which, without loss of generality, we shall assume to lie in the (i, k)-plane.
Hence, setting h = f and k = g equations (4.24) become

dg _ 2, 2
Z,% = —[(a1+az)—(2ﬂ+v)gf +9 N7 (427
& = la—a) =28+ +9))] 9,
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Figure 9. Numerically calculated coefficients (4.25) for B = By, j with j = 2,3. (a) and
(b) depict the Bs-values ba+(n) at which an = tas for j = 2,3 respectively. (c¢) and (d)
depict 3(n) and y(n).

the stationary equilibrium points of which are

o + a1 — 2
= :0; = :l: 7’ :0; d = 0’ = :I: _—.
f=g f \/ 28+« 9 an f g \/ 28+«

It is straightforward to show that the only possible equilibria to the full system
(4.26) are trivial rotations of these.

Note also that a linear stability analysis about the trivial equilibrium shows that
the boundary between stability and instability is given by a; = *as with stability
occuring for |a1| < |az|. Figure 8 plots representative phase portraits for just the
planar modes (solutions to (4.27)) using numerical evaluation of the coefficients
(4.25). Note that a pair of stable g = 0 non-trivial equilibria are born for By < bay
which correspond to lateral vibrations of the column that are out of phase with
the drive (‘snaking’). For By < be_ there is also a pair of unstable f = 0 equilibria
corresponding to vibrations in phase with the drive (‘nodding’).

Finally, it remains to see how a1, as, 3, v and By = b(QQ defining the stability
boundaries a; = *aw, all depend on 7. These loci were obtained by numerical
compuation of the boundary-value problems (4.22) using AUTO, and subsequent
evaluation of the integrals (4.25). The results are plotted in Figure 9 for j = 2 and
J = 3. Note the singularities in the coeficients bgz_) and bg‘qf which detailed numerics
reveal to occur at 7 = 53.3 and 460.7 respectively. Also both coefficients b3, become
singular for 7 & 279. Meanwhile 8 > 0 and v < 0 always.

Note how the singularities of bg’_) (the high-n one in the case j = 3) occur at
precisely the n-values as those of the coefficient by of the falling-over instability; see
Figure 4. An examination of the curves Bs ;(n) (see Table 1 in Part I) reveals that
these are precisely the 7-values at which By ; = By 1, i.e. there is a resonance tongue
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Figure 10. Resonance tongue interaction in the (B, 7n)-plane between the the falling over
instability emanating from B = B, = 0.127954 and (a)—(c) the tongue emanating from
By 2, (d)—(f) the tongue from Bj 3. Solid lines are from the two-timescale asymptotics,
dashed lines from the Floquet-theory numerics and dot-dashed lines are where the two
curves are overlaid. Light shading represents the primary stability region to the right of
the numerical falling over boundary, and dark shading gives the instability region inside
the Bi,, tongue.

interaction between the falling-over mode and the harmonic resonance. Figure 10
shows how the asymptotic theory is matched by the numerical Floquet analysis
(with N = 4) in describing this curious internaction process.

5. Discussion

In this paper we have extended our earlier analysis of the ‘Indian rope trick’ to
include both geometric nonlinearity and a careful asymptotic description of the
simplest static bifurcations and dynamic resonances. At each resonance we have
derived the appropriate amplitude equations which resemble normal forms for bi-
furcations in nonlinear wave systems with symmetry (e.g. Dangelmayr et al. (1996)).
A complete analysis of these normal forms, especially the dynamics associated with
fully three-dimensional motions of the column, is left for future work. The main
insights in this paper have concerned simply the linear instability criteria that can
be deduced from these normal forms, especially how the quadratic coefficients of
resonance tongues in the (B, ¢)-plane becomes singular at 7-values corresponding to
a mode interaction between the pure falling over instability and the resonance be-
tween a vibration mode and the drive frequency (as in Figure 10). The subharmonic
instability analysed in §4(d) is less interesting in this regard because, as illustrated
in Figure 7, this linear-to-first-order tongue is not affected by its crossing Be,.

Let us now comment from the asymptotic analysis why the resonance tongue
interaction occurs when B ; crosses B.,. Consider equation (4.8)2 that determines
the function F; used in the evaluation of the falling-over instability tongue. It can
be solved provided the operator on the left-hand side is invertible. However, at
precisely the n-value 7y j;, say, for which By = B j, then by definition 7 is an
eigenvalue of My, and hence the operator is not invertible. Thus the asymptotic
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expansion breaks down as n — 11 ; and hence F; blows up. Hence the coeflicient b,
defined by P = 0 blows up also, which explains the singularities in the curve bs(n)
plotted in Figure 4 at n = 53.3, 460.7 and 1813.5, where By = By ; for j = 1,2,3
respectively. A similar reasoning applied to the middle equation of (4.23) shows that
H; blows up as 7 — 7 ; and hence, from (4.25), the coefficient by_ corresponding
to a1 = —aw blows up also. This then explains the seemingly strange interactions
of the stability boundaries shown in Figure 10 for  near n; 2 and 3.

The details of Tom Mullin’s experiments will be written up elsewhere (Acheson
et al. 2000). Let us here make just two remarks on how the present theory appears
highly promising at least at a qualitative level. First, the experimentally observed
lower stability boundary in the (B,n)-plane for fixed ¢ is in the vicinity of n = 91 3.
Hence, the resonance tongue interaction just described seems absolutely crucial
in explaining the quantitative inaccuracy of the simple formula given in Part 1.
Second, the two instabilities seen in the experiment do indeed correspond to a pure
falling over mode and something corresponding to the 13 spatial mode oscillating
at the frequency of the drive, which is fully consistent with the hypothesis that
it is the interaction between these two modes for n =~ 7,3 that underlies what is
observed.

When trying to match the experiments on curtain wire, however, it should
be remembered that the analysis presented here contains no damping. As is well
known (e.g. Nayfey & Mook (1979)), damping will lift those resonance tongues
corresponding to higher harmonics away from the ¢ = 0 axis. In some sense, this
justifies the concentration in this paper on only the lowest order resonance tongues.
Future work will be directed towards including a realistic material damping term
into the model, in the first instance by considering the column as the limit of N
pendulums coupled by rotational springs and dampers. Also, one strange feature of
curtain wire is that it is clearly not linearly elastic. In fact, the softening nonlinearity
in its bending moment constitutive law (essentially due to the spring coils opening
up as they are bent) is so extreme that its static buckling is subcritical (see, the
results by T.B. Benjamin reproduced in (Iooss & Joseph 1990, p.22-24)). However,
the analysis in §3 above shows that linearly elastic columns buckle supercriticality
due to the effect of purely geometric nonlinearities. While this observation may seem
to belittle a lot of the analysis in this paper, one should remember that the stability
curves are defined by the purely linear problem. Also, Tom Mullin has performed
other experiments which have demonstrated that linearly elastic columns such as
those made of niobium wire can can also be stabilized by parametric excitation.
It just seems that the curtain wire gives the most repeatable results for resonance
tongue boundaries — perhaps because it has high damping and hence is least
influenced by higher-order resonances.
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